Simulink® Design Verifier™
User's Guide

<

MATLAB&SIMULINK

222222 ¢)L MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Verifier™ User's Guide
© COPYRIGHT 2007-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

Prover, Prover Technology, Prover Plug-In and the Prover logo are trademarks or registered trademarks of
Prover Technology AB in Sweden, the United States and in other countries.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

May 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022
March 2023

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 2007a+)

Revised for Version 1.1 (Release 2007b)
Revised for Version 1.2 (Release 2008a)
Revised for Version 1.3 (Release 2008b)
Revised for Version 1.4 (Release 2009a)
Revised for Version 1.5 (Release 2009b)
Revised for Version 1.6 (Release 2010a)
Revised for Version 1.7 (Release 2010b)
Revised for Version 2.0 (Release 2011a)
Revised for Version 2.1 (Release 2011b)
Revised for Version 2.2 (Release 2012a)
Revised for Version 2.3 (Release 2012b)
Revised for Version 2.4 (Release 2013a)
Revised for Version 2.5 (Release 2013b)
Revised for Version 2.6 (Release 2014a)
Revised for Version 2.7 (Release 2014b)
Revised for Version 2.8 (Release 2015a)
Revised for Version 3.0 (Release 2015b)

Rereleased for Version 2.8.1 (Release 2015aSP1)

Revised for Version 3.1 (Release 2016a)
Revised for Version 3.2 (Release 2016b)
Revised for Version 3.3 (Release 2017a)
Revised for Version 3.4 (Release 2017b)
Revised for Version 3.5 (Release 2018a)
Revised for Version 4.0 (Release 2018b)
Revised for Version 4.1 (Release 2019a)
Revised for Version 4.2 (Release 2019b)
Revised for Version 4.3 (Release 2020a)
Revised for Version 4.4 (Release 2020b)
Revised for Version 4.5 (Release 2021a)
Revised for Version 4.6 (Release 2021b)
Revised for Version 4.7 (Release 2022a)
Revised for Version 4.8 (Release 2022b)
Revised for Version 4.9 (Release 2023a)

Contents

Acknowledgments

Getting Started

1]

Simulink Design Verifier Product Description 1-2
Simulink Design Verifier Block Library 1-3
Analyze a Model e 1-4
About This Example e 1-4
Openthe Model e 1-4
Generate Test Casesottt e e 1-5
Combine TeSt Caseso v e e e 1-15
Analyze a Stateflow Atomic Subchart 1-17
Analyze an Atomic Subchart by Using Simulink Design Verifier 1-17
Overview of the Simulink Design Verifier Workflow 1-19
Check Model Compatibility 1-19
Apply Block ReplacementRules 1-19
Set Simulink Design Verifier Options 1-20
Perform AnalysisonModel, 1-20
Generate AnalysisResults 1-20
Interpret Analysis Results i, 1-20

How the Simulink Design Verifier Software Works

2|

Analyze a Simple Model 2-2
Model BIOCKS 2-4
Block Reduction 2-5
Large Models e 2-6
Handle Incompatibilities with Automatic Stubbing 2-7

What [s Automatic Stubbing? 2-7

How Automatic Stubbing Works 2-7
Analyze a Model Using Automatic Stubbing 2-9
Analyze Export-Function Models 2-12
Limitations 2-12
Analyze Export-Function Model with Function-Call Subsystems 2-13
Analyze Export-Function Model with Global Simulink Function 2-16
Nonfinite Data 2-19
Role of Approximations During Model Analysis 2-20
Types of Approximations i 2-20
Floating-Point to Rational Number Conversion 2-20
Linearization of Two-Dimensional Lookup Tables for Floating-Point Data
T DS ot e 2-21
Approximation of One- and Two-Dimensional Lookup Tables for Integer and
Fixed-Point Data Types 2-21
While LoOpS . .ottt e 2-22
How Simulink Design Verifier Reports Approximations Through
Validation Results 2-23
Impact of Approximations on Objectives Status 2-23
Identify the Effect of Approximations Through Validation Results 2-24
Logic Operations Short-Circuiting 2-26
Model Representation for Analysis 2-28
Reuse Model Representation for Analysis 2-28
Limitations 2-30
Share Simulink Cache File for Faster Analysis 2-31
Store the Simulink Cache File 2-31
Reuse the Simulink Cache File 2-31
Analyze AUTOSAR Component Models 2-33
Limitations 2-33
Extend Existing Test Cases by Reusing Model Representation 2-35
Configure Model Representation Options 2-39
Run Additional Analysis to Reduce Instances of Rational Approximation
... 2-42
Detect Design Errors in AUTOSAR Software Component Model 2-47

vi Contents

Checking Compatibility with the Simulink Design Verifier
Software

3|

Check Model Compatibility 3-2
Run Compatibility Check 3-2
Compatibility Check Results i, 3-3

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

.. 3-7
Support Limitations for Simulink Software Features 3-16
Support Limitations for Model Blocks 3-19
Support Limitations for Stateflow Software Features 3-21

ml Namespace Operator, ml Function, ml Expressions 3-21
CorCH+4+0peratorst e e 3-21
CMath Functions, 3-21
Atomic Subcharts That Call Exported Graphical Functions Outside a
Subchart 3-22
Atomic Subchart Input and Output Mapping 3-22
Recursion and Cyclic Behavior 3-22
Custom C/CH++Codeov vt e e 3-23
Textual Functions with Literal String Arguments 3-24
Support Limitations for MATLAB for Code Generation 3-25
Unsupported MATLAB for Code Generation Features 3-25
Support Limitations for MATLAB for Code Generation Library Functions
... 3-25
Support Limitations and Considerations for S-Functions and C/C++ Code
... 3-28
Enabling S-Functions in Simulink Design Verifier 3-28
Support Limitations for S-Functions and C/C++ Code 3-28
Handle Volatile Variables as Normal Variables 3-29
Considerations for Enabling S-Functions and C/C++ Code in Simulink
Design Verifier 3-29
Source Code Protection 3-29

Working with Block Replacements

4

What Is Block Replacement? 4-2

Block Replacement Effects on Test Generation 4-2
Built-In Block Replacements 4-4
Template for Block Replacement Rules 4-6
Block Replacements for Unsupported Blocks 4-7

viii

Contents

Specifying Parameter Configurations

S|

Parameter Configuration for Analysis
What is Parameter Configuration for Analysis?
Specify Parameter Constraints for Models Using Referenced Configuration

Set L
Data Types in Parameter Configurations
Parameters in Variant Blocks

Use Parameter Table
Find Parameterst e
Edit Parameter Constraints
Highlight Constrained Parametersin Model

Specify Parameter Configuration for Structure or Bus Parameters
About This Example Model
Preload Workspace Variable for Structure Parameter
Define Parameter Constraint Values
Define Parameter Constraint Values using Parameter Table
Define Constraint Values using Parameter Configuration File
Analyze Example Model

Specify Parameter Configuration for Full Coverage
About This Example i
Construct Example Model
Parameterize Constant Block
Preload Workspace Variable
Autogenerate Parameter Constraint
Analyze Example Model
Simulate Test Cases

Store Parameter Constraints in MATLAB Code Files
Export Parameter ConstraintstoFile
Import Parameter Constraints from File

Use Parameter Configuration File
Template Parameter Configuration File
Syntax in Parameter Configuration Files

Automatically Infer Parameter Specification

Configuring Parameters by Using Automatically infer parameter

specification

Determine from Generated Code
Configuring Parameters by Using Determine from generated code

Using Command Line Functions to Support Changing Parameters
Generate Parameters Values

Extend Existing Test Cases After Applying Parameter Configurations . .

Detecting Design Errors

6/

What Is Design Error Detection? 6-2
Derived Ranges in Design Error Detection 6-3
Analyze Models for Design Errors 6-4
Workflow for Detecting Design Errors 6-4
Understand the AnalysisResults 6-4
Review the Latest Analysis Results in the Results Summary Window 6-5
Check For Design Errors using the Model Advisor 6-6
Dead Logic Detection 6-7
Run a Partial Check forDead Logic 6-7
Run an Exhaustive Analysis for Dead Logic 6-7
Run a Dead Logic Analysis and Review Results 6-8
Detect Dead Logic Caused by an Incorrect Value 6-12
Analyze the Fuel System Model 6-12
Review the Results and Trace tothe Model 6-13
Investigate the Cause of the Dead Logic 6-13
Update the Input Constraint and Reanalyze the Model 6-14
Common Causes for Dead Logic 6-15
Short-Circuiting of a Logical Operator Block During Analysis 6-15
Conditional ExecutionofaBlock 6-15
Parameter Values Treated as Constants 6-16
Upstream Blocks 6-17
Library-Linked Blocks 6-17
Restrictions on Signal Ranges 6-17
Detect Integer Overflow and Division-by-Zero Errors 6-19
About This Example e 6-19
Analyzethe Model 6-19
Review the AnalysisResults 6-19
Check for Specified Minimum and Maximum Value Violations 6-23
Limitations of Checking Specified Minimum and Maximum Value Violations
... 6-23
About This Example e 6-23
Create the Example Model 6-24
Analyzethe Model 6-25
Review the AnalysisResults 6-25
Detect Out of Bound Array Access Errors 6-28
Design Error Detection for Out of Bound Array Access 6-28
Detect Out of Bound Array Access Example Model 6-28
Limitations of Support for Out of Bound Array Access Design Error
Detection 6-31
Detect Non-Finite, NaN, and Subnormal Floating-Point Values 6-33
Assumptions and Limitations, 6-33
Run Design Error Detection Analysis to Detect Floating-Point Errors . . . 6-33

ix

X

Contents

Detect Data Store Access Violations 6-37

Detect Data Store Access ViolationsinaModel 6-37
Detect Violations of High-Integrity Systems Modeling Guidelines 6-41
Usage of rem and reciprocal operations - hisl 0002 6-41
Usage of square root operations - hisl 0003 6-41
Usage of log and log10 operations - hisl 0004 6-41
Usage of Reciprocal Square Root blocks - hisl 0028 6-41
Detect Violations of High-Integrity Systems Modeling Guidelines 6-41
Filter Objectives by Using Simulink Design Verifier Filter Explorer 6-46
Use the Simulink Design Verifier Filter Explorer to Edit Filter Files 6-46
Limitations 6-49
Detect Integer Overflow Errors 6-51
Detect Out of Bound Array Access Example Model 6-54
Detect Design Errors in C/C++ Custom Code 6-57
Exclude and Justify Objectives for Design Error Detection 6-59
Detect Integer Overflow in a Model with Complex Inputs 6-65
Debug Integer Overflow Design Error Detection Using Model Slicer ... 6-68
Analyzing the Results for a Dead Logic Analysis 6-73

Generating Test Cases

7

What Is Test Case Generation? 7-3
Test Case Blocks i 7-3
Test Case FUnctions it i 7-3
Workflow for Test Case Generation 7-5
Generate Test Cases for Model Decision Coverage 7-6
Construct the Example Model 7-6
Check Compatibility of the Example Model 7-7
Configure Test Generation Options 7-8
Analyze the Example Model 7-8
Review AnalysisResults 7-8
Customize Test Generation 0ttt .. 7-14
Reanalyze the Example Model 7-16
Analyze Contradictory Models, 7-16
Generate Test Cases fora Subsystem 7-18
Generate Test Cases for Subsystems for Normal Mode 7-18
Generate Test Cases for Subsystems for Software-in-the-Loop Mode 7-19

Generate Test Cases for a Reusable Library Subsystem 7-21

Generate Test Cases for RLS in Software-in-the-Loop Mode 7-21
Use Test Generation Advisor to Identify Analyzable Components 7-24
Test Generation AdVISOTt 7-24
Test Generation Advisor Requirements 7-25
Identify Analyzable Components, 7-25
Analyze and Generate Tests for Model Components 7-25
Manually Select Components for Testing 7-27
Generate Test Cases for Embedded Coder Generated Code 7-28
Generate Test Cases for Generated Code from the Simulink Model Toolstrip
... 7-28
Generate Test Cases for Generated Code by Using the Simulink Design
Verifier API e 7-29
Generate Test Cases for Generated Code from the Simulink Test Test
MaNAgET . v vt e 7-29
Model Coverage Objectives for Test Generation 7-30
DECISION . vttt 7-30
Condition e 7-30
MCDC . .o 7-31
Enhanced MCDC e e e 7-31
Relational Boundary 7-31
Enhance Model Coverage of Older Release Models 7-32
Enhance Model Coverage by Generating Test Cases for Older Release
Model e 7-33
Enhance Model Coverage by Using Generated Code from Older Release
... 7-37
Enhanced MCDC Coverage in Simulink Design Verifier 7-42
Use Model Coverage Objectives for Enhanced MCDC Coverage 7-42
Author Custom Test Objectives for Enhanced MCDC Coverage 7-43
Analyze Model for Enhanced MCDC Analysis 7-44
Basic Workflow for Enhanced MCDC Analysis 7-47
Configure Detection Sites using Test-pointed Logged Signals 7-48
Configure Advanced Options for Enhanced MCDC Analysis 7-49
Inspect Enhanced MCDC Objectives using Model Slicer 7-50
Author Custom Test Objective Workflow 7-52
Steps for Authoring Custom Test Objectives 7-52
Analyze Custom Test Objectives in Model for Enhanced MCDC 7-53
What Is a Specification Model? 7-60
Use Specification Models in Requirements-Based Testing 7-60
Construct a Specification Model 7-61
Iterate Throughthe Steps i 7-65
Test Generation Examples 7-66
Test Generation for Custom Code in MATLAB Function Block 7-67
Generating Tests for Custom code in MATLAB function block 7-67

xi

xii

Contents

Use Specification Models for Requirements-Based Testing 7-69

Flip Flop Test Generation 7-80
Model Coverage Test Generation 7-81
Test Objective Block 7-82
Test Condition Block 7-83
Cruise Control Test Generation 7-84
Fuel Rate Controller Logic 7-85
Extend an Existing Test Suite 7-86
Defining and Extending Existing Tests Cases 7-91
Using Existing Coverage Data During Subsystem Analysis 7-97
Creating and Executing Test Cases 7-100
Using Specified Input Minimum and Maximum Values as Constraints 7-107
Configuring S-Function for Test Case Generation 7-109
Code Coverage Test Generation 7-111
Test Generation on Model with C Caller Block 7-119

Debug Enhanced Modified Condition Decision Coverage Using Model

Slicer 7-121
Test Generation for Custom Code in a Stateflow Chart 7-124
Generate Test Cases for Model Blocks 7-126
Use Observer Reference Block for Test Case Generation 7-130
Inspect Test Generation Objectives by Using Model Slicer 7-135
Generate Tests for Model Block Component by Using Default Simulation

.. 7-138
Add Test Cases Using Excel File 7-142
Achieve Missing Coverage in Custom Code 7-146
Achieve Missing Coverage in Generated Code of RLS 7-149

Extending Existing Test Cases

8|

When to Extend Existing TestCases 8-2
Common Workflow for Extending Existing Test Cases 8-2
Considerations for Starting Test Cases, 8-3

Extend Test Cases for Model with Temporal Logic 8-1
Create Starting Test Case it 8-4
Log Starting Test Case vttt e 8-6
Extend Existing Test Casesttt 8-7
Verify Analysis Results 8-8
Extend Test Cases for Closed-Loop System 8-10
Log Starting Test Casettt 8-10
Extend Existing Test Casesttt 8-12
Extend Test Cases for Modified Model 8-15
Create Starting Test Casest 8-15
Extend Existing Test Cases 8-15
Create and Run Back-to-Back Tests Using Enhanced MCDC 8-18

Achieving Test Cases for Missing Model Coverage

9

Generate Test Cases for Missing CoverageData 9-2

Achieve Missing Coverage in Referenced Model 9-3
Programmatically Achieve Missing Coverage in Referenced Model 9-3
Increase Coverage for Referenced Models in a Test Harness 9-5

Achieve Missing Coverage in Subsystems and Model Blocks 9-10
Achieve Missing Coverage in Closed-Loop Simulation Model 9-11
Record Coverage Data forthe Model 9-11
Find Test Cases for Missing Coverageuuuivnnennnn. 9-12
Analyze Coverage for Lookup Table Boundary Values 9-14
Generate Tests for Lookup Table Boundary Values 9-16
Modified Condition and Decision Coverage in Simulink Design Verifier
... 9-21
MCDC Definitions for Simulink Coverage and Simulink Design Verifier .. 9-21

Achieve Coverage in Models with Variable-Size Inputs 9-24

xiii

xiv

Contents

Verifying Model Components

10|

What Is Component Verification? 10-2
Component Verification Approaches 10-2
Simulink Design Verifier Tools for Component Verification 10-2

Functions for Component Verification 10-3

Verify a Component for Code Generation 10-4
About the Example Model 10-4
Prepare the Component for Verification 10-6
Record Coverage for the Component 10-7
Use Simulink Design Verifier Software to Record Additional Coverage . . 10-7
Combine the Harness Models 10-8
Execute the Component in Simulation Mode 10-9
Execute the Component in Software-in-the-Loop (SIL) Mode 10-10

Considering Specified Minimum and Maximum Values for
Inputs During Analysis

11|

Minimum and Maximum Input Constraints 11-2
Simulink Design Verifier Support for Specified Input Minimum and
Maximum Values i 11-2
Limitations of Simulink Design Verifier Support for Specified Minimum and
Maximum Values i 11-2
Specify Input Ranges on Simulink and Stateflow Elements 11-4
Specify Input Ranges for Inport Blocks 11-4
Specify Input Ranges for Simulink.Signal Objects 11-5
Specify Input Ranges for Stateflow Data Objects 11-5
Specify Input Ranges for Subsystems 11-6
Specify Input Ranges for Global Data Stores 11-7
Specify Input Ranges for Bus Elements 11-8
Specification of Input Ranges in sldvData Fields 11-10

Proving Properties of a Model

12

What Is Property Proving? 12-2
Proof Blocks i 12-2
Proof Functions 12-2

Workflow for Proving Model Properties 12-4

Prove Propertiesina Model 12-5
About This Example e 12-5
Construct Example Model 12-5
Check Compatibility of Example Model 12-6
Instrument Example Model i 12-7
Configure Property-Proving Options 12-8
Analyze Example Model 12-8
Review AnalysisResults 12-8
Customize Example Proof 12-15
Reanalyze Example Model 12-16
Review Results of Second Analysis 12-16
Analyze Contradictory Models 12-18
Prove Propertiesina Large Model, 12-19

Prove System-Level Properties Using Verification Model 12-20
When to Use a Verification Model for Property Proving 12-20
About This Example i 12-20
Understand the Verification Model 12-20
Prove the Properties of the Design Model 12-21
Fix the Verification Model 12-22

Prove Propertiesina Subsystem 12-23

Model Requirements 12-24
Basic Properties 12-24
Temporal Properties 12-26

Isolate Verification Logic with Observers 12-29
Replace a Verification Subsystem with an Observer Reference Block . . 12-29
Report on Observer Reference Blocks 12-31
Limitations e 12-31

Property Proving with an Invalid Property 12-32

Property Proving with Multiple Properties 12-33

Property Proving with an AssumptionBlock 12-34

Property Proving Workflow for Cruise Control 12-35

Property Proving Workflow for Fixed-Point Cruise Control with Block

Replacements 12-39

Property Proving Using MATLAB Function Block 12-40

Property Proving Using MATLAB Truth Table Block 12-41

Property Proving Workflow for Thrust Reverser 12-42

Debounce Temporal Properties 12-43

Power Window Controller Temporal Properties 12-46

Debug Property Proving Violations by Using Model Slicer 12-55

xvi

Contents

Design and Verify PropertiesinaMeodel 12-60

Validate Requirements by Analyzing Model Properties 12-63
Use Observer Reference Blocks for Property Proving Analysis 12-70
Prove Properties with Requirements Table Blocks 12-73

Reviewing the Results

13

Highlight Resultsonthe Model 13-2
Results Review with Model Highlighting 13-2
Simulink Design Verifier Results Inspector 13-2
Highlight Results on Model Automatically 13-2
Green Highlightingon Model 13-4
Red Highlightingon Model 13-4
Orange HighlightingonModel 13-4
Gray HighlightingonModel 13-6

Manage Simulink Design Verifier Data Files 13-7
Generate sldvData Structure 13-7
Model Information FieldsinsldvData 13-7
Simulate Models Using Data Files 13-11
Load Results from Data Files 13-11

Manage Simulink Design Verifier Harness Models 13-13
Harness Model Generation 13-13
Createa Harness Model 13-13
Contents of a Harness Model 13-13
Configuration of the Harness Model 13-19
Simulate the Harness Model 13-19

Simulate Harness Model with Signal Editor Inputs Block 13-22

Export Test Cases to Simulink Test 13-27
Generate and Export Test Cases to Simulink Test 13-27

Export Tests from Models That Contain Requirements Table Blocks with

Simulink Design Verifier 13-30
Construct the Model and Generate Tests 13-30
Export the Tests to the Test Manager 13-31
Runthe Testso e e 13-33
Inspect Test Failures 13-33

Review Results e, 13-35
Simulink Design Verifier Report Generation 13-35
Create Analysis Reports 13-35
Front Matter 13-35
Summary Chapter 13-36
Analysis Information Chapter 13-36
Derived Ranges Chapter 13-40

Objectives Status Chapters 13-42

Model Items Chapter e 13-50
Design Errors Chapter i 13-51
Test Cases Chapter i e 13-52
Properties Chapter i 13-54
ViewLog Files e 13-56
Review AnalysisResults 13-57
View Active Results 13-57
Load Previous Results 13-57
Explore Results e 13-57

Analyzing Large Models and Improving Performance

14

Sources of Model Complexity 14-2
Analyze a Large Model 14-3
Types of Large Model Problems 14-3
Summarize Model Hierarchy and Compatibility 14-3
Use the Default Parameter Values, 14-4
Modify the Analysis Parameters, 14-5
Stop the Analysis Before Completion 14-5
Increase Allocated Memory for Analysis Report Generation 14-7
Manage Model Data to Simplify the Analysis 14-8
Simplify Data TYPES . . oo v vttt 14-8
Constrain Data 14-8
Partition Model Inputs for Incremental Test Generation 14-11
Bottom-Up Approach to Model Analysis 14-13
Reuse of Analysis Results from Subsystems at the System level 14-13
Limitations 14-14
Extract Subsystems for Analysis 14-15
Overview of Subsystem Extraction 14-15
sldvextract Function i, 14-15
Structure of the Extracted Model 14-15
Analyze Subsystems That Read from Global Data Storage 14-16
Analyze Function-Call Subsystems 14-17
Analyze Global Simulink Function 14-19
Logical Operations 14-21
Analyzing Models with Large Verification State Space 14-22
Countersand Timers 14-23

xvii

Prove Properties in Large Models 14-24
Find Property Violations While Designing Your Model 14-24
Combine Proving Properties and Finding Proof Violations 14-24

Simulink Design Verifier Configuration Parameters

15

Simulink Design Verifier Options 15-2
Options in Configuration Parameters Dialog Box 15-2
Design Verification Options Objects 15-2
Command-Line Parameters for Design Verification Options 15-2

Design Verifier Pane i 15-9
Design Verifier Pane Overview 15-10
Mode .. 15-10
Maximum analysis time i 15-11
Output folder 15-11
Make output file names unique by addinga suffix 15-12
Check Model Compatibility 15-13
Generate Tests/Detect Errors/Prove Properties 15-13
Rebuild model representation 15-13
Automatic stubbing of unsupported blocks and functions 15-13
Support S-Functions in the analysis 15-14
Use specified input minimum and maximum values 15-15
Run additional analysis to reduce instances of rational approximation . 15-15
Validate test cases or counterexamples with parallel computing 15-16
Additional options for code analysis 15-17
Ignore objectives based onfilter 15-17
Filter file(s) . ..o oot 15-18
BrowWSe... oo 15-18

Design Verifier Pane: Block Replacements 15-19
Block Replacements Pane Overviewc0vvvuunn... 15-19
Apply block replacements e 15-19
List of block replacementrules 15-20
File path of the outputmodel 15-20

Design Verifier Pane: Parameters and Variants 15-22
Parameters Pane Overview 15-23
Parameter configuration 15-23
Enable e 15-23
Disable 15-23
Clear . . et 15-23
HighlightinModel 15-24
USE ot 15-24
NameE .. 15-24
Constraintt 15-25
Value .. e 15-25
Min . 15-26
MaX o e 15-26
Model Element 15-26
Find parameters i 15-27

xviii Contents

BXpOrt .
Parameter configurationfile
Browse... ...

Analyze all Startup Variants

Launch Variant Manage

L e e e

Design Verifier Pane: Test Generation
Test Generation Pane Overview,

Test generation target .

Model coverage objectives

Test conditions
Test objectives

Maximum test case steps i

Test suite optimization

Include relational boundary objectives
Floating point absolute tolerance
Floating point relative tolerance
Use strict propagation conditions
Extend using existing coveragedata

Coverage data

Browse

Extend using existing testdata

Testdata
Browse

Separate objectives satisfied with the existing tests/coverage data in the

report

Design Verifier Pane: Design Error Detection

Design Error Detection
Dead logic (partial) . ..
Run exhaustive analysis

Pane Overview

Coverage ohjectivestobe analyzed
Out of bound array accesscovviiiin i
Data store access violations
Division by zero oo e

Integer overflow
Non-finite and NaN floa

ting-pointvalues

Subnormal floating-pointvalues L.

Specified minimum and

maximum value violations

Specified block input range violations
Usage of rem and reciprocal operations - hisl 0002
Usage of Square Root operations - hisl 0003
Usage of log and log10 operations - hisl 0004
Usage of Reciprocal Square Roots blocks - hisl 0028

Design Verifier Pane: Property Proving
Property Proving Pane Overview

Assertion blocks
Proof assumptions
Strategy
Maximum violation step

S e e e e e e

Design Verifier Pane: Results

Results Pane Overview

15-27
15-27
15-27
15-28
15-28
15-28
15-29

15-30
15-31
15-31
15-31
15-32
15-33
15-33
15-34
15-35
15-36
15-36
15-37
15-38
15-38
15-39
15-39
15-39
15-40

15-40

15-42
15-43
15-43
15-43
15-44
15-45
15-45
15-46
15-46
15-47
15-47
15-48
15-48
15-49
15-50
15-50
15-51

15-52
15-52
15-52
15-53
15-53
15-54

15-56
15-56

xix

XX

Contents

Datafilename i 15-57

Include expected outputvalues 15-57
Randomize data that do not affect the outcome 15-58
Generate separate harness model after analysis 15-59
Harness model filename, 15-59
Reference input model in generated harness 15-60
Harnesssourcet 15-61
Test File Namet 15-61
Test Harness Nameo 15-62
Design Verifier Pane: Report 15-63
Report Pane OVerviewttt 15-63
Generate report of theresults 15-63
Generate additional report in PDF format 15-64
Reportfilename i 15-64
Include screen shots of properties 15-65
Display repoTt . . . oot 15-66

Verification and Validation

16|

Test Model Against Requirements and Report Results 16-2
Requirements - Test Traceability Overview 16-2
Display the Requirements 16-2
Link Requirementsto Tests 16-3
Runthe Test 16-4
Reportthe Results 16-5

Analyze Models for Standards Compliance and Design Errors 16-7
Standards and Analysis Overviewcoiviiinneennnn 16-7
Check Model for Style Guideline Violations and Design Errors 16-7

Perform Functional Testing and Analyze Test Coverage 16-9
Incrementally Increase Test Coverage Using Test Case Generation 16-9

Analyze Code and Test Software-in-the-Loop 16-12
Code Analysis and Testing Software-in-the-Loop Overview 16-12
Analyze Code for Defects, Metrics, and MISRA C:2012 16-12
Test Code Against Model Using Software-in-the-Loop Testing 16-17

Create Back-to-Back Tests Using Enhanced MCDC 16-20
Set Up Test Inputs and Verification Strategy 16-20

Glossary

Acknowledgments

The Simulink Design Verifier software uses Prover Plug-In® product Prover® PSL from Prover
Technology to generate test cases and prove model properties.

prover
H plugged in

Getting Started

* “Simulink Design Verifier Product Description” on page 1-2

* “Simulink Design Verifier Block Library” on page 1-3

* “Analyze a Model” on page 1-4

* “Analyze a Stateflow Atomic Subchart” on page 1-17

* “Overview of the Simulink Design Verifier Workflow” on page 1-19

1 Getting Started

Simulink Design Verifier Product Description

1-2

Identify design errors, prove requirements compliance, and generate tests

Simulink Design Verifier uses formal methods to identify hidden design errors in models. It detects
blocks in the model that result in integer overflow, dead logic, array access violations, and division by
zero. It can formally verify that the design meets functional requirements. For each design error or
requirements violation, it generates a simulation test case for debugging.

Simulink Design Verifier generates test cases for model coverage and custom objectives to extend
existing requirements-based test cases. These test cases drive your model to satisfy condition,
decision, modified condition/decision (MCDC), and custom coverage objectives. In addition to
coverage objectives, you can specify custom test objectives to automatically generate requirements-
based test cases.

Support for industry standards is available through IEC Certification Kit (for IEC 61508 and ISO
26262) and DO Qualification Kit (for DO-178).

https://www.mathworks.com/discovery/formal-verification.html
https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/products/do-178.html

Simulink Design Verifier Block Library

Simulink Design Verifier Block Library

To open the Simulink Design Verifier block library, at the MATLAB® command prompt, type sldvlib.

©-© =V

Objectives and Constraints \erification Utilities
e
1 Example
xxxxxxxxxxxxxxxxxxxxxx - Froperties

Temporal Operators

The Simulink Design Verifier block library has three categories of blocks:

* Objectives and Constraints — Blocks that define custom objectives and constraints
* Temporal Operators — Blocks that define temporal properties on Boolean signals
» Verification Utilities — Miscellaneous verification utilities

The block library also has a sublibrary, Example Properties, that includes examples of how to specify
common properties in your model. You can easily adapt these examples for use in your models.

1-3

1 Getting Started

Analyze a Model

In this section...

“About This Example” on page 1-4
“Open the Model” on page 1-4
“Generate Test Cases” on page 1-5
“Combine Test Cases” on page 1-15

About This Example

The following sections describe an example model, Cruise Control Test Generation. This example
illustrates how to use Simulink Design Verifier to generate test cases that achieve complete model
coverage. Through this example, you learn how to analyze models with Simulink Design Verifier and
interpret the results.

Open the Model

To open the Cruise Control Test Generation model, at the MATLAB prompt, enter:

sldvdemo cruise control

Simulink Design Verifier
2 . .
! Cruise Control Test Generation

(1) » enable
enable
(2) » brake throt
brake throt
(3) > set

set [0 100]

Actual speed e

speed ctual sp
4 » inc target 4@

inc target
(5) » dec

dec

Controller
Toggle Speed
Constraint
(double-click)
Toggle Constraint
Copyright 2006-2019 The MathWorks, Inc.

1-4

matlab:sldvdemo_cruise_control

Analyze a Model

Generate Test Cases

* “Run Analysis” on page 1-5

* “Generate Analysis Results” on page 1-6

* “Highlight Analysis Results on Model” on page 1-7

* “Detailed analysis report: (HTML) (PDF)” on page 1-8

* “Create Harness Model” on page 1-12

* “Simulate Tests and Produce Model Coverage Report” on page 1-15

Run Analysis
To generate test cases for the Cruise Control Test Generation model, click on Generate Tests.

Simulink Design Verifier begins analyzing the model to generate test cases, and the Simulink Design
Verifier Results Summary window opens. The Results Summary window displays a running log
showing the progress of the analysis.

E nulink Design Verifier Results Summarny: sldvdemo_cruise_con

Progress |

Objectives processed 22(32
Satisfied 22
Unsatisfiable 4]
Elapsed time 0:13

13-Jul-2017 17:11:10

Checking compatibility for test generation: model
'sldvdemo_cruise_control’

Compiling model...done

Checking compatibility...done

13-Jul-2017 17:11:11
'sldvdemo_cruise_control' is compatible for test generation

with Simulink Design Verifier.

Generating tests using compatibility results from 13-Jul-2017
17:11:11...

SATISFIED hd

Disable Highlighting Stop

1-5

1 Getting Started

1-6

If you need to terminate an analysis while it is running, click Stop. The software asks if you want to
produce results. If you click Yes, the software creates a data file based on the results achieved so far.
The path name of the data file appears in the Results Summary window.

The data file is a MAT-file that contains a structure named sldvData. This structure stores the data
that the software gathers and produces during the analysis.

For more information, see “Manage Simulink Design Verifier Data Files” on page 13-7.

Generate Analysis Results

When Simulink Design Verifier completes its analysis of the sldvdemo cruise control model, the
Results Summary window displays several options. Some of them are:

Highlight analysis results on model

Detailed analysis report: (HTML) (PDF)

Create harness model

Simulate tests and produce a model coverage report
Save test cases/counterexamples to spreadsheet

Note When you analyze other models, depending on the results of the analysis, you may see a subset
of options.

Analyze a Model

Simulink Design Verifier Results Summary: sldvdemo_cruise_control X

Progress]

Objectives 32/32

processed

Satisfied 32

Unsatisfiable 0

Elapsed time 1:47 v

Test generation completed normally.
32/32 objectives satisfied.

Results:

¢ Open filter viewer

* Highlight analysis results on model

® \View tests in Simulation Data Inspector

¢ Detailed analysis report: (HTML) (PDF)

¢ Create harness model

® Save test cases/counterexamples to spreadsheet

& Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: sldvdemo_cruise _control _sldvdata.mat
in folder: Y:
\IT 0 T T i) \matlab\sldv_output\sldvdemo_cruise_control

The sections that follow describe these options in detail.
Highlight Analysis Results on Model

In the Simulink Design Verifier Results Summary window, if you click Highlight analysis results on
model, the software highlights objects in the model in three different colors, depending on the
analysis results:

* “Green: Objectives Satisfied” on page 1-8

* “Orange: Objectives Undecided” on page 1-8

* “Red: Objectives Unsatisfiable” on page 1-8

When you highlight the analysis results on a model, the Simulink Design Verifier Results Inspector
opens. When you click an object in the model that has analysis results, the Results Inspector displays
the results summary for that object.

1-7

1 Getting Started

Green: Objectives Satisfied

Green outline indicates that the analysis generated test cases for all the objectives for that block. If
the block is a subsystem or Stateflow® atomic subchart, the green outline indicates that the analysis
generated test cases for all objectives associated with the child objects.

For example, in the sldvdemo cruise control model, the green outline shows that the PI
controller subsystem satisfied all test objectives. The Results Inspector lists the two satisfied test
objectives for the PI controller subsystem.

v

Il
—M error throt——

Pl Controller

"4

Back to summary

sldvdemo_cruise_control/Controller/PI Controller

Decision Objectives
Enable control activated true Satisfied - View test case Inspect
Enable control activated false Satisfied - View test case Inspect

Orange: Objectives Undecided

Orange outline indicates that the analysis was not able to determine if an objective was satisfiable or
not. This situation might occur when:

* The analysis times out
* The software satisfies test objectives without generating test cases due to:

* Automatic stubbing errors
* Limitations of the analysis engine

Red: Objectives Unsatisfiable

Red outline indicates that the analysis found some objectives for which it could not generate test
cases, most likely due to unreachable design elements in your model.

In the following example, input 2 always satisfies the criterion for the Switch block, so the Switch
block never passes through the value of input 3.

Detailed analysis report: (HTML) (PDF)
In the Simulink Design Verifier Results Summary window, if you click HTMLon Detailed analysis

report: (HTML) (PDF), the software saves and then opens a detailed report of the analysis. The
path to the report is:

1-8

Analyze a Model

<current folder>/sldv output/...
sldvdemo cruise control/sldvdemo cruise control report.html

The HTML report includes the following chapters.

Table of Contents

1. Summary

2. Analysis Information

. Test Objectives Status
. Model Items

. Test Cases

L [T

For a description of each report chapter, see:

* “Summary” on page 1-9

* “Analysis Information” on page 1-10

* “Test Objectives Status” on page 1-10
* “Model Items” on page 1-11

* “Test Cases” on page 1-11

Summary

In the Table of Contents, click Summary to display the Summary chapter, which includes the
following information under Analysis Information subsection:

* Name of the model

* Release and Checksum information

* Mode of the analysis (test generation, property proving, design error detection)

» Status of the analysis

* Length of the analysis in seconds

The Objective Status sub-section under Summary shows number of objectives satisfied.

Analysis Information

Model: sldvdemo_cruise_control

Release: R2022b Prerelease

Checksum: 3016843220 2232669898 18135123 2081307571
Mode: Test generation

Model Representation: Built on 25-Tun-2022 22:19:16
Test Generation Target: Model

Status: Completed normally
PreProcessing Time: 106s
Analysis Time: 108s

Objectives Status

Number of Objectives: 32
Objectives Satisfied: 32 (100%)

1-9

1 Getting Started

Analysis Information

In the Table of Contents, click Analysis Information to display information about the analyzed
model and the analysis options. You can click on any of these options to know more about the model
analysis.

Chapter 2. Analysis Information

Table of Contents

.1. Model Information
.2. Analysis Options

.3. User Artifacts
4. Constraints

1 12
(o [—

|5}

o [

Test Objectives Status

In the Table of Contents, click Test Objectives Status to display a table of satisfied objectives. The
following figure shows a partial list of the objectives satisfied in the Cruise Control Test Generation

model.
Type Model Item Description él:ca)lysm Time Test Case
1 Decision Controller/Switch3 logical trigger input false (output is from 3rd input port) (38 1
2 Decision Controller/Switch3 logical trigger input true (output is from 1st input port) (38 1
3 Decision Controller/Switch2 logical trigger input false (output is from 3rd input port) |38 1
4 Decision Controller/Switch2 logical trigger input true (output is from 1st input port) (38 1
5 Decision Controller/Switchl logical trigger input false (output is from 3rd input port) (38 1
6 Decision Controller/Switch1 logical trigger input true (output is from 1st input port) (38 1
7 Condition Controller/T ogical Operatorl Logic: input port 1 true 38 1
8 Condition Controller/T ogical Operatorl Logic: input port 1 false 38 1
9 Condition Controller/T ogical Operator2 Logic: input port | true 38 1
10 Condition Controller/T ogical Operator2 Logic: input port 1 false 38 1
11 Condition Controller/T ogical Operator2 Logic: input port 2 true 101 2
12 Condition Controller/T ogical Operator2 Logic: input port 2 false 38 1
13 Condition Controller/T ogical Operator Logic: input port 1 true 3.1. Objectives Satisfied 1
14 Condition Controller/T ogical Operator Logic: input port 1 false ‘ 38 1
15 Condition Controller/T ogical Operator Logic: input port 2 true 38 1
16 Condition Controller/T ogical Operator Logic: input port 2 false 38 1
17 Condition Controller/T ogical Operator Logic: input port 3 true 38 1
18 Condition Controller/T ogical Operator Logic: input port 3 false 38 1
19 MCDC Controller/T ogical Operator E:Sule&& ~C2) && (C3 || C4) with C1 (Logical Operator Inl) 38 1
20 MCDC Controller/Logical Operator (fglie&& ~C2) && (C3 || €4) with C1 (Logical Operator Inl)f; o 1

Objectives Status

The Objectives Satisfied table lists the following information for the model:

— Objective number
Type — Objective type

Model Item — Element in the model for which the objective was tested. Click this link to display

the model with this element highlighted.
Description — Description of the objective

+ Test Case — Test case that achieves the objective. Click this link for more information about that
test case.

In the row for objective 32, click the test case number (5) to display more information about Test
Case 5 in the report's Test Cases chapter.

1-10

Analyze a Model

Summary
Length: 0.06 second (7 sample periods)
Objectives Satistied: 1
Objectives
Step |Time|[Model Item Objectives
7 0.06 | Controller/PI Controller/Discrete-Time Integrator 31. integration result >= upper limit true
Generated Input Data
Time 0 0.01-0.05|0.06
Step 1 2-6 7
enable |1 1 1
brake 0 0 0
set 1 0 1
mnc 1 1 -
dec 0 0 -
speed 97 0 0
Test Case 5
In this example, Test Case 5 satisfies one objective, that the integration result be greater than or
equal to the upper limit T in the Discrete-Time Integrator block. The table lists the values of the six
signals from time 0 through time 0.06.
Model Items
In the Table of Contents, click Model Items to see detailed information about each item in the
model that defines coverage objectives. This table includes the status of the objective at the end of
the analysis. Click the links in the table for detailed information about the satisfied objectives.
View
#: Type Description Status Test Case
1 Decision logical trigger input false (output is from 3rd input Satisfied i
| 4.1. Controller/Switch3 | port) _ _
5 Decision L?Jgrgal trigger input true (output is from Ist input Satisfied 1
Model Items - Controller/Switch3
View
#: Type Description Status Test Case
3 Decision i;grt;al trigger input false (output is from 3rd input Satisfied 1
4 Decision i;grisal trigger input true (output is from Ist input Satisfied i

Model Items - Controller/Switch2

Test Cases

In the Table of Contents, click Test Cases to display detailed information about each generated test
case, including:

» Length of time to execute the test case
* Number of objectives satisfied
* Detailed information about the satisfied objectives

1-11

1 Getting Started

* Input data
For an example, see the section for Test Case 5 in “Test Objectives Status” on page 1-10.
Create Harness Model

In the Simulink Design Verifier Results Summary window, if you click Create harness model, the
software creates and opens a harness model named sldvdemo cruise control harness.

Size-Type
Test Case 1 enable enable
brake brake thrat .(:)
/‘\ set set throt
ine inc target
dec dec target
[a
speed E:ed
Inputs Test_Unit (copied from sldvdemo_cruise_control)
| —
DoC
Text

Test Case Explanation

The harness model contains the following blocks:

* The Test Case Explanation block is a DocBlock block that documents the generated test cases.
Double-click the Test Case Explanation block to view a description of each test case for the
objectives that the test case satisfies.

1-12

Analyze a Model

| tp7469ce30_944a_4887_840e_c8d2d392a%e.txt L+

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
a2
a3
a4
45
a6
a7
48
49
50
51

19. Controller/Logical Operator - (CI && ~CZ) && (C3 [[C&) with C1 (Logical Operator Inl) false @ T=6.63
20. Controller/Logical Operator - (C1 && ~C2) &% (C3 || €4) with €2 (Logical Operatorl Inl) true @ T=0.04
21. Controller/Logical Operator - (C1 && ~C2) && (C3 || C4) with C2 (Logical Operatorl Inl) false @ T=0.85
22. Controller/Logical Operator - (C1 &% ~C2) &% (C3 || €4) with C3 (Logical Operator2 Inl) true @ T=0.84
23. Controller/Logical Operator - (C1 && ~C2) &% (C3 || €4) with €3 (Logical Operator2 Inl) false @ T=9.01
24, Controller/Logical Operator - (C1 && ~C2) &% (C3 || €4) with C4 (Logical Operator2 In2) false @ T=9.01
25. Controller/PI Controller - Enable control activated true @ T=0.84

26. Controller/PI Controller - Enable control activated false @ T=6.88

27. Controller/PI Controller/Discrete-Time Integrator - integration result <= lower limit false @ T=0.04

28. Controller/PI Controller/Discrete-Time Integrator - integration result »>= upper limit false @ T=0.04

Test Case 2 (1 Objectives)

Parameter values:

1. Controller/Logical Operator2 - Logic: input port 2 true @ T=8.01

Test Case 3 (1 Objectives)

Parameter values:

1. Controller/Logical Operator - (Cl && ~C2) && (C3 || C4) with €4 (Logical Operator2 In2) true @ T=8.01

Test Case 4 (1 Objectives)

Parameter values:

1. Controller/PI Controller/Discrete-Time Integrator - integration result <= lower limit true @ T=6.86

Test Case 5 (1 Objectives)

Parameter values:

1. Controller/PI Controller/Discrete-Time Integrator - integration result >= upper limit true @ T=0.06

The Test Unit block is a Subsystem block that contains a copy of the original model that the
software analyzed. Double-click the Test Unit block to view its contents and confirm that it is a
copy of the Cruise Control Test Generation model.

Note You can configure the harness model to reference the model that you are analyzing using a
Model block instead of using a subsystem. In the Configuration Parameters dialog box, on the
Design Verifier > Results pane, select Generate separate harness model after analysis and
Reference input model in generated harness.

The Inputs block is a Signal Builder block that contains the generated test case signals. Double-
click the Inputs block to open the Signal Builder dialog box and view the eight test case signals.

The Size-Type block is a subsystem that transmits signals from the Inputs block to the Test Unit
block. This block verifies that the size and data type of the signals are consistent with the Test
Unit block.

The Signal Builder dialog box contains eight test cases.

1

To view Test Case 5, from the Active Group list, select Test Case 5.
In Test Case 7 at 0.01 seconds:

* The enable and inc signals remain 1.

* The brake and dec signals remain 0.

* The set signal transitions from 1 to 0.

* The speed signal transitions from 100 to 0.

1-13

1 Getting Started

Active Group: | |Test Case 5 v Q- a -~

ﬁ_"“
@
=3
jab]
=2
@

~ <4

- <

- <

051 Set

05 inc

50 Speed

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time (sec)

Name: enable

- 1 v inc
Index: dec o
Click to select, Shift+click to add | enable (#1) [YMin YMax]

In the Signal Builder block, the signal group satisfies the test objectives described in the Test
Case Explanation block.

2 To confirm that Simulink Design Verifier achieved complete model coverage, simulate the
harness model using all the test cases. In the Signal Builder dialog box, click the Run all and

all
produce coverage button ﬂ

The Simulink software simulates all the test cases. The Simulink Coverage™ software collects
coverage data for the harness model and displays a coverage report. The report summary shows
that the sldvdemo cruise control harness model achieves 100% coverage.

1-14

Analyze a Model

Model Hierarchy/Complexity:

D1 Cl MCDC
1. sldvdemo cruise_control harness 8 100% e 100% —]00% ———
2. _ . Test Unit (copied from sldvdemo cruise control) 7 100% s 100% s 100%
E Controller 7100% s 100% ——]00% ———
4 PI Controller 4 100% — NA NA

Summary
Simulate Tests and Produce Model Coverage Report

In the Simulink Design Verifier Results Summary window, if you click Simulate tests and produce a
model coverage report, the software simulates the model and produces a coverage report for the
sldvdemo_cruise control model. The software stores the report with the following name:

<current_folder>/sldv_output/sldvdemo cruise control/...
sldvdemo cruise control report.html

When you click Run all and produce coverage to simulate tests in the harness model, you may see
the following differences between this coverage report and the report you generated for the model
itself:

* The harness model coverage report might contain additional time steps. When you collect
coverage for the harness model, the model stop time equals the stop time for the longest test case.
As a result, you might achieve additional coverage when you simulate the shorter test cases.

* The cyclomatic complexity coverage for the Test Unit subsystem in the harness model might be
different than the coverage for the model itself due to the structure of the harness model.

Combine Test Cases

If you prefer to review results that are combined into a smaller number of test cases, set the Test
suite optimization parameter to LongTestcases. When you use the LongTestcases optimization,
the analysis generates fewer, but longer, test cases that each satisfy multiple test objectives.

Open the sldvdemo cruise control model and rerun the analysis with the LongTestcases
optimization:

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode
settings, click Settings.

2 In the Configuration Parameters dialog box, in the Select tree on the left side, under the Design
Verifier category, select Test Generation.

Set the Test suite optimization parameter to LongTestcases.
Click Apply and OK to close the Configuration Parameters dialog box.
In the sldvdemo_cruise control model, double-click the block labeled Run.

aa U AW

In the Results Summary window, click Create harness model.

1-15

1 Getting Started

In the harness model, the Signal Builder block and the Test Case Explanation block now contain
one longer test case instead of the eight shorter test cases created earlier in “Generate Test
Cases” on page 1-5.

-1 Editor - 5:\sca_sldh\sldvdema_cruise_control_harness_testcase - long. bt
_-ma@m_ww °
HI:II:I 'E E Ea Find Files Insert
New Open Save |£_|Compare v | Comment %5 g% o E:)|]Gn To r Breakpoints
- - = Indent |- | &z [_{Find « -
FILE EDIT MAVIGATE BREAKPOINTS
[sId\.rdemo_cruise_control_harness_testc... ><]
1 Test Case 1 (34 Cbjectiwves
2 Parameter wvalues:
3
4 1. Controller/Switch3 - logical trigger input false (output is from 3rd input port) @ T=0.00
= 2. Controller/Switch3 - logical trigger input true (output iz from 1=t input port) @ T=0.02
& 3. Controller/Switch2 - logical trigger input false (output is from 3rd input port) & T=0.03
7 4. Controller/Switch2 - logical trigger input true (output is from 1st input port) @ T=0.00
g 5. Controller/Switchl - logical trigger input false (output is from 3rd input port) @ T=0.04
g 6. Controller/Switchl - logical trigger input true (output is from 1=t input port) @ T=0.00
10 7. Controller/Logical Cperatorl - Logic: input port 1 T 8 T=0.02
11 8. Controller/Logical Operatorl - Logic: input port 1 F @ T=0.00
2 9. Controller/Logical Operator2 - Logic: input port 1 T @ T=0.00
13 10. Controller/Logical Operator? - Logic: input port 1 F @ T=0.04
14 11. Controller/Logical Operator2 - Logic: input port 2 T @ T=0.07
15 12. Controller/Logical Operator2 - Logic: input port 2 F @ T=0.04
16 13. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 1 T @ T=0.00
17 14. Controller/Logical Operator2 - Logic: MCDC expression for ocutput with input port 2 T @ T=0.07
18 15. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 1 F @ T=0.04
139 16. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 2 F @ T=0.04
20 17. Controller/Logical Operator - Logic: input port 1 T @ T=0.00
21 18. Controller/Logical Operator - Logic: input port 1 F @ T=0.01
22 19. Controller/Logical Operator - Logic: input port 2 T @ T=0.00
23 20. Controller/Logical Operator - Logic: input port 2 F @ T=0.02
24 21. Controller/Logical Operator - Logic: input port 3 T @ T=0.00
25 22. Controller/Logical COperator - Logic: input port 3 F @ T=0.05
26 23. Controller/Logical Operator - Logic: MCDC expression for output with input port 1 T @ T=0.00
27 24. Controller/Logical Operator - Logic: MCDC expression for output with input port 2 T @ T=0.00
28 25. Controller/Logical Operator - Logic: MCDC expression for output with input port 3 T @ T=0.00
29 26. Controller/Logical COperator - Logic: MCDC expression for output with input port 1 F @ T=0.01
30 27. Controller/Logical Operator - Logic: MCDC expression for output with input port 2 F @ T=0.02
21 28. Controller/Logical Operator - Logic: MCDC expression for output with input port 3 F @ T=0.05
2 29. Controller/PI Controller - enable logical walue F @ T=0.01
33 30. Controller/PI Controller - enable logical walue T @ T=0.00
34 31. Controller/PI Controller/Discrete-Time Integrator — integration result <= lower limit F @ T=0.00
35 32. Controller/PI Controller/Discrete-Time Integrator - integration result <= lower limit T @ T=0.14
36 33. Controller/PI Controller/Discrete-Time Integrator - integration result >= upper limit F @ T=0.00
31 34. Controller/PI Controller/Discrete-Time Integrator - integration result >= upper limic T @ T=0.26
plain text file Ln 1 Col 1 OWR

7 Click Run all and produce coverage to collect coverage.

The analysis still satisfies all 34 objectives.

1-16

Analyze a Stateflow Atomic Subchart

Analyze a Stateflow Atomic Subchart

In a Stateflow chart, an atomic subchart is a graphical object that allows you to reuse the same state
or subchart across multiple charts and models. You can use Simulink Design Verifier to analyze
atomic subcharts individually. You do not have to analyze the chart that contains the atomic subchart,
or the model that contains the chart.

If you are having problems analyzing a large model, analyzing an atomic subchart in a controlled
environment is helpful. As described in “Bottom-Up Approach to Model Analysis” on page 14-13, by
analyzing atomic subcharts or other components in the model hierarchy individually, you can analyze
a model to:

* Solve problems that slow down or prevent test generation, property proving, or design error
detection.

* Analyze model components that are unreachable in the context of the container model or chart.

Note For more information about atomic subcharts, see “Create Reusable Subcomponents by Using
Atomic Subcharts” (Stateflow).

Analyze an Atomic Subchart by Using Simulink Design Verifier

The sf atomic sensor pair example model models a redundant sensor pair using atomic
subcharts. This example analyzes the Sensor1l subchart in the RedundantSensors chart.

1 Openthe sf atomic sensor pair example model:
sf atomic _sensor pair

This model demonstrates how to model a simple redundant sensor pair using atomic subcharts.
2 Double-click the RedundantSensors chart to open it.

ink Sensor

[Sensorl.inFailed()]

ink Sensor?

[SensorZ.inF ailed()]

o

1-17

matlab:sf_atomic_sensor_pair

1 Getting Started

This Stateflow chart has two atomic subcharts:

e Sensorl
e Sensor2

3 To analyze the Sensorl subchart using Simulink Design Verifier, right-click the subchart and
select Design Verifier > Generate Tests for Subchart.

During the analysis, the software creates a Simulink model named Sensor1l that contains the
Sensorl subchart. The new model contains Inport and Outport blocks that respectively
correspond to the data objects u and y in the subchart.

0

I Ot 1)

Sensor

The software saves the new model and other files generated by the analysis in:

<current_folder>/sldv_output/Sensorl
4 When the analysis is complete, view the analysis results for the Sensor1 subchart by clicking
one of the following options:
+ Highlight analysis results on model
* Generate detailed analysis report
* Create harness model
* Simulate tests and produce a model coverage report

1-18

Overview of the Simulink Design Verifier Workflow

Overview of the Simulink Design Verifier Workflow

Before you analyze a model for design error detection, test case generation, and property proving,
you must complete a few as shown in this diagram:

Check Model Compatibility

l

Set Simulink Design Verifier Options

I Analysis Modes

Test case Design Error Property
Generation Detection Proving

B =
l

Analysis Results

!

Interpret Results

The following sections provide a brief overview of the Simulink Design Verifier workflow and include
with links to related documentation in Simulink Design Verifier.

Check Model Compatibility

Before Simulink Design Verifier analyzes a model, the software checks whether the model is
compatible for analysis. For more information on model compatibility, see “Check Model
Compatibility” on page 3-2. The software runs a compatibility check on your model, and then
creates a model representation. The model representation includes the model artifacts that you can
use during analysis. The compatibility check tells you if your model is fully compatible, partially
compatible, or not compatible.

Simulink supports a broad range of and software capabilities in your models but there are some
capabilities that Simulink Design Verifier does not support. For more information, see “Supported and

Unsupported Simulink Blocks in Simulink Design Verifier” on page 3-7 and “Support Limitations
for Simulink Software Features” on page 3-16.

Apply Block Replacement Rules

If you want to work around the compatibility limitations in your model or customize model elements
for analysis, you can use the Simulink Design Verifier block replacement rules. For more information,

1-19

1 Getting Started

1-20

see “What Is Block Replacement?” on page 4-2 and “Block Replacements for Unsupported Blocks”
on page 4-7.

If you want to generate additional values for parameters in your model during analysis, use Simulink
Design Verifier parameter configurations. See “Parameter Configuration for Analysis” on page 5-2
for more information.

Set Simulink Design Verifier Options

You can set the Simulink Design Verifier analysis options in the Configuration Parameters dialog box.
Alternatively, you can use the sldvoptions function to specify the Simulink Design Verifier options
at the command line. For more information, see “Simulink Design Verifier Options” on page 15-2.

Perform Analysis on Model

You can analyze your model for:
* Design Error Detection: Detect design errors that can occur at run time. For more information,
see “Analyze Models for Design Errors” on page 6-4.

» Test Case Generation: Generate test cases that achieve model coverage. For more information, see
“Workflow for Test Case Generation” on page 7-5

* Property Proving Analysis: Prove properties and identify property violations. For more
information, see “Workflow for Proving Model Properties” on page 12-4.

If you plan to generate test cases or prove properties in your model, first run design error detection
for integer overflow and division by zero. Refer to these topics for more information:

* “What Is Design Error Detection?” on page 6-2
* “Detect Integer Overflow and Division-by-Zero Errors” on page 6-19
* “Debug Integer Overflow Design Error Detection Using Model Slicer” on page 6-68

Generate Analysis Results
Once Simulink Design Verifier finishes analyzing the model, it displays the analysis highlights and the

results options in the Results Summary window. For more information, see “Generate Analysis
Results” on page 1-6.

Interpret Analysis Results

You can the review analysis results and generate analysis reports in the HTML, DOCX, or PDF format.
For more information, see “Review Analysis Results”

See Also

More About

. Systematic Model Verification using Simulink Design Verifier
. “Analyze a Model” on page 1-4

How the Simulink Design Verifier
Software Works

* “Analyze a Simple Model” on page 2-2

* “Model Blocks” on page 2-4

* “Block Reduction” on page 2-5

* “Large Models” on page 2-6

+ “Handle Incompatibilities with Automatic Stubbing” on page 2-7

* “Analyze Export-Function Models” on page 2-12

* “Analyze Export-Function Model with Function-Call Subsystems” on page 2-13

* “Analyze Export-Function Model with Global Simulink Function” on page 2-16

* “Nonfinite Data” on page 2-19

* “Role of Approximations During Model Analysis” on page 2-20

* “How Simulink Design Verifier Reports Approximations Through Validation Results” on page 2-23
* “Logic Operations Short-Circuiting” on page 2-26

* “Model Representation for Analysis” on page 2-28

* “Share Simulink Cache File for Faster Analysis” on page 2-31

* “Analyze AUTOSAR Component Models” on page 2-33

+ “Extend Existing Test Cases by Reusing Model Representation” on page 2-35

* “Configure Model Representation Options” on page 2-39

» “Run Additional Analysis to Reduce Instances of Rational Approximation” on page 2-42
* “Detect Design Errors in AUTOSAR Software Component Model” on page 2-47

2 How the Simulink Design Verifier Software Works

Analyze a Simple Model

2-2

AND —F@

Yy

Logical out
L1 3} = Oper ator 1
HOR >
in L v l—_l
Logical Memory
Dperator

This simple model includes two Logical Operator blocks and a Memory block. The persistent
information in this model is limited to the Boolean value of the Memory block. The input to the model
is a single Boolean value. The following table describes the complete behavior of the model, including
the behavior that results from an arbitrarily long sequence of inputs.

Input Memory Value Output of XOR Block = Output of AND Block
Next Memory Value

1 false false false false

2 true false true false

3 false true true false

4 true true false true

The test objective is to generate test cases that result in a true output. A true output results when
the input is true, and the output of the Memory block is true. Test case generation follows a path to
reach this condition, which depends on the initial model conditions:

« If the initial memory value is true, the test case is a single time step where the input is true.
» Ifthe initial memory value is false, the test case is two time steps:

1 The input value is true and the memory value is false (row 2). Thus, the output of the XOR
block is true, making the memory value true.

2 Now that the input value and memory value are both true (row 4), the output is true, and
the analysis achieves the test objective.

An infinite number of test cases can cause the output to be true, and regardless of the state value, the
output can be held false for an arbitrary time before making it true. When Simulink Design Verifier
searches, it returns the first test case it encounters that satisfies the objective. This case is invariably
the simulation with the fewest time steps. Sometimes you may find this result undesirable because it
is unrealistic or does not satisfy some other test requirement.

The same basic principles from this example apply to property proving and test case generation.
During test case generation, option parameters explicitly specify the search criteria. For example,
you can specify that Simulink Design Verifier find paths for all block outputs or find only those paths
that cause the block output to be true.

During a property proving analysis, you specify a functional requirement, or property, that you want
Simulink Design Verifier to prove, for example, that the output is always true. If the search completes

Analyze a Simple Model

without finding a path that violates the property, the property is proven. If the software finds a path
where the output is false, it creates a counterexample that causes the output to be false.

During an error detection analysis, Simulink Design Verifier identifies objectives where data overflow

or division-by-zero errors can and cannot occur. The analysis creates test cases that demonstrate how
the errors can occur.

2-3

2 How the Simulink Design Verifier Software Works

Model Blocks

2-4

If your model contains Model blocks that reference external models, test creation occurs for the top-
level model, considering each referenced model in its execution context.

If multiple Model blocks reference the same model, generated tests attempt to satisfy test objectives
for each instance of the referenced model in its individual context in the top-level model. If you have
three Model blocks that reference a certain model, the analysis produces results for all three
instances.

If you collect coverage using the generated test cases, the cumulative coverage reflects the multiple
instances of the same referenced model. The simulation produces one set of coverage results for each
referenced model; if you have three Model blocks that reference a certain model, the simulation
produces one set of results for that referenced model.

For example, consider a top-level model with three Model blocks referencing the same model. The
referenced model has three test objectives. Analyzing the top-level model produces nine test
objectives. If you simulate the model with the nine test cases, the coverage results for that referenced
model specify three test objectives.

Block Reduction

Block Reduction

Block reduction achieves faster execution during model simulation and in generated code. When
block reduction is enabled, certain block groups can be collapsed into a single block, or even
removed entirely.

With Simulink Design Verifier, block reduction happens automatically, and blocks in unused code
paths are eliminated from the model. Simulink Design Verifier results do not include test objectives
for blocks that have been reduced.

Consider the Switch block in the following model.

In1 4\
; | D

|l
Ot

Cor—

Switch

For this Switch block, the control input is always 0. If the Criteria for passing first input block
parameter is u2 ~= 0, the Switch block always passes the third input through to the output port.
When you analyze this model, Simulink Design Verifier removes the Switch block from the model and
does not report any test objectives for the Switch block.

For more information about block reduction, see the description of the “Block reduction” parameter.

2-5

2 How the Simulink Design Verifier Software Works

Large Models

2-6

In larger, more complicated models, Simulink Design Verifier uses mathematical techniques to
simplify the analysis:

+ It identifies portions of the model that do not affect the desired objectives.
» It discovers relationships within the model that reduce the complexity of the search.
* It reuses intermediate results from one objective to another.

In this way, the problem is reduced to a search though the logical values that describe your model.

For detailed information about analyzing large models, see “Analyze a Large Model” on page 14-3.

Handle Incompatibilities with Automatic Stubbing

Handle Incompatibilities with Automatic Stubbing

In this section...

“What Is Automatic Stubbing?” on page 2-7
“How Automatic Stubbing Works” on page 2-7

“Analyze a Model Using Automatic Stubbing” on page 2-9

What Is Automatic Stubbing?

Automatic stubbing lets you analyze a model that contains objects that Simulink Design Verifier does
not support.

When you enable the automatic stubbing option (it is enabled by default), the software considers only
the interface of the unsupported objects, not their actual behavior. This technique allows the software
to complete the analysis. However, the analysis may achieve only partial results if any unsupported
model element affects the simulation outcome.

How Automatic Stubbing Works

If you enable automatic stubbing, when the Simulink Design Verifier analysis comes to an
unsupported block, the software “stubs” that block. The analysis ignores the behavior of the block,
and as a result, the block output can take any value.

Stub Trigonometric Function Block

Simulink Design Verifier does not support Trigonometric Function blocks when the Function
parameter is set to acos, such as the one in the following graphic.

]

BCOS Scope

D

In1

¥

— 8008 -
n_signal ourt_signal

Y

When stubbing this block during analysis, out signal can take any value, with the following results.

Analysis Model Result of Stubbing out_signal

Design error detection » If a design-error objective that depends on out signal is proven
valid, that objective is valid for all simulations. In this case, the
stubbing did not affect the results of the analysis.

» If a design-error objective that depends on out signal is
falsified, the analysis cannot create a test case. The analysis
cannot determine which input to the stubbed block produces the
output that falsifies the objective.

2-7

2 How the Simulink Design Verifier Software Works

2-8

Analysis Model

Result of Stubbing out_signal

Test case generation

If a test objective that depends on the value of out signalis
satisfied, the analysis cannot create a test case. The analysis
cannot determine which input to the stubbed block produces the
output that satisfies the objective.

If a test objective that depends on the value of out signalis
unsatisfiable, there is no simulation that can satisfy that
objective. In this case, the stubbing did not affect the results of
the analysis.

Property proving

If a proof objective that depends on out signal is proven valid,
that objective is valid for all simulations. In this case, the
stubbing did not affect the results of the analysis.

If a proof objective that depends on out signal is falsified, the
analysis cannot create a counterexample. The analysis cannot
determine which input to the stubbed block produces the output
that falsifies the objective.

Stub S-Function Block Containing Function-Call Triggers

The Simulink example model sfcndemo _sfun_fcncall has an S-Function block. The S-function
sfun_fcncall triggers the execution of the function-call subsystems f1 subsys1 and f2 subsys2 on
the first and second elements of the first output port.

[T}—

Constant +
Sum
1
- ™

sfun_feneall | Tary
L5}

Unit Delay

Drermiwe] Ot @
Function call Ot
S-Function T 1 subsys1 Ot
0
ou "]
f2 subsys2
Scope

matlabrootitoolbox'simulink'simdemos'simfeatures'sreisfun_fenecall.c .

If you do not enable support for an S-function in Simulink Design Verifier and automatic stubbing is
enabled, the analysis ignores the behavior of the S-function. As a result, the code that triggers the
two function-call subsystems is ignored, resulting in two unsatisfiable objectives. Since the function
calls are ignored, the contents of those subsystems are effectively eliminated from the analysis.

To enable support for an S-function in Simulink Design Verifier, see “Support Limitations and
Considerations for S-Functions and C/C++ Code” on page 3-28

matlab:sfcndemo_sfun_fcncall

Handle Incompatibilities with Automatic Stubbing

Analyze a Model Using Automatic Stubbing

This section describes a workflow for using automatic stubbing, with a simple Simulink model as an

example.

* “Check Model Compatibility” on page 2-9
* “Turn On Automatic Stubbing” on page 2-10

* “Review Results” on page 2-11

* “Achieve Complete Results” on page 2-11

The following model contains a Discrete State-Space block, which is not compatible with Simulink

Design Verifier.

winFCe{n+Du{n)
D > > j|'5 —»
x[n+1=Axn}+Bun)
In' , Cutt
Disrete State-Space Saturaticn

Check Model Compatibility

From the Simulink Editor, there are two ways to check whether a model is compatible with Simulink
Design Verifier: by the Simulink Design Verifier compatibility check or by running a Simulink Design
Verifier analysis.

To run the Simulink Design Verifier compatibility check:

On the Design Verifier tab, click Check Compatibility.

Simulink Design Verifier Results Summany: ex_auto_stub

21-Nov-2018 17:38:12

Checking compatibility for test generation: model 'ex_auto_stub'
Compiling model...done

Building model representation...done

21-MNov-2018 17:38:21
'ex_auto_stub' is for test generation with Simulink Design
Verifier.

The model can be analyzed by Simulink Design Verifier.
It contains unsupported elements that will be stubbed out during analysis. The results
of the analysis might be incomplete.

See documentation.

Save Log Generate Tests Close

2-9

2 How the Simulink Design Verifier Software Works

» Select the analysis that you want to perform.

To run a Simulink Design Verifier analysis, on the Design Verifier tab, in the Mode section, select
any of these options:

* Select Design Error Detection, then click Detect Design Errors.

* Select Test Generation, then click Generate Tests.

* Select Property Proving, then click Prove Properties.

The software first checks the compatibility of the model. If the model itself is incompatible, for
example, if it uses a variable-step solver, the analysis cannot continue.

If it finds incompatible elements in the model, the software analyzes the model and, by default,
stubs out the incompatible elements. The Diagnostic Viewer also opens, listing the
incompatibilities.

& Diagnostic Viewer El@
=- 1% R B I& ¢ % @@

ex_auto_stubbi...

- J"ﬁ SLDV Compatibility Analysis © 2 @
3:20:09 PM 12/10/2013 Elapsed:7T sec

/My Simulink Design Verifier has only partial support for some elements of the model:
"e¥_auto_stubbing' is partially compatible with Simulink Design Verifier.

The model can be analyzed by Simulink Design Verifier.

It contains unsupported elements that will be stubbed out during analysis. The results of
the analysis might be incomplete.

5ee documentation.

Component: =ldv | Category: Design Verifier compatibility Warning

/My Block 'ex_auto_stubbing/Discrete State-Space' is of type DiscreteStateSpace. Simulink Design
Verifier does not support blocks of this type.
See documentation.

Component; sidv | Category: Design Verifier compatibility Warning

Note For more information, see “View Diagnostics”.

Turn On Automatic Stubbing

Automatic stubbing is enabled by default. To change the automatic stubbing setting, in the
Configuration Parameters dialog box, on the main Design Verifier pane, select Automatic stubbing
of unsupported block and functions. When you run the analysis, the software tells you that
stubbing is turned on and the analysis continues.

2-10

Handle Incompatibilities with Automatic Stubbing

Review Results

If you run an analysis with automatic stubbing enabled, make sure to review the results. In this
report, generated after a test case generation analysis, you see a table of unsupported blocks that the
software encountered.

Block Type

Discrete State-Space DiscreteStateSpace
Unsupported Blocks
The generated analysis report for the example model shows that the objectives are undecided
because of stubbing. The software cannot generate test cases because it does not understand the
operation of the Discrete State-Space block.

Type Model Item Description Analysls Time

(sec)

2 Decision Saturation input > lower limit F 12

3 Decision Saturation input > lower limit T 12

4 Decision Saturation input == upper limit F 12

5 Decision Saturation input == upper limit T 12

Objective Undecided Due to Stubbing
Achieve Complete Results

If your analysis does not achieve complete results because of the stubbing, you can define custom
block replacements to give a more precise definition of the unsupported blocks. For more
information, follow the steps in “Block Replacements for Unsupported Blocks” on page 4-7.

2-11

2 How the Simulink Design Verifier Software Works

Analyze Export-Function Models

2-12

Simulink Design Verifier supports design error detection, test generation, and property proving for
export-function models. The software creates a scheduler model that invokes the export-function
models, and then performs the analysis on the scheduler model. The scheduler model invokes the
function calls based on the sample times and priorities set in the top model. By default, the software
saves the scheduler model in <current folder>\sldv_output\<model name>

\<model name> SldvScheduler.slx. You can analyze export-function models with periodic and
aperiodic function-call groups. If the model consists of aperiodic function-call or global Simulink
Function call, the scheduler has an additional port called the FcnTriggerPort. For more
information, see “Export-Function Models Overview”.

These topics cover examples that explain a periodic function-call subsystem and global Simulink
Function that you can use as an AUTOSAR server runnable.

* “Analyze Export-Function Model with Function-Call Subsystems” on page 2-13
* “Analyze Export-Function Model with Global Simulink Function” on page 2-16

Limitations

Simulink Design Verifier does not support:

* Models that include export functions with multiple function-call initiators.
* Masked model blocks that export Simulink Function blocks.
* Scoped Simulink functions in export-function models.

See Also

More About

. “Export-Function Models”
. “Analyze a Model” on page 1-4

Analyze Export-Function Model with Function-Call Subsystems

Analyze Export-Function Model with Function-Call Subsystems

This example shows how you can analyze a model which consists of periodic function-call subsystems.
This example uses the AUTOSAR example model
sldvExportFunction autosar multirunnables.

1. Open the sldvExportFunction autosar multirunnables model.
open_system('sldvExportFunction autosar multirunnables');
2. To run the test generation analysis, on the Design Verifier tab, click Generate Tests.

The Simulink Design Verifier Results Summary window indicates that a scheduler model
sldvExportFunction autosar multirunnables SldvScheduler.slx is created. You can also
generate a scheduler model by using sldvextract.

Simulink Design Verifier Results Summary: sldvExportFunction_autosar_multirunnables_Sl..

]

Progress

Objectives processed o/7
Satisfied 0
Unsatisfiable 1]
Elapsed time 0:00

Creating a new model from the contents of Export Function model
"sldvExportFunction_autosar_multirunnables”.

Mew Model File:H:\sldv_output\sldvExportFunction_autosar_multirunnables
\sldvExportFunction_autosar_multirunnables_SldvScheduler.slx

14-May-2019 13:33:07

Preprocessing model...done

Checking compatibility for test generation: model
'sldvExportFunction_autosar_multirunnables’
Compiling model...done

Building model representation...done

14-May-2019 13:33:14
'sldvExportFunction_autosar_multirunnables_SldvSchedule?' is compatible for test
generation with Simulink Design Verifier.

2-13

2 How the Simulink Design Verifier Software Works

skdvExporiFunction_aut]

C—

™ Runnable1l PPort_DE1

RFart_DE1

™ Runnable2

FPort_DE2

Cz —

4 Runnable3

RPort_DE1_ErrorStatus

RFart_DEZ

Signal spec
and routing

»{ RPart_DET
PPort_DE3

RPori_DE1_ErrorStatus

RPaort DEZ PPort_DE4

b

D

PPart_DE1

<

—

PPart_DE2

<

4

Run

_SldvExportFenScheduler

D

PPart_DE3

PPart_DE4

Signal spec
and routimg

sand_fon
sand_fon2

send_fond

The scheduler model consists of a MATLAB® function block SldvExportFcnScheduler. The
function calls are called periodically as the model consists of periodic function-call subsystem.

The MATLAB® code specifies the order in which the periodic function-call execute. Runnablel and
Runnable?2 executes first because the time period is 1 for both of them. After 10 time steps,

Runnable3 executes.

Timing Legend
Highlight None ~ Vo

“ Discrete Period
Fo1
F1(1

F2 10

Inf Constant

g
R]]

T1 Triggered, Source: FO

*&| sldvExportFunction_autosar_multirunnables_SldvScheduler » lﬂ_SIdVExponFcnScheduler

W oOoNOOMAEWNE

18

function Run()
persistent t;
if isempty(t)

t = int32(@);
end I

Runnablel();

Runnable2();

if mod(t, int32(10)) ==
Runnable3();

end

t =t + int32(1);

En:‘

If the model consists of aperiodic function-call subsystems, the scheduler consists of an additional
inport FcnTriggerPort. The value of FcnTriggerPort indicates whether to invoke the function-

call in a time step.

2-14

Analyze Export-Function Model with Function-Call Subsystems

For example, if Runnablel is an aperiodic function-call subsystem, the FcnTriggerPort Inport
block invokes the scheduler model. This graphic shows the Timing Legend window and the scheduler
model for an aperiodic function-call.

svErportF unction_autosar_multrunnaties
] Runnatie
.- »)
D) PPon_DEY '_J PPon_DE1
Rffon_DE1
Timing Legend @« x Runnatie2 o
raghigre [iome =1 [v (MY wmm:z—J PPot_DE2
@ >] Runcatie -

v Discrete Period RPo_DE1_ErrorStatus > .—@
(] Fi 1 RPor DE1 PPort_DEY
O . PPon_DEI}——

v Event @ * RPort_DE1_ErorSttus PPort

|- 20 Bocried herk RPot_DE2 - - DE4
Sratereme PPot_DE4}— gnal tpec
” o nd routng
- ot \ 4
FonTrggerPon i
arsd rensieg o +<send k2 |
SvE aportF cnScheder

After the test generation analysis, in the Simulink Design Verifier Results Summary window, you see
the results that 7/7 objectives are Satisfied.

3. To simulate the test cases and generate a coverage report, click Simulate tests and produce a
model coverage report in the Simulink Design Verifier Results Summary window.The software
simulates the test cases, collects model coverage information, and displays a coverage report.

4. To view the detailed analysis report, click HTML in the Simulink Design Verifier Results Summary
window.

The Schedule for Export Function Analysis section in the Analysis Information chapter lists the
schedule for invoking the export functions.

Sample |[Number of times invoked per

Order |Function-Call Inport Time(sec)|sample hit

1 Funnablel 1 1

2 Funnabls? 1 1

3 Runnable3 10 1
See Also

* “Export-Function Models”
* “Analyze a Model” on page 1-4

2-15

2 How the Simulink Design Verifier Software Works

Analyze Export-Function Model with Global Simulink Function

2-16

This example shows how you can analyze an export-function model sldvexGlobalSimFcn that
consists of a global Simulink Function to be used as an AUTOSAR server runnable.

1. Open the sldvexGlobalSimFcn model.
open_system('sldvexGlobalSimFcn');
2. To run the test generation analysis, on the Design Verifier tab, click Generate Tests.

The Simulink Design Verifier Results Summary window indicates that a scheduler model
sldvexGlobalSimFcn_sldvScheduler.slx is created. You can also generate a scheduler model
by using sldvextract.

Analyze Export-Function Model with Global Simulink Function

Simulink Design Verifier Results Summary: sldvexGlobalSimFon_SldvScheduler_replaceme.. X

Progress

Objectives processed 0/5
Satisfied 0
Unsatisfiable 1]
Elapsed time 0:00

Creating a new model from the contents of Export Function model
"sldvexGlobalSimFen™.

Mew Model File:Z:\sldv_outputhsldvexGlobalSimFcn
\sldvexGlobalSimFen_SldvScheduler.slx

07-Jul-2021 15:53:55

Preprocessing model...done

Checking compatibility for test generation: model 'sldvexGlobalSimFen'
Compiling model...done

Building model representation...done

07-1ul-2021 15:54:36

'sldvexGlobalSimFen_SldvScheduler_replacement’ is compatible for test generation
with Simulink Design Verifier.

Generating tests using model representation from 07-Jul-2021 15:54:36...

Enable Highlighting Stop

2-17

2 How the Simulink Design Verifier Software Works

2-18

sldvexGlobalSimFcon

1 In1 TicToc

| Inz Dot

Signal spec.
and routing

4

Run

_SldvExportFonScheduler
FenTriggerPort

Signal spec.
and routing

The scheduler model consists of a MATLAB function block SldvExportFcnScheduler and a
function-call subsystem that calls the function calls periodically. This MATLAB function block is driven
by inports which represent the input arguments of the Simulink Function. An additional Inport block
called FcnTriggerPort, the value of which indicates whether to invoke a particular function in a
time step.

3. After the test generation analysis, in the Simulink Design Verifier Results Summary window, you
see the results that 5/5 objectives are Satisfied.

See Also

* “Export-Function Models”
* “Analyze a Model” on page 1-4

Nonfinite Data

Nonfinite Data

Simulink Design Verifier does not support nonfinite data (for example, NaN and Inf) and related
operations.

During an analysis, the software handles nonfinite operations as follows:
* In the Relational Operator block:

+ Ifthe Relational operator parameter is isFinite, the output is always 1.
+ If the Relational operator parameter is isNan or isInf, the output is always 0.
* In the MATLAB Function block:

* For the isFinite function, the output is always 1.
* For the isNan and isInf functions, the output is always 0.

2-19

2 How the Simulink Design Verifier Software Works

Role of Approximations During Model Analysis

2-20

In this section...

“Types of Approximations” on page 2-20
“Floating-Point to Rational Number Conversion” on page 2-20
“Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types” on page 2-21

“Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-Point Data Types”
on page 2-21

“While Loops” on page 2-22

The Simulink Design Verifier software generates inputs and parameters to achieve objectives.
However, there can be an infinite number of values for the software to search. To create reasonable
limits on the analysis, the software performs approximations to simplify the analysis. The software
records all the approximations it performed in the Analysis Information chapter of the Simulink
Design Verifier HTML report. For a description of this chapter, see “Analysis Information Chapter” on
page 13-36.

Review the analysis results carefully when the software uses approximations. Evaluate your model to
identify which blocks or subsystems caused the software to perform the approximations.

In rare cases, an approximation can result in test cases that fail to achieve test objectives or
demonstrate a design error, or counterexamples that fail to falsify proof objectives. For example,
suppose the software generates a test case signal that should achieve an objective by exceeding a
threshold, a floating-point round-off error might prevent that signal from attaining the threshold
value. For more information, see “How Simulink Design Verifier Reports Approximations Through
Validation Results” on page 2-23.

Types of Approximations

The Simulink Design Verifier software performs the following approximations when it analyzes a
model:

* “Floating-Point to Rational Number Conversion” on page 2-20

* “Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types” on page 2-21

* “Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-Point Data
Types” on page 2-21

* “While Loops” on page 2-22

Floating-Point to Rational Number Conversion

In some cases, the Simulink Design Verifier software simplifies the linear arithmetic of floating-point
numbers by approximating them with infinite-precision rational numbers. The software discovers how
the logical relationships between these values affect the objectives. This analysis enables the
software to support supervisory logic that is commonly found in embedded controller designs. For an
example, see “Identify the Effect of Approximations Through Validation Results” on page 2-24.

Role of Approximations During Model Analysis

If your model contains floating-point values in the signals, input values, or block parameters,
Simulink Design Verifier converts some values to rational numbers before performing its analysis. As
a result of these approximations:

* Round-off error is not considered.

* Upper and lower bounds of floating-point numbers are not considered.

+ If your model casts floating-point values to integer values, the integer representation can affect
tests generated for the model. In some rare cases, the generated tests might not satisfy ohjectives
associated with the floating-point values.

Note You can use the Run additional analysis to reduce instances of rational approximation
option in the Configuration parameters window to reduce instances of approximation. For more
information, see “Run Additional Analysis to Reduce Instances of Rational Approximation” on page 2-
42,

Linearization of Two-Dimensional Lookup Tables for Floating-Point
Data Types

The Simulink Design Verifier software does not support nonlinear arithmetic for floating-point data
types. If your model contains any 2-D Lookup Table blocks, or n-D Lookup Table blocks where n = 2,
with all of the following characteristics, the software approximates nonlinear two-dimensional
interpolation with linear interpolation by fitting planes to each interpolation interval.

Block Characteristics

n-D Lookup Table block, n = 2: |+ Interpolation method parameter is Linear.
* Extrapolation method parameter is Clip or Linear.

* The input and output signals both have the floating-point data
type.

Approximation of One- and Two-Dimensional Lookup Tables for Integer
and Fixed-Point Data Types

If your model contains lookup tables with the following characteristics, Simulink Design Verifier
automatically converts your original lookup table into a new lookup table composed of breakpoints
that are evenly-spaced in each of their respective dimensions.

Block Characteristics

n-D Lookup Table block, n=1 |¢ Interpolation method parameter is Linear.

orn=2: + Extrapolation method parameter is Clip .

* Index search method parameter is Linear search or
Binary search.

* The input and output signals are both of the same type and are
both integer type or fixed-point type.

This approximation allows Simulink Design Verifier to generate tests significantly faster. The time
saved is pronounced when you have unsatisfiable test objectives in your model.

2-21

2 How the Simulink Design Verifier Software Works

2-22

If Simulink Design Verifier applies such approximations to your model, the Simulink Design Verifier
report includes details of the approximation.

While Loops

If your model or a Stateflow chart in your model contains a while loop, Simulink Design Verifier tries
to detect a conservative constant bound that allows the while loop to exit. If the software cannot find
a constant bound, it performs a while loop approximation. With this approximation, the analysis does
not prove objectives to be valid or unsatisfiable and it does not prove dead logic. The generated
analysis report notes this approximation.

The behavior of the while loop approximation is consistent in all modes of analysis, as described in
the following table.

Analysis Mode While Loop Approximation

Design Error Detection Sets number of while loop iterations to 3. Does
not report dead logic or valid objectives.

Test Case Generation Sets number of while loop iterations to 3. Does
not report unsatisfiable objectives.

Property Proving Sets number of while loop iterations to 3. Does
not report valid objectives.

See Also
“How Simulink Design Verifier Reports Approximations Through Validation Results” on page 2-23 |
“Review Analysis Results” on page 7-8

How Simulink Design Verifier Reports Approximations Through Validation Results

How Simulink Design Verifier Reports Approximations Through
Validation Results

Simulink Design Verifier performs approximations during analysis. The software identifies the
presence of approximations and reports them at the level of each objective status in the Objective
Status Chapter of the Simulink Design Verifier HTML report. For more information, see “Role of
Approximations During Model Analysis” on page 2-20 and “Objectives Status Chapters” on page 13-
42.

To validate the test cases or counterexamples during simulation, the model is locked in fast restart
mode. For more information, see “Fast Restart Methodology”.

For example, to ensure the effect of approximations, in the test generation analysis the test cases are
validated against the coverage data during analysis.

Impact of Approximations on Objectives Status

The software provides the test cases or counterexamples for the objectives that are impacted due to
approximations during analysis. These objectives are reported as “Objectives Undecided with
Testcases” on page 13-47 for test generation analysis and “Objectives Undecided with
Counterexamples” on page 13-49 for property-proving analysis.

The software confirms the objectives that can be impacted due to approximations as dead logic, valid,
or unsatisfiable. This table summarizes these objectives for all analysis modes.

Analysis Mode Objectives Status
Design error detection * “Dead Logic under Approximation” on page 13-44
* “Objectives Valid under Approximation” on page 13-45
Test generation “Objectives Unsatisfiable under Approximation” on page 13-47
Property proving “Objectives Valid under Approximation” on page 13-48

The software is unable to confirm the objectives status through validation results for these cases:

* The objectives introduced by the block replacement. For more information, see “What Is Block
Replacement?” on page 4-2.

» The Verification Subsystem consists of the sldv.test or sldv.prove function.

* You abort the analysis by using the Stop button in the Simulink Design Verifier Results Summary
window or the software exceeds its “Maximum analysis time” on page 15-11. Therefore, some
objectives remain unvalidated during analysis and the software is unable to confirm the objectives
status.

* The block with an objective is inside the Simulink test harness but outside the component under
test. For more information, see “Test Harness and Model Relationship” (Simulink Test).

This table summarizes the objectives statuses for the preceding cases. To confirm the status of the
objectives, you must run additional simulations of test cases or counterexamples.

2-23

2 How the Simulink Design Verifier Software Works

Analysis Mode

Objectives Status

Design error detection

* “Active Logic - Needs Simulation” on page 13-44
* “Objectives Error - Needs Simulation” on page 13-45

Test generation

“Objectives Satisfied - Needs Simulation” on page 13-46

Property proving

“Objectives Falsified - Needs Simulation” on page 13-49

Identify the Effect of Approximations Through Validation Results

This example shows how approximations affect the objectives status of the Switch block. In the
sldvApproximationsExample model, the calculations 1./3 and 2. /3 in the Constant block result
in “Floating-Point to Rational Number Conversion” on page 2-20 during analysis.

For inport In2 equal to -1, the input 2 of the Switch block is not equal to 0 during simulation.
Therefore, the Switch does not select inport In3 as output. For test generation and property-proving
analysis, the objective logical trigger input false(output is from 3rd input port)
for the Switch block is undecided due to the impact of approximations during analysis.

1. Open the model sldvApproximationsExample:

open_system('sldvApproximationsExample');

Reporting Approximations Through Validation Results

G
In2 P+
Add1
1.3
Constant1

2-24

203

Constant2

¥
=]
o
[=}
Fa

[

CGo—

In3

This example shows how Simulink Design Verifier reports the impact of approximations
through validation results.

In this model, approximations occur due to floating point to rational number conversion
during analysis. In the Simulink Design Verifier Report, the Objective Status chapter
reports the objectives impacted by approximations for test generation and property
proving analysis.

Coopyright 2017 The MathWorks, Inc.

2. To perform test generation analysis, on the Design Verifier tab, click Generate Tests. The
software simulates the model and validates the test results against coverage data.

How Simulink Design Verifier Reports Approximations Through Validation Results

3. To view the detailed analysis report, click HTML in the Simulink Design Verifier Results Summary
window.

This image shows the Test Objectives Status section of the generated analysis report. The software
provides two test cases that are impacted by approximations.

Test Objectives Status - Objective Satisfied

.. Analysis

Tvpe Model Item Description Time (sec) Test Case
Decision Switch lc?glcal trigger nput true {output 1s 14 1

- from 1st input port)

Test Objectives Status - Objective Undecided with Testcases
Ty Model Tt Descripti Analysis 1p o e
vpe Model Ttem escription Time (sec) est Case

Decision Switch logical trigger wmput false (output 1s 14 >

- from 3rd mnput port)

4. To perform property proving analysis, on the Design Verifier tab, in the Mode section, select
Property Proving. Click Prove Properties.

This image shows the Proof Objectives Status section of the generated analysis report.

Proof Objectives Status - Objective Undecided with Counterexamples

. Analysis , .
Type Moadel Ttem Description Time (sec) Counterexample
Proof b oof Objective Objective: [1. 2] 11 1
objective

The software provides one counterexample that is impacted by approximations.

Note: The sldvApproximationsExample example model is preconfigured with the Run additional
analysis to reduce the instances of approximations option set to Off. If you enable this option and run
the analysis, the Undecided with Testcases test objective is reported as Unsatisfiable and
the proof objective is reported as Valid.

See Also

More About

. “Review Results” on page 13-35
. “Role of Approximations During Model Analysis” on page 2-20

2-25

docis:sldv_ug#mw_477a4830-617f-44bd-8bd7-fb10bba478cd
docis:sldv_ug#mw_477a4830-617f-44bd-8bd7-fb10bba478cd

2 How the Simulink Design Verifier Software Works

Logic Operations Short-Circuiting

2-26

Simulink Design Verifier considers logical operations and logical expressions as short-circuiting when
analyzing for dead logic and when generating tests.

Logical Operators and Logical Expressions for Condition and MCDC objectives can be considered

short-circuiting or not when you analyze for dead logic or generate tests. The table summarizes
different considerations:

Short-Circuit consideration for Condition or MCDC Objectives

Modeling element Short-Circuit consideration for Condition or
MCDC Objectives

MATLAB, Stateflow (C/MATLAB) and other Always short-circuited

Simulink Blocks (Fcn, If)

Logic blocks (standalone/cascaded) Short-circuited only when
CovLogicBlockShortCircuit is ON

For Condition objective, consider the following simple logical operator example model. When
CovLogicBlockShortCircuit parameter is ON, a previous input alone determines the block
output, the analysis ignores any remaining block inputs. If the first input to a Logical Operator block
whose Operator parameter specifies AND is false, the analysis ignores the values of the other inputs.

When CovLogicBlockShortCircuit parameter is OFF all the inputs are considered.

In
2) » AaND ————(1)
In2 Ot
-
Lo-gical
Orperator

The tables summarizes the difference in objectives for short-circuit and non short-circuit case for
Condition objective by using a similar logical expression for MATLAB function block:

Short-Circuit considerations for Condition objective

Condition ‘F’ Port 3 CovLogicBlockShortCircuit: ON [CovLogicBlockShortCircui
t: OFF

Logical operator (in1) && (in2) && (~in2) (dead logic) ~ in2 (active logic)

MATLAB Function with |(in1) && (in2) && (~in2) (dead logic) (in1) && (in2) && (~in2) (dead

logical expression (inl logic)

&& in2 && in2)

For MCDC objective, along with the short-circuit mode, the CovMCDCMode or the coverage MCDC
mode is set as a parameter.

Logic Operations Short-Circuiting

The tables summarizes the difference in objectives for short-circuit and non short-circuit case for

MCDC objective.

Short-Circuit considerations for MCDC objective

CovLogicBlockSh [CovMCDCMode Standalone block Cascaded

ortCircuit Network

ON Masking Short circuited MCDC MCDC for network
(Short-circuited)

OFF Masking Non short-circuited MCDC [MCDC for network
(Non short-
circuited)

ON Unique cause Short-circuited MCDC MCDC (Short-
circuited) coverage
result can differ
from Simulink
Design Verifier.

OFF Unique cause Non short-circuited MCDC |NA

Note If covMCDCMode is Unique cause, then MCDC definition differs between coverage and MCDC.

For more information, see "Short-Circuiting of Boolean Expressions for MCDC" in “Analyzing MCDC

for Cascaded Logic Blocks” (Simulink Coverage).

2-27

2 How the Simulink Design Verifier Software Works

Model Representation for Analysis

2-28

In this section...

“Reuse Model Representation for Analysis” on page 2-28

“Limitations” on page 2-30

When you analyze a model for the first time, Simulink Design Verifier performs a compatibility check
and creates a model representation. The model representation contains information about model
behavior to use for analysis. By default, the software saves the model representation at the
“Simulation cache folder” location.

If you modify a model and rerun the analysis, Simulink Design Verifier determines whether to rebuild
the model representation or to use the existing Simulink cache depending on the “Rebuild model
representation” on page 15-13 parameter. A rebuild of the model representation is triggered, when
the Rebuild model representation option is set to If change is detected and the software
detects any changes in the model.

Reuse Model Representation for Analysis

The Rebuild model representation option is set to If change is detected by default and the
software validates the model representation against any model changes and Simulink Design Verifier
analysis options. The software then determines whether to reuse or to rebuild the model
representation for analysis. When you set the option to Always, the model representation is rebuilt
during every model analysis.

When the Rebuild model representation option is set to If change is detected, Simulink
Design Verifier checks for these changes in a model:

+ Simulink Design Verifier Options on page 2-28

* “Structural Checksum of a Model” on page 2-29

* “Additional Dependencies” on page 2-30

Simulink Design Verifier Options
The software validates the model representation against any changes in the Simulink Design Verifier

options. This table lists the options that do not affect the model representation, and if you change any
of these options the software reuses the model representation.

Design Verifier Options + “Maximum analysis time” on page 15-11
* “Output folder” on page 15-11

* “Make output file names unique by adding a
suffix” on page 15-12

* “Run additional analysis to reduce instances
of rational approximation” on page 15-15

+ “Ignore objectives based on filter” on page 15-
17

» “Filter file(s)” on page 15-18

Model Representation for Analysis

Test Generation options

“Test conditions” on page 15-32

“Test objectives” on page 15-33
“Maximum test case steps” on page 15-33
“Test suite optimization” on page 15-34

“Extend using existing coverage data” on page
15-38

“Extend using existing coverage data” on page
15-38

“Extend using existing test data” on page 15-
39

“Separate objectives satisfied with the
existing tests/coverage data in the report” on
page 15-40

Property Proving options

“Assertion blocks” on page 15-52

“Proof assumptions” on page 15-53
“Strategy” on page 15-53

“Maximum violation steps” on page 15-54

Results generation options

“Data file name” on page 15-57

“Include expected output values” on page 15-
57

“Randomize data that do not affect the
outcome” on page 15-58

“Generate separate harness model after
analysis” on page 15-59

“Harness model file name” on page 15-59

“Reference input model in generated harness”
on page 15-60

“Harness source” on page 15-61
“Test File Name” on page 15-61
“Test Harness Name” on page 15-62

Report generation options

“Generate report of the results” on page 15-
63

“Generate additional report in PDF format” on
page 15-64

“Report file name” on page 15-64

“Include screen shots of properties” on page
15-65

“Display report” on page 15-66

Structural Checksum of a Model

The Simulink Design Verifier uses both structural checksum and code checksum. A structural
checksum is a computation that detects changes in the model that can affect simulation results. For
more information about the kinds of changes that affect the model, see Rebuild.

2-29

2 How the Simulink Design Verifier Software Works

2-30

Note When you “Generate Test Cases for Embedded Coder Generated Code” on page 7-28,
Simulink Design Verifier also considers checksum of the generated code.

Additional Dependencies

In addition to structural checksum, Simulink Design Verifier checks for changes in model
dependencies that can impact the analysis results, such as:

* Simulation run-time parameters that are defined in the data dictionary or the MATLAB base,
mask, or model workspaces

» External C or C++ source code files that the model uses during simulation

* Minimum and maximum constraints that are specified for block parameters

* Block parameters that are specified for blocks in the “Simulink Design Verifier Block Library” on
page 1-3, such as Values

Limitations

* The model representation is always rebuilt:
* When Simulink Design Verifier analysis is started from other products such as Simulink Test™,
Simulink Coverage, Simulink Check™, and Requirements Toolbox™.
* When the model contains MATLAB System blocks.

* Simulink Design Verifier does not detect changes in the custom block replacement rules that you
apply, even if the Rebuild model representation option is set to If change is detected.In
such cases, the Simulink cache is reused for analysis and a warning message is displayed in the
Diagnostic Viewer that suggests you to set the Rebuild model representation option to Always,
if you want to rebuild the model representation.

See Also
“Extend Existing Test Cases by Reusing Model Representation” on page 2-35

More About

. Configure Model Representation Options on page 2-39
. “Check Model Compatibility” on page 3-2

. “Simulink Design Verifier Options” on page 15-2

Share Simulink Cache File for Faster Analysis

Share Simulink Cache File for Faster Analysis

In this section...

“Store the Simulink Cache File” on page 2-31
“Reuse the Simulink Cache File” on page 2-31

You can share the Simulink cache file for faster Simulink Design Verifier analysis. When you analyze a
model, Simulink Design Verifier performs a compatibility check and creates a Simulink cache file that
contains the model representation information. If there is no change in the model, Simulink Design
Verifier reuses the model representation from the Simulink cache file without performing the
compatibility check again. For more information, see “Share Simulink Cache Files for Faster
Simulation” and “Model Representation for Analysis” on page 2-28.

Store the Simulink Cache File

The Simulink cache file is stored in the location specified in the Simulink Preferences > General
dialog box, under Simulation cache folder. By default, the Simulink cache file is stored in the
current working directory.

®1 Simulink Preferences - O

General Preferences

v P2 simulink Preferences i
Folders for Generated Files
E General
Editor Simulation cache folder: | | Browse...
%] Model File =
Code generation folder: | | Browse...
Code generation folder structure: | Model specific i

The file name of the Simulink cache is the same as the file name of the model with an .slxc file
extension.

Reuse the Simulink Cache File

You can reuse the Simulink cache file to speed up the Simulink Design Verifier analysis for later use
by yourself or others. When you perform Simulink Design Verifier analysis, the software determines
whether to rebuild the model representation based on the “Rebuild model representation” on page
15-13 option. By default, this option is set to If change is detected and if there is no change in
the model, the software reuses the model representation from the Simulink cache file for analysis.

If Rebuild model representation is set to Always or if the software detects any change in the
model during analysis, the software rebuilds the model representation and updates the Simulink
cache file.

Note The Simulink cache file accumulates model representation build artifacts for the release in
which it was created and is platform dependent. This cache file does not support cross-release
compatibility.

2-31

2 How the Simulink Design Verifier Software Works

For information on what a specific Simulink cache contains, double-click the Simulink cache file. The
report contains information of supported releases, platforms, and model representation.

Simulink cache for mSimpleModel_AlIModes
[This Simulink cache contains derived files for the following releases and platforms:
R2022b : win64

Verification and Validation

« Maodel representation for test generation

For example, suppose a team is working on large models and uses a source control system to manage
design files. To reduce the amount of time for Simulink Design Verifier analysis, the team follows
these steps:

A developer pulls the latest version of the Simulink model from the source control system.

2 Performs Simulink Design Verifier test case generation analysis and shares the latest version of
Simulink cache file to the source control system and the generated test cases to the build
archive.

3 Test engineer pulls the latest version of the model and the Simulink cache file from the source
control systems. Also, pulls the existing test cases from the build archive.

4 Performs test case extension on the same model by using the existing test cases. If no changes
are detected in the model, the model representation from the Simulink cache file is reused for
analysis. For a detailed example, see “Extend Existing Test Cases by Reusing Model
Representation” on page 2-35.

If the test engineer, changes the model or Simulink Design Verifier options that affects the
compatibility results, the model representation is rebuilt and the Simulink cache file is updated.
For more information on Simulink Design Verifier options that leverage the reuse of model
representation, see “Reuse Model Representation for Analysis” on page 2-28.

See Also

More About

. “Model Representation for Analysis” on page 2-28
. Configure Model Representation Options on page 2-39

External Websites
. Simulink Cache (1 min, 27 sec)

2-32

Analyze AUTOSAR Component Models

Analyze AUTOSAR Component Models

Simulink Design Verifier supports design error detection, test generation, and property proving
analysis for AUTOSAR software components (SWC) at the unit level. You can analyze an AUTOSAR
component that contains blocks from the AUTOSAR Blockset Basic Software block library, which
model component calls to AUTOSAR Basic Software (BSW) services, including:

* Diagnostic Event Manager (Dem)
* Function Inhibition Manager (FiM)
* NVRAM Manager (NvM)

Additionally, you can analyze a Simulink model generated by importing descriptions of AUTOSAR
software components from AUTOSAR XML (ARXML) files. See, “Create and Configure AUTOSAR
Software Component” (AUTOSAR Blockset).

The software creates an analysis harness that provides stub implementations of the Basic Software
service operations called by the component, and then performs the analysis on the harness model. By
default, the software saves the harness model in <current folder>\sldv output

\<model name>\<model name> SldvStub.slx.

| T P e Wt (s
A -l X
- ~—r——
= — o X B |.
J A
(o - i
-
~ o
-
v
- - J I
-
*a| autosar_bsw_simulation P A)
: ~— - - BB]
e B
o utcnar_bew_senscr B . = i
-
ye. -
—] R ADC Percont . =
] F
/ AN Dyw mOrsion \
m——— Seraor_Percent
: ——0
datal] Seracr?_Percend Fascent
Farw sonsce data
Mondor
[—— R
— e FmADC Percorel)
o
S
a [I
ErE DEM / Fild
NVRAM Sorvce Component Dragramste Servce Comporant

AUTOSAR Model at Component Level

Limitations

The Simulink Design Verifier analysis reports an incompatibility if:

2-33

2 How the Simulink Design Verifier Software Works

2-34

* You use Simulink Design Verifier to generate tests in the Simulink Test, and the harness parameter
is set to Signal Editor.

* The component model contains service component blocks, such as the Diagnostic Service
Component or NVRAM Service Component blocks.

* The component model contains Initialize Function, Reinitialize Function, Reset Function, or
Terminate Function blocks that call a Simulink functions that is not defined in the same
component.

» Ifyou perform Software-in-the-Loop (SIL) code analysis on an AUTOSAR component model

* You export test cases generated by Simulink Design Verifier and run software-in-the-loop (SIL)
simulation on those test cases in Simulink Test Manager. The recommended approach is to
perform back-to-back testing using Simulink Test.

See Also

“Configure Elements of AUTOSAR Software Component for Simulink Modeling Environment”
(AUTOSAR Blockset) | “Import Test Cases for Equivalence Testing” (Simulink Test)

Related Examples
. “Detect Design Errors in AUTOSAR Software Component Model” on page 2-47

Extend Existing Test Cases by Reusing Model Representation

Extend Existing Test Cases by Reusing Model Representation

This example shows how to avoid unneeded model representation builds when reanalyzing a model.
Consider a case where you perform test generation and the analysis exceeds maximum analysis time.
In the specified analysis time, Simulink Design Verifier analyzes some objectives and saves the
generated test cases in a MAT-file.

To reanalyze the model, you update the maximum analysis time and select the extend existing test
cases option. To speed up the analysis, set the Rebuild model representation option to If change
is detected. Simulink Design Verifier reanalyzes the model by reusing the model representation.
For more information, see “Model Representation for Analysis” on page 2-28.

Step 1. Open the model and specify analysis options

Generate test cases for sldvdemo cruise control model by specifying the sldvoptions.

model = 'sldvdemo cruise control';

open_system(model);

opts = sldvoptions;

opts.Mode = "TestGeneration";

opts.MaxProcessTime = 10;
opts.RebuildModelRepresentation = "IfChangelsDetected";

2-35

2 How the Simulink Design Verifier Software Works

2-36

Simulink Design Verifier
? | Cruise Control Test Generation

L1 3} enable
enable
L2 } b brake throt e 1]
brake throt
L3} P cot
set [0 100]
: Actual ed .
speed ual spe
4 | inc target —F@
inc target
L5 } | dec
dec
Controller
Toggle Speed
Constraint
(double-click)

Toggle Constraint

Caopyright 2006-2023 The MathWarks, Inc.

Analyze the model by using this command.
[status, files] = sldvrun('sldvdemo cruise control', opts, true);
The Diagnostic Viewer window displays the Test Generation analysis error.

Simulink Design Verifier has exceeded the maximum processing time. You can
extend the time limit by modifying the "Maximum analysis time" edit field on
the Design Verifier pane of the configuration dialog or by modifying the
"MaxProcessTime" attribute of the options object.

After the analysis is completed, the Results Summary window displays the results. The software
reports 22/24 objectives as satisfied and 2/24 objectives as undecided

Extend Existing Test Cases by Reusing Model Representation

Simulink Design Verifier Results Summary: sldvdemo_cruise_control X

Progress I

Objectives 22/24

processed

Satisfied 22

Unsatisfiable 0

Elapsed time 0:15 v

Test generation exceeded time limit.
22/24 objectives satisfied.
2/24 objectives undecided

Results:

& Open filter explorer

® Highlight analysis results on model

® \View tests in Simulation Data Inspector

¢ Detailed analysis report: (HTML) (PDF)

® Create harness model

® Save test cases/counterexamples to spreadsheet

& Export test cases to Simulink Test

® Simulate tests and produce a model coverage report

Data saved in: sldvdemo cruise control_sldvdata6.mat
in folder: C:\Users\] = ;

\sldv_output\sldvdemo_cruise_control

View Log Close

Step 2. Reanalyze the model by modifying the sldvoptions

To reanalyze the model, you select the extend existing test cases option and update the maximum
analysis time. The Rebuild model representation option is set to If change is detected. The
software validates the cache model representation, detects no change, and reuses the model
representation for analysis.

opts.MaxProcessTime =500;
opts.ExtendExistingTests='on";
opts.IgnoreExistTestSatisfied = 'on';
opts.ExistingTestFile=files.DataFile;
sldvrun('sldvdemo cruise control', opts, true);

The results show that 24/24 objectives are satisfied and no additional test cases are generated.

2-37

2 How the Simulink Design Verifier Software Works

Simulink Design Verifier Results Summary: sldvdemo_cruise_control

Progress]

Objectives 24/24
processed

Satisfied 24
Unsatisfiable 0

Elapsed time 0:57

Test generation completed normally.
2/24 objectives satisfied.
22/24 objectives satisfied by existing tests/coverage data

Results:

& Open filter explorer

® Highlight analysis results on model

® \View tests in Simulation Data Inspector

¢ Detailed analysis report: (HTML) (PDF)

® Create harness model

® Save test cases/counterexamples to spreadsheet

& Export test cases to Simulink Test

® Simulate tests and produce a model coverage report

Data saved in: sldvdemo_cruise control _sldvdataZ.mat
in folder: C:\Users\,

-

\sldv_output\sldvdemo_cruise_control

View Log Close

Close the model.
close system('sldvdemo cruise control', 0);
Related Topics

* “Model Representation for Analysis” on page 2-28
+ “Extend an Existing Test Suite” on page 7-86

2-38

Configure Model Representation Options

Configure Model Representation Options

You can configure the option to build or reuse the model representation from the Design Verifier
pane, “Rebuild model representation” on page 15-13 option or by using the sldvoptions. By
default, the option is set to IT change is detected and the software reuses the model
representation for analysis, if there is no change in the model.

When you perform analysis, the Results Summary window displays the information regarding the
model representation. If you select Always for the Rebuild model representation option, the
software rebuilds the model representation during analysis.

Progress I
Objectives processed 17/32

Satisfied 17

Unsatisfiable 0

Elapsed time 0:19

13-Nov-2018 16:39:06

Checking compatibility for test generation: model 'sldvdemo_cruise_control’
Compiling model.,.done

Building model representation...done |

13-Nov-2018 16:39:09
'sldwdemo_cruise_control' is compatible for test generation with Simulink Design
Verifier.

Generating tests using model representation from 13-Nov-2018 16:39:09...

SATISFIED
Controller/Logical Operatorl
Logic: input port 1 false
Analysis Time = 00:00:18

SATISFIED

Controller/Switch2

logical trigger input false (output is from 3rd input port)
Analysis Time = 00:00:18

Disable Highlighting Stop

If you select If change is detected option, the software validates the existing cached model
representation. If the cached model is successfully validated, it is reused for analysis.

2-39

2 How the Simulink Design Verifier Software Works

' nk Design Verifier Res Summa dvdemo_cruise_contro e
Progress |
Objectives processed 27/32
Satisfied 27
Unsatisfiable 0
Elapsed time 0:18

13-Nov-2018 16:41:46
Validating cached model representation from 11-Nov-2018 16:39:09...done |

13-Nov-2018 16:41:47
'sldvdemo_cruise_control' is compatible for test generation with Simulink Design
Verifier.

| | Generating tests using model representation from 13-Nov-2018 16:39:09...

SATISFIED

Controller/Switch2

logical trigger input false (output is from 3rd input port)
Analysis Time = 00:00:18

SATISFIED

Controller/Switch1

logical trigger input false (output is from 3rd input port)
Analysis Time = 00:00:18

SATISFIED
Controller/Logical Operatorl v

Disable Highlighting Stop

If change is detected in the model, the model representation is rebuilt. For more information, see
Changes That Affect the Model Representation Rebuild on page 2-28.

2-40

Configure Model Representation Options

27-Nov-2018 16:04:13
Validating cached model representation from 27-Nov-2018 16:00:44...change
detected

| |27-Nov-2018 16:04:13

| | Checking compatibility for test generation: model 'sldvdemo_cruise_control’
| [Compiling model...done

Building model representation...done

27-Nov-2018 16:04:16
'sldvdemo_cruise_control' is compatible for test generation with Simulink Design
Verifier.

Generating tests using model representation from 27-Nov-2018 16:04:16...
| | SATISFIED

Controller/Switch2

logical trigger input false (output is from 3rd input port)

Analysis Time = 00:00:19

SATISFIED

' nk Design Verifier Res Summa dvdemo_cruise_contro *
Progress |
Objectives processed 10/12
Satisfied 10
Unsatisfiable % 0
Elapsed time 0:20
-

ControllerfSwitch3

Disable Highlighting Stop

See Also

More About

. “Model Representation for Analysis” on page 2-28
. “Check Model Compatibility” on page 3-2

2-41

2 How the Simulink Design Verifier Software Works

Run Additional Analysis to Reduce Instances of Rational
Approximation

2-42

This example shows how to reduce the instances of rational approximation by running additional
analysis. You analyze a model and during the analysis, Simulink® Design Verifier™ identifies the
presence of approximations and the associated objectives are reported as undecided with test case.

You enable the Run additional analysis to reduce instances of rational approximation option to
perform additional analysis to confirm the undecided objectives. When you rerun the analysis,
Simulink cache that contains the model representation information is reused to perform faster
analysis. For more information see “Reuse Model Representation for Analysis” on page 2-28.

Open the Model

The sldvApproximationsExample model results in approximations due to the calculations 1./3 and
2./3 in the Constant block.

open_system('sldvApproximationsExample")

Reporting Approximations Through Validation Results

Ir1
(2D > 1.2}
. =+
. e ohi—o —— D
Add1 p—
Az - Out2
1.0% 313 Switch

Constant1 Constant2 @_

In3

This example shows how Simulink Design Verifier reports the impact of approximations
through validation results.

In thiz model, approximations occur due to floating point to rational number conversion
during analysis. In the Simulink Design Verifier Report, the Objective Status chapter
reports the objectives impacted by approximations for test generation and property
proving analysis.

Copyright 2017-2019 The MathWarks, Inc.

Run Additional Analysis to Reduce Instances of Rational Approximation

Reporting Approximations Through Validation Results

Add1

Constant1

203

+
AddZ

Constant2

a Out2

o

In3

This example shows how Simulink Design Verifier reports the impact of approximations
through validation results.

In this model, approximations occur due to floating point to rational number conversion
during analysis. In the Simulink Design Verifier Report, the Objective Status chapter
reports the objectives impacted by approximations for test generation and property
proving analysis.

Copyright 2017-2019 The MathWorks, Inc.

Perform Test Case Generation Analysis and Review Results

On the Design Verifier tab, click Generate Tests.

After the analysis completes, the Results Summary window displays that one objective is satisfied and
one objective is undecided with test case.

2-43

2 How the Simulink Design Verifier Software Works

2-44

Progress |
Objectives processed 2/2

Satisfied 1

Unsatisfiable 0

Elapsed time 0:20

Test generation completed normally.

1/2 objective satisfied
1/2 objective undecided with testcase

Results:

* Dpen filter viewer

* Highlight analysis results on model

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (FDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: sldvApproximationsExample_sldvdata.mat
in folder: H:\sldv_output\sldvApproximationsExample

To view the detailed analysis report, in the Results Summary window, click HTML. In the report, the
Analysis Information chapter lists the approximations that were performed during analysis

Approximations

Simulink Design Verifier performed the following approximations during analysis. These can impact
the precision of the results generated by Simulink Design Venfier. Please see the product
documentation for further details.

" Tvpe Description

The model includes floating-point arithmetic. Simulink Design Verifier
approximates floating-point arithmetic with rational number arithmetic,
1 F.ational approximation|Specifving minimum and maximum values that mimic environmental
constraints on root-level Inport blocks may reduce instances of rational
approximation.

Run Additional Analysis to Reduce Instances of Rational Approximation

The Objective Status chapter gives detailed description of the objectives.

Objectives Satisfied

Simulink Design Verifier found test cases that exercize these test cbjectives.

Objectives Undecided with Testcases

Simulink Desipn Verifier was not able to decide these objectives due to the impact of approximations during analysis,

|Type Model Item Description ‘_'l_l;:::-'"{s;:c] Tost Case
2 Decision |Suwitel legical trigger input true (output is g |
] . from lst input port)

- Analysis
H Type Alodel Item Description Time (sec) Test Case
- bl logical triggzer input falze (outputis |, -
S (el - —— IL 2
1 Decizion |Switch m 3rd input port) 2

Run Additional Analysis by Reusing Cache

The undecided with test case objective is impacted by approximation, and to confirm this objective
status you run additional analysis.

(a) On the Design Verifier tab, click Test Generation Settings > Settings.

(b) In the Configurations Parameters dialog box, on the Design Verifier pane, in Advanced
parameters, set the Rebuild model representation option to If change is detected and
enable Run additional analysis to reduce instances of rational approximation option. Click
OK.

Note: If you create a new model, by default, the Rebuild model representation option is set to If
change is detected.

(c) To perform test generation analysis, click Generate Tests. The existing cache is validated against
the model and the analysis reuses the cache if no change is detected.

The Results Summary window displays that the cached model representation is validated and no
change is detected. Hence, the analysis skips the compatibility check and reuses the model
representation for analysis.

’i Results: sldvApproximationsExample - O X

.Test generation completed normally.
1/2 objective satisfied
1/2 objective unsatisfiable

Results:

* Open filter viewer

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

2-45

2 How the Simulink Design Verifier Software Works

After the analysis completes, the Results Summary window displays that one objective is satisfied and
one objective is unsatisfiable.

Review Analysis Results

To view the detailed analysis report, in the Results Summary window, click HTML. In the report, the
Objectives Status chapter gives a detailed description of the objectives.

Objectives Satisfied

Simulink Design Verifier found test cazes that exercise these test objectives.

- Analysis
H Type Model Item Description Time (sec) Test Case
5 Decision | Switeh logical Ui:gger input true {output is ; 1
- from lst input port)

Objectives Unsatisfiable

Simulink Design Verifier found that there does not exist any test case exercizing these test objectives. This often indicates
the presence of dead logic in the model. Other poszible reasons can be inactive blocks in the model due to parameter
configuration of test constraints such as given using Test Condition blocks.

- Analysis
H Type Model Item Description Time (sec) Test Case

logical trigger input false (output is

1 Decision |Switch from 3rd input port)

a4 n'a

Related Topics

* “Model Representation for Analysis” on page 2-28
* “Run additional analysis to reduce instances of rational approximation” on page 15-15
* “Rebuild model representation” on page 15-13

2-46

Detect Design Errors in AUTOSAR Software Component Model

Detect Design Errors in AUTOSAR Software Component Model

The AUTOSAR standard defines Basic Software (BSW) services that run in the AUTOSAR run-time
environment. The services include NVRAM Manager (NvM) Diagnostic Event Manager (Dem), and
Function Inhibition Manager (FiM) services. The following example shows how to use Simulink
Design Verifier to run design error checks on the AUTOSAR component model.

Prepare the Model

Open the AUTOSAR software component. This example uses AUTOSAR simulink model

autosar_bsw monitor.

model = 'autosar bsw monitor';

open_system(model);

\"& autosar_bsw_monitor P

Throttle Position Monitor Campanent
Get Falled * Copyright 2020 The MathWorks, Inc.
1/ ;.’“ Err —ha »
TPS1StuckLow OR
Are both components failing?
Get Failed » Set Status
AND L o gl FailCondition EventStatus - Err—-—]
Er ;!—‘—‘ ;f—‘ Err —hEl L ;/
BoolToEventStatus2
TPS1StuckHigh TPS
Get Failed »
A fr et >
TPS2StucklLow OR Default Value
o »
Get Failed »
'-/i/—‘-/i/“ Er——] If both sensors failing, use default value |
TPS2StuckHigh > |
single P i
g single ereen

Sensor?2_Percent

A

u single

Sensor!_Percent

2-47

2 How the Simulink Design Verifier Software Works

2-48

Monitor component autosar bsw monitor contains a call to the Dem service interface
DiagnosticMonitor and four calls to the Dem service interface DiagnosticInfo. The four
DiagnosticInfo calls are implemented using the Basic Software library block DiagnosticInfoCaller
(AUTOSAR Blockset). Each block is configured to call the DiagnosticInfo operation
GetEventFailed. The GetEventFailed calls use client ports TPS1StuckLow, TPS1StuckHigh,
TPS2StuckLow, and TPS2StuckHigh.

Perform Design Error Detection Analysis

To detect the design errors in the above component model, configure the Design Verifier options as
follows:

opts = sldvoptions;

opts.Mode = "DesignErrorDetection"”;
opts.DetectDeadLogic = 'on';
opts.DetectActiveLogic = 'on';

Analyze the model.

[status, files] = sldvrun('autosar bsw monitor', opts, true);

Creating a new model to analyze Simulink Function calls with missing definitions in
the model "autosar_bsw_monitor”,

New Model File:Z:\sldv_output\autosar_bsw_monitor
\autosar_bsw_monitor_SldvStub.slx

The Simulink® Design Verifier™ Results Summary window indicates that an analysis harness model
autosar bsw monitor SldvStub is created. You can also generate the same analysis harness
model using sldvextract function.

Review the Analysis Results

The Simulink Design Verifier Results Summary window shows that 18 of 18 objectives are active logic
in the model.

Detect Design Errors in AUTOSAR Software Component Model

[‘_'i], Simulink Design Verifier Results Summary: autosar_bsw_monitor_SIdvStub_replacement X
Progress L —
Objectives processed 18/18
Valid 18
Falsified 0
Elapsed time 1:58

'Design error detection completed normally.
18/18 objectives are active logic

Results:

* Open filter viewer
 Highlight analysis results on model
* Detailed analysis report: (HTML) (PDF)

Data saved in: autosar bsw monitor SldvStub sldvdata.mat
in folder: Z:\sldv output\autosar bsw monitor SldvStub

View Log Close

To view the detailed analysis report, click the HTML link in the Results Summary window. The
Design Error Detection Objectives Status section includes the Active Logic objectives statuses
for the model.

2-49

2 How the Simulink Design Verifier Software Works

Type Modcl Item Description Analysis Time
(sec)
6 (Condition autosar_bsw_monitor/Logical Operator Logic: input port 1 true 38
7 Condition autosar_bsw_manitor/l.ogical Operator I.ogic: inpurt port 1 false 3K
i Condition autosar_bsw_maonitor/T.ogical Operator T.ogic: inpur port 2 true 38
o (Condition aulosar_bsw_monilorTogical Operalor Logic: inpul porl 2 [alse 38
15 ICondition autosar_bsw _monitor Togical Opcrator2 Logic: input port 1 true 38
16 [Condition gutosar_bsw _monitorTogical Operator2 Logic: input port 1 false 38
17 (Condition autosar_bsw_monitor/’Logical Operator2 Logic: input port 2 true 38
18 Condition antosar_bsw_momtor/] .ogical Operator2 l.ogic: input port 2 false 3K
20 Condition autosar_bsw_maonitorT.ogical Operator| T.ogic: inpur port | true 38
2 Condition auwlosar_bsw_monilor/Logical Operator] Logic: inpul porl | [alse 38
22 Condition autosar bsw monitorTogical Operator] Logic: input port 2 truc 38
23 [Condition gutosar_bsw_monitorTogical Operator] Logic: input port 2 false 38
25 Decision autosar_bsw_monitor/Bool ToLiventStatus?/Switch logical trigger input talse (output is from 3rd input port) |3
26 ecision antosar_bsw_momtor/3ool TaliventStatus2/Switch logical trigaer input true (output is from 1st input port) 38
27 Decision autosar_bsw_manitor/Swirch | logical trigger inpur false (output is from 3rd input port) |38
28 Dccision aulosar_bsw [Ilunil-orf'SwiL@ logical ripger inpul true (vulput is [rom 1st input port) |38
30 Diccision autosar bsw_monitorSwitch logical trigger input false (output is from 3rd input port) |38
31 Decision autosar_bsw_monitorSwitch logical trigger input true (output is from Lst input port) |38

The analysis report also captures information about the analysis harness for analyzing the model in
the Analysis Harness Information section. The Stubbed Simulink Functions for Analysis
section in the Analysis Harness Information section lists the stubbed Simulink functions.

Function Prototype

[EventFailed. ERR] = TPS2Stuckl ow_GetEventFailed()
|[EventFailed. ERR]| = TPS2StuckHigh GetEventFailed()
[EventFailed.ERR] = TPS1Stuckl ow_GetEventFailed()
|[EventFailed. ERR]| = TPS1StuckHigh GetEventFailed()
ERR = TPS SetEventStatus(EventStatus)

Note that Simulink Design Verifier assumes that the output of stubbed Simulink Functions is held
when the functions are invoked multiple times in a single step.

Related Links
* “Analyze AUTOSAR Component Models” on page 2-33

2-50

Checking Compatibility with the
Simulink Design Verifier Software

* “Check Model Compatibility” on page 3-2

* “Supported and Unsupported Simulink Blocks in Simulink Design Verifier” on page 3-7

» “Support Limitations for Simulink Software Features” on page 3-16

* “Support Limitations for Model Blocks” on page 3-19

* “Support Limitations for Stateflow Software Features” on page 3-21

* “Support Limitations for MATLAB for Code Generation” on page 3-25

* “Support Limitations and Considerations for S-Functions and C/C++ Code” on page 3-28

3 Checking Compatibility with the Simulink Design Verifier Software

Check Model Compatibility

3-2

In this section...

“Run Compatibility Check” on page 3-2

“Compatibility Check Results” on page 3-3

With Simulink Design Verifier, you can analyze Simulink models to:

* Detect design errors that can occur at a run time.
* Generate test cases that achieve model coverage.
* Prove properties and identify property violations.

Before Simulink Design Verifier analyzes a model, the software checks whether the model is
compatible for analysis. The model is compatible for analysis when:

* The model is compiled into an executable form.

* The model is compatible with code generation.

* The model performs zero-second simulation with no errors, that is the simulation start and stop
time is 0.

The software supports a broad range of Simulink and Stateflow software capabilities in your models.
However, there are capabilities that the product does not support, described in “Support Limitations
for Simulink Software Features” on page 3-16 and “Support Limitations for Stateflow Software
Features” on page 3-21.

For more information on supported Simulink blocks, see “Supported and Unsupported Simulink
Blocks in Simulink Design Verifier” on page 3-7.

Run Compatibility Check

Before the software begins an analysis, it checks the compatibility of your model, and then creates a
model representation. The model representation includes the model artifacts that are used during
analysis. For more information, see “Model Representation for Analysis” on page 2-28.

Before you start an analysis, you can run a compatibility check on your model by using one of these
methods. When you use any of these methods, the model representation is always rebuilt.

* On the Design Verifier tab, in the Analyze section, click Check Compatibility.

* In the Model Advisor, select either By Product > Simulink Design Verifier > Check
compatibility with Simulink Design Verifier or By Task > Simulink Design Verifier
Compatibility Check > Check compatibility with Simulink Design Verifier. Click Run This
Check.

For more information, see “Simulink Design Verifier Checks”.

* To run the compatibility check programmatically at the command line or in a MATLAB program,
use the sldvcompat function . For more information, see sldvcompat.

» To check compatibility of a Subsystem, right-click the Subsystem and select Design Verifier >
Check Subsystem Compatibility.

Check Model Compatibility

Compatibility Check Results

When you run a compatibility check on a model, the Results Summary window displays one of these
results:

* “Model Is Compatible” on page 3-3
* “Model Is Incompatible” on page 3-3
* “Model Is Partially Compatible” on page 3-5

Model Is Compatible

If your model is compatible, you can continue with the analysis in the Results Summary window. For
example, to continue the test generation analysis, click Generate Tests.

Simulink Design Verifier Results Summany: sldvdemo_cruise_control >

21-MNov-2018 15:20:42

Checking compatibility for test generation: model 'sldvdemo_cruise_control'
Compiling model...done

Building model representation...done

21-Nov-2018 15:21:06
'sldvdemo_cruise_control' is compatible for test generation with Simulink Design Verifier.

Save Log Generate Tests Close

Note After you have completed the compatibility check, if you change the model, you cannot
continue the analysis in the Results Summary window. If you change your model, rerun the
compatibility check for analysis.

Model Is Incompatible
If the model is incompatible with Simulink Design Verifier, you can identify and fix the

incompatibilities through the Diagnostic Viewer messages. For more information, see “View
Diagnostics”.

3-3

3 Checking Compatibility with the Simulink Design Verifier Software

Simulink Design Verifier Results Summary: sldemo_fuelsys >

21-Nov-2018 17:05:52
Checking compatibility for test generation: model 'sldemo_fuelsys'

21-Nov-2018 17:05:54
'sldemo_fuelsys' is incompatible for test generation with Simulink Design Verifier.

Save Log Generate Tests Close

» If your model uses a variable-step solver, configure the solver Type to Fixed-step.

sldemo_fuelsys

+ Simulink Design Verifier Compatibility Analysis & 2

03:49 PM Elapsed: 16 sec
Simulink Design Werifier cannot be used with & variable-step solver. You must configure the solver
options for a fixed-step solver.
See documentation.

Component: simulink | Category: Design Verifier compatibility error

Simulink Design Verifier failed to initialize: 'sldemo fuelsys' is incompatible for test generation
with Simulink Design Verifier.

Component, simulink | Category: Design Verifier compatibility error

» If your model has nonfinite data, change the value of the data or configure the model so that the
data is treated as a variable during Simulink Design Verifier analysis. For more information, see
“Nonfinite Data” on page 2-19.

3-4

Check Model Compatibility

e

Diagnustic‘l."iewer EI@
vv%vﬁv|‘ﬁ?v|q T @v@

ex_mManinf

* Simulink Design Verifier Compatibility Analysis & 3 il
19:48 AM Elapsed: 2 se

Simulink Design Verifier failed to initialize: 'ex mNanInf' is incompatible with
Simulink Design Verifier
Component:simulink | Category: Design Verifier compatibilityenror
The parameter '"G' used by 'ex mNanInf/Constant' has non-finite walue (NaM or Inf or -
Inf}). Simulink Design WVerifier does not support parameters with this configuraticon. L
Please consider changing the walue of this parameter or configure S5imulink Design T
Verifier so that it is treated as wariable during analysis.
Component:sldv | Category:Design Verifier compatibilityerror
The parameter "K' used by ‘'ex mNanInf/Constantl' has non-finite wvalue (MaM or Inf or -
Inf}). Simulink Design WVerifier does not support parameters with this configuraticn.
Please consider changing the walue of this parameter or configure S5imulink Design
Verifier so that it is treated as wvariable during analysis. i
Component:sldv | Cateaorv:Desian Verfier comoatibilitverror i

If your model is large and contains many subsystems, you can use the Test Generation Advisor to
determine whether certain subsystems cause the incompatibility. For more information, see “Use Test
Generation Advisor to Identify Analyzable Components” on page 7-24.

Model Is Partially Compatible

A model is partially compatible if at least one model object in the model is incompatible. Simulink
Design Verifier continues the analysis for partially compatible model by stubbing out the unsupported
elements. By default, the “Automatic stubbing of unsupported blocks and functions” on page 15-13

option is set to On. For more information, see “Handle Incompatibilities with Automatic Stubbing” on
page 2-7.

3-5

3 Checking Compatibility with the Simulink Design Verifier Software

Simulink Design Verifier Results Summary: sldvdemo_sqrt_blockrep >

11-Jul-2019 15:51:14

Checking compatibility for test generation: model 'sldvdemo_sqrt_blockrep’
Compiling model...done

Building model representation...done

11-Jul-2019 15:51:21
'sldwdemo_sqrt_blockrep' is for test generation with Simulink

Design Verifier.

The model can be analyzed by Simulink Design Verifier.

It contains unsupported elements that will be stubbed out during analysis. The results
of the analysis might be incomplete.

See documentation.

Save Log Generate Tests Close

See Also
“Overview of the Simulink Design Verifier Workflow” on page 1-19 | “Block Replacements for
Unsupported Blocks” on page 4-7 | “Model Representation for Analysis” on page 2-28

3-6

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Supported and Unsupported Simulink Blocks in Simulink
Design Verifier

Simulink Design Verifier provides various levels of support for the Simulink blocks:

* Supported
* Partially supported
* Not supported

If your model contains partially supported blocks, you can enable automatic stubbing. In order to
improve the scalability of the analysis, automatic stubbing conservatively abstracts the block
behavior. As a result, the analysis may not successfully analyze all the objectives. For more details
about automatic stubbing, see “Handle Incompatibilities with Automatic Stubbing” on page 2-7.

To achieve 100% coverage, avoid using partially supported blocks in models that you analyze.

The following tables summarize Simulink Design Verifier analysis support for Simulink blocks. Each
table lists the blocks in a Simulink library and also describes support information for that particular
block.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries. Those blocks are listed under
their respective libraries.

Continuous Library

Block Support Notes
Derivative Not supported
Integrator Not supported

Integrator Limited

Not supported

PID Controller

Not supported

PID Controller (2DOF)

Not supported

Second-Order Integrator

Not supported

Second-Order Integrator Limited

Not supported

State-Space Not supported
Transfer Fcn Not supported
Transport Delay Not supported
Variable Time Delay Not supported
Variable Transport Delay Not supported
Zero-Pole Not supported

3 Checking Compatibility with the Simulink Design Verifier Software

Discontinuities Library

The software supports all blocks in the Discontinuities library.

Discrete Library

Block Support Notes
Delay Supported
Difference Supported
Discrete Derivative Supported
Discrete Filter Supported
Discrete FIR Filter Supported
Discrete PID Controller Supported
Discrete PID Controller (2DOF) Supported
Discrete State-Space Not supported
Discrete Transfer Fcn Supported
Discrete Zero-Pole Not supported
Discrete-Time Integrator Supported
Memory Supported
Tapped Delay Supported
Transfer Fcn First Order Supported
Transfer Fcn Lead or Lag Supported
Transfer Fcn Real Zero Supported
Unit Delay Supported
Zero-Order Hold Supported

Logic and Bit Operations Library

The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block Support Notes
Cosine Supported
Direct Lookup Table (n-D) Supported

Interpolation Using Prelookup

Partially supported when:

* The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than 4.

or

* The Interpolation method parameter is Linear and the
Number of sub-table selection dimensions parameter is not
0.

3-8

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block

Support Notes

1-D Lookup Table

Partially supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

2-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Akima Spline.

n-D Lookup Table

Partially supported when:

* The Interpolation method or the Extrapolation method
parameter is Cubic Spline.

or

* The Interpolation method parameter is Linear and the

Number of table dimensions parameter is greater than 5.

Not supported when the Interpolation method or the
Extrapolation method parameter is Akima Spline.

Lookup Table Dynamic Supported
Prelookup Supported
Sine Supported

Math Operations Library

Block Support Notes
Abs Supported
Add Supported
Algebraic Constraint Supported
Assignment Supported
Bias Supported
Complex to Magnitude-Angle Supported
Complex to Real-Imag Supported
Divide Supported
Dot Product Supported
Find Nonzero Elements Not supported
Gain Supported
Magnitude-Angle to Complex Supported

Math Function

Supported. Support for pow function is limited to integer
exponents only.

Matrix Concatenate Supported
MinMax Supported
MinMax Running Resettable Supported
Permute Dimensions Supported
Polynomial Supported

3-9

3 Checking Compatibility with the Simulink Design Verifier Software

Block Support Notes
Product Supported

Product of Elements Supported
Real-Imag to Complex Supported
Reciprocal Sqrt Partially supported
Reshape Supported
Rounding Function Supported

Sign Supported

Signed Sqrt Partially supported
Sine Wave Function Partially supported
Slider Gain Supported

Sqrt Partially supported
Squeeze Supported
Subtract Supported

Sum Supported

Sum of Elements Supported

Trigonometric Function

Supported if Function is sin, cos, or sincos, and
Approximation method is CORDIC. Partially supported

otherwise.
Unary Minus Supported
Vector Concatenate Supported
Weighted Sample Time Math Supported

Model Verification Library

The software supports all blocks in the Model Verification library.

Model-Wide Utilities Library

Block Support Notes
Block Support Table Supported
DocBlock Supported
Model Info Supported
Timed-Based Linearization Not supported
Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes
Atomic Subsystem Supported
Code Reuse Subsystem Supported

3-10

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes
Configurable Subsystem Supported
Enable Supported

Enabled Subsystem

Design range checks do not consider specified minimum and
maximum values for blocks connected to the output port of the
subsystem. For more information on design range checks, see
“Check for Specified Minimum and Maximum Value Violations”
on page 6-23.

Simulink Design Verifier treats Enabled Subsystems as short-
circuited during test generation.

Enabled and Triggered Subsystem

Not supported when the trigger control signal specifies a fixed-
point data type.

Design range checks do not consider specified minimum and
maximum values for blocks connected to the output port of the
subsystem. For more information on design range checks, see
“Check for Specified Minimum and Maximum Value Violations”
on page 6-23.

Simulink Design Verifier treats Enabled and Triggered
Subsystems as short-circuited during test generation.

For Each

Supported with the following limitations:

When For Each Subsystem contains one or more Simulink
Design Verifier Test Condition, Test Objective, Proof
Assumption, or Proof Objective blocks, not supported.

When the mask parameters of the For Each Subsystem are
partitioned, not supported.

For Each Subsystem

Supported with the following limitations:

When For Each Subsystem contains one or more Simulink
Design Verifier Test Condition, Test Objective, Proof
Assumption, or Proof Objective blocks, not supported.

When the mask parameters of the For Each Subsystem are
partitioned, not supported.

For Iterator Subsystem Supported
Function-Call Feedback Latch Supported
Function-Call Generator Supported
Function-Call Split Supported

Function-Call Subsystem

Design range checks do not consider specified minimum and
maximum values for blocks connected to the output port of the
subsystem. For more information on design range checks, see
“Check for Specified Minimum and Maximum Value Violations”
on page 6-23.

If

Parameter configurations are not supported. The analysis
ignores parameter configurations that you specify for an If block.

3-11

3 Checking Compatibility with the Simulink Design Verifier Software

Block Support Notes

If Action Subsystem Supported

In Bus Element Supported

Inport Supported

Model Supported except for the limitations described in “Support

Limitations for Model Blocks” on page 3-19.

Out Bus Element Supported
Outport Supported
Resettable Subsystem Supported
Subsystem Supported
Variant Transitions in Stateflow Supported.

Only the active variant is analyzed.

Switch Case Supported
Switch Case Action Subsystem Supported
Trigger Supported

Triggered Subsystem

Not supported when the trigger control signal specifies a fixed-
point data type.

Design range checks do not consider specified minimum and
maximum values for blocks connected to the output port of the
subsystem. For more information on design range checks, see
“Check for Specified Minimum and Maximum Value Violations”
on page 6-23.

Simulink Design Verifier treats Enabled Subsystems as short-
circuited during test generation.

Variant Subsystem

Not supported when the Generate preprocessor conditionals
parameter is enabled.

Only the active variant is analyzed.

While Iterator Subsystem

Supported

Signal Attributes Library

The software supports all blocks in the Signal Attributes library.

Signal Routing Library

Block

Support Notes

Bus Assignment Supported
Bus Creator Supported
Bus Selector Supported
Data Store Memory Supported
Data Store Read Supported

3-12

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block Support Notes
Data Store Write Supported
Demux Supported
Environment Controller Supported
From Supported
Goto Supported
Goto Tag Visibility Supported
Index Vector Supported

Manual Switch

The Manual Switch block is compatible with the software, but
the analysis ignores this block in a model. The analysis does not
flag the coverage objectives for this block as satisfiable or
unsatisfiable.

Model coverage data is collected for the Manual Switch block.

Merge Supported
Multiport Switch Supported
Mux Supported
Selector Supported
Switch Supported
Vector Concatenate Supported
Sinks Library

Block Support Notes
Display Supported
Floating Scope Supported
Outport (Outl) Supported
Out Bus Element Supported
Scope Supported
Stop Simulation Not supported
Terminator Supported

To File Supported

To Workspace Supported

Sources Library

Block Support Notes
Band-Limited White Noise Not supported
Chirp Signal Partially supported
Clock Supported

3-13

3 Checking Compatibility with the Simulink Design Verifier Software

Block Support Notes

Constant Supported unless Constant value is inf or nan (in which case,
it is not supported).

Counter Free-Running Supported

Counter Limited Supported

Digital Clock Supported

Enumerated Constant Supported

From File Partially supported. When MAT-file data is stored in MATLAB
timeseries format, not supported.

From Workspace Partially supported

Ground Supported

Inport (In1) Supported

In Bus Element

Supported if Simulink.Bus type is defined for the In Bus
Element.

Pulse Generator Supported

Ramp Supported
Random Number Not supported
Repeating Sequence Partially supported
Repeating Sequence Interpolated Partially supported
Repeating Sequence Stair Supported

Signal Editor Not supported

Signal Generator

Partially supported if wave form is sine. Supported if wave form
is square. Not supported if wave form is random.

Sine Wave Partially supported
Step Supported
Uniform Random Number Not supported

User-Defined Functions Library

Block Support Notes

C Function Partially supported. The C Function block is stubbed out during
the Simulink Design Verifier analysis.

C Caller Supported.

Initialize Function

* Not Supported for Initialize function containing Parameter
Writer blocks.

* Not supported as a target for subsystem analysis.

Interpreted MATLAB Function

Partially supported

Level-2 MATLAB S-Function

For limitations, see “Support Limitations and Considerations for
S-Functions and C/C++ Code” on page 3-28.

MATLAB Function

For limitations, see “Support Limitations for MATLAB for Code
Generation” on page 3-25.

3-14

Supported and Unsupported Simulink Blocks in Simulink Design Verifier

Block

Support Notes

MATLAB System

* Decision, Condition and MCDC Coverage objectives are
supported in Test Generation. Enhanced MCDC, Relational
Boundary and Custom Test objectives are not supported.

* Custom Proof objectives are not supported in Property
Proving.

» For further limitations, see “Support Limitations for MATLAB
for Code Generation” on page 3-25.

Logical expressions within assignment statements are not
analyzed for coverage objectives.

Reset Function

Not supported

S-Function Builder

For limitations, see “Support Limitations and Considerations for
S-Functions and C/C++ Code” on page 3-28.

Simulink Function

* For export-function models, see “Analyze Export-Function
Models” on page 2-12.

e Global Simulink functions within a non export-function model
reference are not supported.

Terminate Function

Partially supported.

* The behaviour of Terminate function is ignored and is
replaced by an empty function during the analysis.

* Not supported as a target for subsystem analysis.

Observer Reference

Supported with limitations. See “Isolate Verification Logic with
Observers” on page 12-29.

Simscape Library

Not supported

3-15

3 Checking Compatibility with the Simulink Design Verifier Software

Support Limitations for Simulink Software Features

Simulink Design Verifier does not support the following Simulink software features. Avoid using these
unsupported features.

Not Supported Description

Variable-step solvers The software supports only fixed-step solvers.

For more information, see “Fixed Step Solvers in Simulink”.

Callback functions The software does not execute model callback functions during the
analysis. The results that the analysis generates, such as the harness
model, may behave inconsistently with the expected behavior.

* If a model or any referenced model calls a callback function that
changes any block parameters, model parameters, or workspace
variables, the analysis does not reflect those changes.

* Changing the storage class of base workspace variables on model
callback functions or mask initializations is not supported.

* Callback functions called prior to analysis, such as the
PreLoadFcn or PostLoadFcn model callbacks, are fully
supported.

Model callback functions The software supports model callback functions only if the InitFcn
callback of the model is empty.

Algebraic loops The software does not support models that contain algebraic loops.

For more information, see “Algebraic Loop Concepts”.

Masked subsystem The software does not support models whose masked subsystem
initialization functions initialization:

* Modifies any attribute of any workspace parameter.

* Deletes or creates blocks.

3-16

Support Limitations for Simulink Software Features

Not Supported

Description

Variable-size signals

The software supports test generation for models with bounded
variable-size signals. For more information on how to generate test
cases when input signals are of variable-size, see “Achieve Coverage
in Models with Variable-Size Inputs” on page 9-24.

In addition, the following are the limitations for analysis:

1 Relational boundary coverage objectives

2 Enhanced MCDC coverage objectives

3 Models with variable-size signals at root level input port
4 Models with variable-size signals with maximum size 1

Note
* Coverage objectives of single port logical and min-max blocks with
variable size signals are not considered.

* The analysis is performed under the assumptions that at any step,
all the variable-size inputs of a block will have same size.

Multiword fixed-point data
types

The software does not support multiword fixed-point data types larger
than 128 bits.

Nonzero start times

Although Simulink allows you to specify a nonzero simulation start
time, the analysis generates signal data that begins only at zero. If
your model specifies a nonzero start time:

* Ifyou do not select the Reference input model in generated
harness parameter (the default), the harness model is a
subsystem. The analysis sets the start time of the harness model to
1 and continues the analysis.

+ Ifyou select the Reference input model in generated harness
parameter, a Model block references the harness model. The
software cannot change the start time of the harness model, so the
analysis stops and you see a recommendation to set the Start
time parameter to 0.

* Simulink Design Verifier assumes zero start time for analysis and
generates signal data that begins at zero. Zero start time might
impact the reporting of the objective status. For example, in the
test generation analysis, the software might report some
objectives as Undecided with Testcases. For more
information, see “Simulation Basics”.

3-17

3 Checking Compatibility with the Simulink Design Verifier Software

Not Supported

Description

Nonfinite data

The software does not support nonfinite data (for example, NaN and
Inf) and related operations.

In the Relational Operator block, the software assigns the output as
follows:

* If the Relational operator parameter is isFinite, the output is
always 1.

+ If the Relational operator parameter is isNan or isInf, the
output is always 0.

In the MATLAB Function block, the software assigns the return value
as follows:

* For the isFinite function, the output is always 1.
* For the isNan and isInf functions, the output is always 0.

Concurrent execution

The software does not support models that are configured for
concurrent execution.

Signals with nonzero sample
time offset

The software does not support models with signals that have nonzero
sample time offsets.

Models with no output ports

The software only supports models that have one or more output
ports. If a model contains test condition or test objective blocks and
no output ports are present in the model, then nominal test cases will
be generated.

Large floating-point
constants outside the range
[-realmax/2,
realmax/2]

The use of large floating-point constants can cause out of memory
errors or substantial loss of precision. Avoid using such constants if
possible.

Symbolic Dimensions

The software does not support symbolic dimensions for test
generation, property proving, or design error detection.

Simulink Strings

Models that contain blocks with string data types as block parameters
are not supported. For more information, see “Simulink Strings”.

Parameter Tuning

The software does not support parameter tuning for the parameters
that are defined in the Model Workspace.

Row-major Algorithms

The software does not support models that contain MATLAB System
blocks that use coder. rowMajor directive. For more information
see, “Use algorithms optimized for row-major array layout”.

3-18

Support Limitations for Model Blocks

Support Limitations for Model Blocks

Simulink Design Verifier supports the Model block with the following limitations. The software cannot
analyze a model containing one or more Model blocks if:

The referenced model is protected. Protected referenced models are encoded to obscure their
contents. This allows third parties to use the referenced model without being able to view the
intellectual property that makes up the model.

For more information, see “Reference Protected Models from Third Parties”.

The parent model or any of the referenced models returns an error when you set the
Configuration Parameters > Diagnostics > Connectivity > Element name mismatch
parameter to error.

You can use the Element name mismatch diagnostic along with bus objects so that your model
meets the bus element naming requirements imposed by some blocks.

The Model block uses asynchronous function-call inputs.

Any of the Model blocks in the model reference hierarchy creates an artificial algebraic loop. If

this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box, set the Minimize
algebraic loop parameter to error so that Simulink reports an algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters dialog box, select the
Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.
3 Simulate the model.

Simulink will remove the algebraic loop if possible. If Simulink cannot eliminate the artificial
algebraic loop, highlight the location of the algebraic loop by opening the Modeling tab and,
in the Compile section, clicking Update Model.

5 FEliminate the artificial algebraic loop so that the software can analyze the model. Break the
loop with Unit Delay blocks so that the execution order is predictable.

Note For more information, see “Algebraic Loop Concepts”.

The parent model and the referenced model have mismatched data type override settings. The
data type override setting of the parent model and its referenced models must be the same, unless
the data type override setting of the parent model is Use local settings. You can configure
data type override settings to simulate a model that specifies fixed-point data types. Using this
setting, the software temporarily overrides data types with floating-point data types during
simulation.

set _param('MyModel"', 'DataTypeOverride', 'Double')
For more information, see set param.

To observe the true behavior of your model, set the data type override parameter to
UseLocalSettings or Off.

set param('MyModel', 'DataTypeOverride','0ff")

The referenced model is a Model block with virtual buses at input ports, and the signals in the bus
do not all have the same sample time at compilation. To make the model compatible with Simulink

3-19

3 Checking Compatibility with the Simulink Design Verifier Software

Design Verifier analysis, convert the virtual bus to a nonvirtual bus, or specify an explicit sample
time for the port.

* When you run the analysis on Model block, then the code generated as a top model is not
supported.

3-20

Support Limitations for Stateflow Software Features

Support Limitations for Stateflow Software Features

Simulink Design Verifier does not support the following Stateflow software features. Avoid using
these unsupported features in models that you analyze.

In this section...

“ml Namespace Operator, ml Function, ml Expressions” on page 3-21

“C or C++ Operators” on page 3-21

“C Math Functions” on page 3-21

“Atomic Subcharts That Call Exported Graphical Functions Outside a Subchart” on page 3-22
“Atomic Subchart Input and Output Mapping” on page 3-22

“Recursion and Cyclic Behavior” on page 3-22

“Custom C/C++ Code” on page 3-23

“Textual Functions with Literal String Arguments” on page 3-24

ml Namespace Operator, ml Function, ml Expressions

The software does not support calls to MATLAB functions or access to MATLAB workspace variables,
which the Stateflow software allows. See “Access MATLAB Functions and Workspace Data in C
Charts” (Stateflow).

C or C++ Operators

The software does not support the sizeof operator, which the Stateflow software allows.

C Math Functions

The software supports calls to the following C math functions:

* abs

¢ ceil
+ fabs
« floor
 fmod
+ labs
* ldexp

* pow (only for integer exponents)

The software does not support calls to other C math functions, which the Stateflow software allows. If
automatic stubbing is enabled, which it is by default, the software eliminates these unsupported
functions during the analysis.

For information about C math functions in Stateflow, see “Call C Library Functions in C Charts”
(Stateflow).

3-21

3 Checking Compatibility with the Simulink Design Verifier Software

3-22

Note For details about automatic stubbing, see “Handle Incompatibilities with Automatic Stubbing”
on page 2-7.

Atomic Subcharts That Call Exported Graphical Functions Outside a
Subchart

The software does not support atomic subcharts that call exported graphical functions, which the
Stateflow software allows.

Note For information about exported functions, see “Export Stateflow Functions for Reuse”
(Stateflow).

Atomic Subchart Input and Output Mapping

If an input or output in an atomic subchart maps to chart-level data of a different scope, the software
does not support the chart that contains that atomic subchart.

For an atomic subchart input, this incompatibility applies when the input maps to chart-level data of
output, local, or parameter scope. For an atomic subchart output, this incompatibility applies when
the output maps to chart-level data of local scope.

Recursion and Cyclic Behavior

The software does not support recursive functions, which occur when a function calls itself directly or
indirectly through another function call. Stateflow software allows you to implement recursion using
graphical functions.

In addition, the software does not support recursion that the Stateflow software allows you to
implement using a combination of event broadcasts and function calls.

Note For information about avoiding recursion in Stateflow charts, see “Avoid Unwanted Recursion
in a Chart” (Stateflow).

Stateflow software also allows you to create cyclic behavior, where a sequence of steps is repeated
indefinitely. If your model has a chart with cyclic behavior, the software cannot analyze it.

Note For information about cyclic behavior in Stateflow charts, see “Detect Cyclic Behavior”
(Stateflow).

However, you can modify a chart with cyclic behavior so that it is compatible, as in the following
example.

The following chart creates cyclic behavior. State A calls state Al, which broadcasts a Clear event to
state B, which calls state B2, which broadcasts a Set event back to state A, causing the cyclic
behavior.

Support Limitations for Stateflow Software Features

A

=ra
]
—

i

cona) rlear
Clear E I
: B2
= E [sen diSetA);]
| It)

. 4

If you change the send function calls to use directed event broadcasts so that the Set and Clear
events are broadcast directly to the states B1 and Al, respectively, the cyclic behavior disappears and
the software can analyze the model.

A l y /B £ ‘
| A1 i B1

5 send(Clear, B.BA1); i

i Icnndj flear

! e} :

' Clear pet E

: : B2

: q ! send(Set A AT),

5 A2 :

5 !

Note For information about the benefits of directed event broadcasts, see “Broadcast Local Events to
Synchronize Parallel States” (Stateflow).

Custom C/C++ Code

If your model consists of custom C/C++ code, Simulink Design Verifier supports analysis based on
these settings:

» Ifyou enable import custom code and custom code analysis options, the software supports custom
C/C++ code for analysis. For more information, see “Import custom code” and “Enable custom
code analysis”.

» Ifyou enable import custom code option and the custom code analysis option is set to Off, the
model is compatible for analysis, but calls to the custom code are stubbed during analysis.

» If the import custom code option is set to Off, the custom code is not supported and the model is
incompatible for analysis.

3-23

3 Checking Compatibility with the Simulink Design Verifier Software

Textual Functions with Literal String Arguments

The software does not support literal string arguments to textual functions in a Stateflow chart.

3-24

Support Limitations for MATLAB for Code Generation

Support Limitations for MATLAB for Code Generation

In this section...
“Unsupported MATLAB for Code Generation Features” on page 3-25
“Support Limitations for MATLAB for Code Generation Library Functions” on page 3-25

Unsupported MATLAB for Code Generation Features

Simulink Design Verifier does not support the following features of the MATLAB Function block in the
Simulink software and MATLAB functions in the Stateflow software. Avoid using these unsupported
features in models that you analyze with Simulink Design Verifier.

Not Supported Description

Characters The software does not support characters, which MATLAB for
code generation allows.

C functions The software does not support calls to external C functions,
which MATLAB for code generation allows.

Extrinsic functions The software supports extrinsic functions only when they do not
affect the output of a MATLAB function.

Support Limitations for MATLAB for Code Generation Library Functions

Simulink Design Verifier provides various levels of support for MATLAB for code generation library
functions. The software either fully or partially supports particular functions. It does not support
other functions.

If your model contains unsupported functions, you can turn on automatic stubbing, which considers
the interface of the unsupported functions, but not their behavior. However, if any of the unsupported
functions affect the simulation outcome, the analysis might achieve only partial results. For details
about automatic stubbing, see “Handle Incompatibilities with Automatic Stubbing” on page 2-7.

To achieve 100% coverage, avoid using unsupported MATLAB library functions in models that you
analyze.

The following table lists Simulink Design Verifier support for categories of library functions in code
generation from MATLAB:

» Software supports functions in that category, indicated by a dash (—).
* Software does not support functions in that category.
» Software supports the function in that category with limitations as specified.

For the complete listing of available functions, see “Functions and Objects Supported for C/C++ Code

Generation”.
Function Category Support Notes
Aerospace Toolbox functions Not supported.

3-25

3 Checking Compatibility with the Simulink Design Verifier Software

Function Category

Support Notes

Arithmetic operator functions Supported with the following limitations:
mldivide (\) |Supported.
mpower (™) Supports only integer exponents.

Otherwise partially supported.

mrdivide (/)

Supported.

power (.7) Supports integer exponents. Float
exponents partially supported.
Bit-wise operation functions -
Casting functions Supported with the following limitations:
char Not supported.
typecast Not supported.
Communications Toolbox™ functions Not supported.
Complex number functions Partially supported.
Computer Vision Toolbox™ functions Not supported.
Data type functions -
Derivative and Integral functions Not supported.
Discrete math functions —
Error handling functions Supported with the following limitations:
assert Supported, but does not behave like
a Proof Objective block.
Exponential functions Supported.
Filtering and convolution functions Supported with the following limitations:
detrend Supported if argument is a scalar.
Otherwise, partially supported.
Fixed-Point Designer functions Supported.
Histogram functions Not supported.
Image Processing Toolbox™ functions Not supported.
Input and output functions —
Interpolation and computation geometry Supported with the following limitations:
cart2pol Partially supported.
cart2sph Partially supported.
pol2cart Partially supported.
sph2cart Partially supported.
Linear algebra Not supported.
Logical operator functions —
MATLAB Compiler™ functions Not supported.

Matrix and array functions

Supported with the following limitations:

angle

Partially supported.

3-26

Support Limitations for MATLAB for Code Generation

Function Category

Support Notes

cond Partially supported.
det Supported.
eig Partially supported.
inv Supported.
invhilb Not supported.
logspace Partially supported.
lu Supported.
norm Supported when invoked using the
syntax norm (A, p) where p is either
1 or inf. Otherwise partially
supported.
normest Partially supported.
pinv Partially supported.
planerot Partially supported.
qr Partially supported.
rank Partially supported.
rcond Supported.
subspace Partially supported.
Nested functions Supported.
Nonlinear numerical methods Not supported.
Polynomial functions Not supported.
Relational operations functions —
Rounding and remainder functions -
Set functions —
Signal Processing functions in MATLAB Not supported.
Signal Processing Toolbox™ functions Not supported.

Special values

Supported with the following limitations:

rand Partially supported.
randn Partially supported.
Specialized math Not supported.

Statistical functions

String functions

Supported with the following limitations:

char Not supported.
ischar Not supported.
Trigonometric functions Not supported.

3-27

3 Checking Compatibility with the Simulink Design Verifier Software

Support Limitations and Considerations for S-Functions and
C/C++ Code

3-28

In this section...

“Enabling S-Functions in Simulink Design Verifier” on page 3-28
“Support Limitations for S-Functions and C/C++ Code” on page 3-28
“Handle Volatile Variables as Normal Variables” on page 3-29

“Considerations for Enabling S-Functions and C/C++ Code in Simulink Design Verifier” on page 3-
29

“Source Code Protection” on page 3-29

Enabling S-Functions in Simulink Design Verifier

Simulink Design Verifier supports test case generation for code generated with Embedded Coder®.
Simulink Design Verifier also supports error detection, test case generation, and property proving for
S-Functions that:

* The Legacy Code Tool generates, with def.Options.supportCoverageAndDesignVerifier
set to true.

* The S-Function Builder generates, with Enable support for Design Verifier selected on the
Build Info tab of the S-Function Builder dialog box.

* The function slcovmex compiles, with the option - sldv passed to the function when compiling
the S-function.

For more information on the three approaches, see “About C MEX S-Functions”.

Support Limitations for S-Functions and C/C++ Code
* Simulink Design Verifier does not support S-Functions or C/C++ code containing:

* Continuous states. Simulink Design Verifier does not analyze such code.
* Zero-crossing functions. Simulink Design Verifier ignores such code during analysis.

* Constants that describe INF or NaN objects. Simulink Design Verifier considers such code as
containing floating-point overflow errors. Although Simulink Design Verifier analysis cannot
determine the type of overflow error for such cases, the analysis can determine which lines of
code introduce the incompatibility. Polyspace® can provide more information on why your code
contains floating-point overflow errors.

* You must specify that the signal elements entering the ports of S-Functions compiled with
slcovmex are contiguous. Use the SimStruct function ssSetInputPortRequiredContiguous.

Simulink Design Verifier supports the following design errors for S-Function and C/C++ code:

* Dead logic including active logic.
* Array out of bounds. This includes pointer out of bounds in case of C/C++.

* Division-by-Zero.

Support Limitations and Considerations for S-Functions and C/C++ Code

Handle Volatile Variables as Normal Variables

Simulink Design Verifier allows the option for volatile variables to be stubbed or handled as normal
variables. When you select the Ignore the volatile qualifier parameter, volatile elements will be
treated in the same as the non-volatile elements. Deselecting the Ignore the volatile qualifier will
revert to the previous behavior of stubbing access to volatile elements.

Considerations for Enabling S-Functions and C/C++ Code in Simulink
Design Verifier

* When performing property proving or test generation analysis for models with enabled S-
Functions or C/C++ code generated with Embedded Coder, Simulink Design Verifier assumes that
the code contains no run-time errors. If the code contains run-time errors such as division by zero,
access to non-initialized variables or array out of bounds, the property proving or test generation
analysis can produce incorrect results. Code that has been checked by Polyspace and is free of
run-time errors provide correct results in Simulink Design Verifier analysis.

To avoid incorrect results that are produced due to run-time errors, perform design error
detection analysis first, and then perform property proving or test generation analysis.

« If Simulink Design Verifier cannot determine the size of arrays in your code (for instance for
arrays that are dynamically allocated with non-constant size), Simulink Design Verifier assumes an
upper bound for the array. Ensure that the given upper bound is appropriate.

» If you do not enable Simulink Design Verifier support for an S-function, Simulink Design Verifier
stubs the S-function. With S-function support enabled, Simulink Design Verifier analyzed the
content of the S-function to get more detailed information. Sometimes, Simulink Design Verifier
internally stubs the S-function. Internal stubs can be the result of different C/C++ constructs,
such as:

* Calls to library functions (the library function is replaced by a stub).

* Complex pointer operations.
* Casts to or from incompatible or unknown pointer types.

Models containing such constructs are labeled Partially compatible.

Source Code Protection

To analyze the contents of an S-function, information about the implementation of the S-function,
including information derived from the source code, are stored within the shared object. Although
this information is not directly accessible to users, consider disabling Simulink Design Verifier
support for S-Functions in models that are released externally if the S-Functions contain sensitive
source code.

See Also
“Configuring S-Function for Test Case Generation” on page 7-109 | “Generate Test Cases for
Embedded Coder Generated Code” on page 7-28

3-29

Working with Block Replacements

* “What Is Block Replacement?” on page 4-2

* “Built-In Block Replacements” on page 4-4

+ “Template for Block Replacement Rules” on page 4-6
“Block Replacements for Unsupported Blocks” on page 4-7

4 Working with Block Replacements

What Is Block Replacement?

4-2

Using Simulink Design Verifier, you can define rules to replace blocks automatically in your model.
For example, you can work around a block that is incompatible with the software by creating a rule
that replaces an unsupported Simulink block in your model with a supported block that is functionally
equivalent. Or, you can customize blocks for analysis by creating a rule that adds constraints or
objectives to particular blocks in your model.

When performing block replacements, the software makes a copy of your model and replaces blocks
in the copy, without altering your original model. This way, you can easily customize a model for
analysis.

The Simulink Design Verifier software replaces blocks automatically in a model using:

» Libraries of replacement blocks
* Rules that define which blocks to replace and under what conditions

You replace any block with any built-in block, library block, or subsystem.

Block replacements are extensible, allowing you to define your own libraries of replacement blocks
and custom block replacement rules. Using block replacements, you can

* Work around an incompatibility, such as the presence of unsupported blocks in your model.

* Customize a block for analysis, such as:

* Adding constraints to its input signals
* Adding objectives to its output signals
* Eliminating the contents of a subsystem or Model block to simplify your analysis

Note You can use automatic stubbing as an alternative to block replacements to resolve
incompatibilities. Automatic stubbing replaces unsupported blocks with elements that have the same
interface. For more information, see “Handle Incompatibilities with Automatic Stubbing” on page 2-7.

Block Replacement Effects on Test Generation

Replacing blocks can affect test case generation if the replaced blocks share functionality with other
parts of your model. Before you replace blocks, understand functional dependencies on those blocks
or on shared signals. See “Highlight Functional Dependencies”. Replacement blocks can also affect
other analysis workflows such as property proving.

For example, you can customize a block for analysis using a replacement block that adds objectives to
an input signal. If another subsystem depends on that signal, the replacement block effectively adds
an objective for the subsystem.

In this example, the breakpoint range of ul in the 2-D Lookup Table is 5—7. The switch threshold 8
falls outside the ul lookup table range.

What Is Block Replacement?

In1

2-D T{u)
|l
e 1]
L2} | L2 Ot
2D Lookup
Table
= : \
mA » Z
Out2
L4 3} | I,
Sw itch

Tests generated without replacing the 2D Lookup Table satisfy two objectives: that the trigger is not
greater than the Switch block threshold 8, and that the trigger is greater than the Switch block
threshold 8.

.. Amnalyvsis
Tvpe Model Item Description Time (sec) Test Case
Decision |Switch mggE:f = Fh:eshold false (output 1s 0 1
. from 3rd input port)

Objectives Satisfied

The blkrep rule lookup2D normal.m block replacement rule replaces the 2D Lookup Table with
a masked subsystem containing the 2D Lookup Table and a MATLAB Function block.

2-D T{u)
@ P L1
In »
D 2 Out1
In2
2D Lockup Table

o
\—> m O

erification Subsystemn

The MATLAB Function block constrains the analysis within the breakpoint bounds of the table.

4-3

4 Working with Block Replacements

Built-In Block Replacements

The Simulink Design Verifier software provides a set of block replacement rules and a corresponding
library of replacement blocks. Use these built-in block replacements when analyzing models. They
serve as examples that you can examine to learn how to create your own block replacements.

The following table lists the factory default block replacement rules, available in the matlabroot
\toolbox\sldv\sldv\private folder. There are two implementations of each factory-default block
replacement rule. Rules whose file names end with _normal.m replace blocks with Subsystem

blocks.

File Name

Description

blkrep rule lookup normal.m

A rule that replaces 1-D Lookup Table blocks with an
implementation that includes test objectives for each
breakpoint and interval specified by the Breakpoints
parameter.

blkrep rule lookup2D normal.m

A rule that adds Test Condition/Proof Assumption blocks
to the input ports of 2-D Lookup Table blocks. Each Test
Condition/Proof Assumption block constrains signal values
to the interval specified by the corresponding breakpoint
vector.

blkrep rule mpswitch2 normal.m

A rule that adds a Test Condition/Proof Assumption block
to the control input port of Multiport Switch blocks whose
Number of data ports parameter is 2. The Test
Condition/Proof Assumption block constrains signal values
to the interval [1, 2] (or [0, 1] if the block uses zero-based
indexing).

blkrep rule mpswitch3 normal.m

A rule that adds a Test Condition/Proof Assumption block
to the control input port of Multiport Switch blocks whose
Number of data ports parameter is 3. The Test
Condition/Proof Assumption block constrains signal values
to the interval [1, 3] (or [0, 2] if the block uses zero-based
indexing).

blkrep rule mpswitch4 normal.m

A rule that adds a Test Condition/Proof Assumption block
to the control input port of Multiport Switch blocks whose
Number of data ports parameter is 4. The Test
Condition/Proof Assumption block constrains signal values
to the interval [1, 4] (or [0, 3] if the block uses zero-based
indexing).

blkrep rule mpswitch5 normal.m

A rule that adds a Test Condition/Proof Assumption block
to the control input port of Multiport Switch blocks whose
Number of data ports parameter is 5. The Test
Condition/Proof Assumption block constrains signal values
to the interval [1, 5] (or [0, 4] if the block uses zero-based
indexing).

blkrep rule switch normal.m

A rule that replaces Switch blocks with an implementation
that includes test objectives, requiring that each switch
position be exercised when the values of the first and
third input ports are different.

4-4

Built-In Block Replacements

File Name

Description

blkrep rule switch nonvir normal.m

A rule that replaces Switch blocks having non-virtual bus
inputs with an implementation that converts non-virtual
bus inputs to virtual bus inputs. This implementation
includes test objectives and requires that each switch
position be exercised when the values of the first and
third input ports are different.

blkrep rule selector
IndexVecPort normal.m

A rule that adds a Test Condition/Proof Assumption block
to the index port of Selector blocks whose Index Option
parameter is Index vector (port). The Test
Condition/Proof Assumption block constrains signal values
to an interval whose endpoints are derived from the
values of the Selector block's Input port size and Index
mode parameters.

blkrep rule selector
StartingIdxPort normal.m

A rule that adds a Test Condition/Proof Assumption block
to the index port of Selector blocks whose Index Option
parameter is Starting index (port). The Test
Condition/Proof Assumption block constrains signal values
to an interval whose endpoints are derived from the
values of the Selector block's Input port size, Output
size, and Index mode parameters.

The library of replacement blocks that corresponds to the factory default rules is

matlabroot/toolbox/sldv/sldv/sldvblockreplacementlib

4 Working with Block Replacements

Template for Block Replacement Rules

4-6

To help you create block replacement rules, Simulink Design Verifier provides an annotated template
that contains a skeleton implementation of the requisite callbacks:

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

To create a block replacement rule, make a copy of the template and edit the copy to implement the
desired behavior for the rule you are creating. The comments in the template provide hints about how
to use each section.

Block replacement rules have the following restrictions:

» The function that represents a block replacement rule must include particular callbacks. Use the
block replacement rule template as a starting point for writing a custom rule. (See “Block
Replacements for Unsupported Blocks” on page 4-7.)

* The function that represents a block replacement rule must be on the MATLAB search path.

Block Replacements for Unsupported Blocks

Block Replacements for Unsupported Blocks

This example shows how to use Simulink® Design Verifier™ functions to replace unsupported blocks
and how to customize test vector generation for specific requirements.

Model with an Unsupported Block

The example model includes a Switch block whose output is controlled by a Sqrt block. For each
switch position, the output of the model is calculated by a 1-D Lookup Table block. For this model, the
example concentrates on generating test cases that satisfy the following:

1. Achieve 100% lookup table coverage.

2. Test vectors demonstrate each Switch block position when the values of its first and third input
ports differ.

open_system('sldvdemo sqrt blockrep');

7 I Simulink Design Verifier
Block Replacements for Unsupported Blocks

1-D T(u)

o

Y

@
h

Y

CGO—{ Vu

min

)
Yy
¥
L

Copyright 2006-2019 The MathWarks, Inc.

Checking Model Compatibility

Since the sqrt function is not supported, this model is partially compatible with Simulink Design
Verifier.

sldvcompat('sldvdemo sqrt blockrep');

04-Mar-2023 00:17:36

Checking compatibility for test generation: model 'sldvdemo sqrt blockrep'
Compiling model...done

Building model representation...done

4 Working with Block Replacements

04-Mar-2023 00:17:41
'sldvdemo _sqrt blockrep' is partially compatible for test generation with Simulink Design Verifi

The model can be analyzed by Simulink Design Verifier.
It contains unsupported elements that will be stubbed out during analysis. The results of the an:
See the Diagnostic Viewer for more details on the unsupported elements.

Creating a Custom Block Replacement Rule to Work Around the Incompatibility

This model can be analyzed for test generation by automatically stubbing the unsupported Sqrt block.
However, test cases cannot be generated for the Switch block positions because Simulink Design
Verifier does not understand the Sqrt block and the output of this block is effecting the Switch block.
Since you want test cases for the Switch block, you need to replace the Sqrt block with a supported
block that is functionally equivalent. The library block sldvdemo custom blockreplib shown
below constrains the input signal to the range [0 10000] and approximates the sqrt function by
using a 1-D Lookup Table block.

The table data was calculated to match the values of sqrt, with a maximum error of 0. 2 in the range
[0 10000]. Refer to the mask initialization pane of the block Sqrt Approx in the library
sldvdemo custom blockreplib for the values of the lookup table data.

The replacement rule is in defined the MATLAB-file sldvdemo _custom blkrep rule sqrt.m.
Since the replacement block sldvdemo custom blockreplib for the Sqrt block is only valid for
double or single types, this rule ensures that these conditions are satisfied before allowing a block
replacement.

function rule = sldvdemo custom blkrep rule sqrt

rule = SldvBlockReplacement.blockreprule;
rule.fileName = mfilename;

rule.blockType = 'Sqrt';
rule.replacementPath = sprintf('sldvdemo custom blockreplib/Sqrt Approx');
rule.replacementMode = 'Normal’;

parameter.OutMin '$original.OutMin$’';
parameter.OutMax '$original.OutMax$';
parameter.QutDataTypeStr = '$original.OutDataTypeStr$';
rule.parameterMap = parameter;

rule.isReplaceableCallBack = @replacementTestFunction;
end
function out = replacementTestFunction(blockH)

out = false;
acceptedOutDataTypeStr = {'double', 'single',...
'"Inherit: Inherit via back propagation',...
'"Inherit: Same as input'};
I = strmatch(get param(blockH, 'OutDataTypeStr'),acceptedOutDataTypeStr, 'exact');
if ~isempty(I)

portDataTypes = get param(blockH, 'CompiledPortDataTypes');

out = any(strcmp(portDataTypes.Inport,{'double’', 'single'})) &&
strcmp(portDataTypes.Inport,portDataTypes.Outport);

4-8

Block Replacements for Unsupported Blocks

end
end

open_system('sldvdemo custom blockreplib');
open_system('sldvdemo custom blockreplib/Sqrt Approx/1-D Lookup Table');

{[0, 10000]}

n-D T{u)

_-/—-

In1 Outl

1-D Lookup Table

Configuring Simulink® Design Verifier™ Options for Block Replacement

You will run Simulink Design Verifier in test generation mode with block replacements enabled. In
order to generate test cases for positions of Switch block, you must use the custom replacement rule
sldvdemo custom blkrep rule sqrt.m.

Since you are also interested in lookup table coverage, you need the built-in block replacement
blkrep rule lookup normal.m, which inserts test objectives for each interval and breakpoint
value for a 1-D Lookup Table block. Moreover, you need the built-in rule

blkrep rule switch normal.m, which requires that each switch position be exercised when the
values of the first and third input ports differ.

The analysis will run for a maximum of 30 seconds and produce a harness model. Report generation
is also enabled. Other Simulink Design Verifier options are set to their default values.

opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.MaxProcessTime = 80;

opts.BlockReplacement = 'on';

opts.BlockReplacementRulesList = ['sldvdemo custom blkrep rule sqrt.m,'
'"blkrep _rule lookup normal.m,'...
"blkrep rule switch normal.m'];

opts.SaveHarnessModel = 'on';

opts.ModelReferenceHarness = 'on';

opts.SaveReport = 'on';

Executing Test Generation with Block Replacements

The sldvrun function analyzes the model using the settings defined in a sldvoptions object opts.
The generated report includes a chapter summarizing block replacements performed on the model.

[status,fileNames] = sldvrun('sldvdemo sqrt blockrep', opts, true);

4-9

4 Working with Block Replacements

4-10

Size-Type
TestCasa_1 Il > In1 -Skdvdemo_sqri_blockrep
In2 ' # In2
ot f——»(7)
In3 p——— In3
a
a
Ll I f—— I 1
Inputs Tast_Unit

[
DoC

Text

Test Case Explanation

Executing Tests in the Harness Model

Enable the lookup table coverage metric and then run the test cases using the harness model. You
can also execute the suite of tests by clicking the "Run all" button on the Signal Builder dialog box
after enabling lookup table coverage from the Configuration Parameters dialog. In the Coverage tab,
select Enable coverage analysis and then select Coverage metrics > Other metrics > Lookup
table.

The coverage report shown below indicates that you can reach 100% lookup table coverage with the
test vectors that Simulink Design Verifier generated.

[harnessModelPath,harnessModel] = fileparts(fileNames.HarnessModel);
set _param(harnessModel, 'covMetricSettings', 'dcmte');
sldvdemo playall(harnessModel);

Clean Up

To complete the example, close all models and remove the files that Simulink Design Verifier
generated.

close system('sldvdemo custom blockreplib');
close system(fileNames.HarnessModel,0);

close system(fileNames.BlockReplacementModel,0);
close system('sldvdemo sqrt blockrep',0);
delete(fileNames.HarnessModel);
delete(fileNames.BlockReplacementModel);
delete(fileNames.DataFile);

Specifying Parameter Configurations

* “Parameter Configuration for Analysis” on page 5-2

* “Use Parameter Table” on page 5-7

* “Specify Parameter Configuration for Structure or Bus Parameters” on page 5-12
* “Specify Parameter Configuration for Full Coverage” on page 5-17

» “Store Parameter Constraints in MATLAB Code Files” on page 5-26

* “Use Parameter Configuration File” on page 5-29

* “Automatically Infer Parameter Specification” on page 5-32

* “Determine from Generated Code” on page 5-36

* “Using Command Line Functions to Support Changing Parameters” on page 5-39
* “Generate Parameters Values” on page 5-45

+ “Extend Existing Test Cases After Applying Parameter Configurations” on page 5-46

5 Specifying Parameter Configurations

Parameter Configuration for Analysis

5-2

In this section...

“What is Parameter Configuration for Analysis?” on page 5-2
“Specify Parameter Constraints for Models Using Referenced Configuration Set” on page 5-3
“Data Types in Parameter Configurations” on page 5-4

“Parameters in Variant Blocks” on page 5-5

What is Parameter Configuration for Analysis?

Simulink Design Verifier software can treat parameters in your model as variables during its analysis.
For example, suppose you specify a variable that is defined in the MATLAB workspace as the value of
a block parameter in your model. You can instruct Simulink Design Verifier to use additional values
for that parameter in its analysis.

You can achieve this by placing a constraint on a parameter in your model, during analysis that
parameter takes only your specified constraint value or values. A group of constraints on parameters
in the same model is also called a parameter configuration.

This allows you to, for example:

* Extend the results of design error detection or property proving analysis to consider the impact of
additional parameter values.

* Generate comprehensive test cases for situations in which parameter values must vary to achieve
more complete coverage results. For more information, see “Specify Parameter Configuration for
Full Coverage” on page 5-17.

Simulink Design Verifier provides the following workflows to specify parameter configuration:

Parameter Configuration for Analysis

Parameter Configuration Workflows

Parameter Configuration

How to Select Parameters Constraints?

Treat all parameters as constants

Retains the initial value for all parameters during
the analysis. Thus, analysis considers all
parameters as constants.

Automatically infer parameter specification

For each parameter, the minimum or maximum
value configured in Simulink.Parameter
object is used as the parameter configuration for
analysis.

When test generation target is Model, Simulink
Design Verifier selects as many parameters as
possible for parameter configuration.

When test generation target is Code Generated
as Top Model or Code Generated as Model
Reference, parameters whose value can be
changed in the generated code are selected for
parameter configuration. See “Automatically Infer
Parameter Specification” on page 5-32.

Determine from generated code

Parameters whose value can be changed in the
generated code are selected for parameter
configuration during the analysis.

For such parameters, the minimum or maximum
value from Simulink.Parameter object is used
as the parameter configuration for analysis. See
“Determine from Generated Code” on page 5-
36.

Use parameter table

Parameters and constraints in the parameter
table must be specified. See “Use Parameter
Table” on page 5-7

Use parameter configuration files

Parameters and constraints in the input file must
be specified. See “Use Parameter Configuration
File” on page 5-29

Specify Parameter Constraints for Models Using Referenced

Configuration Set

If your model uses reference configuration set, you can use Override capability to specify parameter
constraints. Before you work with parameter table in a referenced configuration set, follow these

steps:

1 Open the model.

2 On the Design Verifier tab, click Settings to open the Configuration parameters window. The
Configuration parameters window shows the Configuration reference for the model.

3 Click on Parameters and Variants from Design Verifier pane.

4 To edit and save the constraints locally, right-click on the Parameters configuration and select

Override.

5-3

5 Specifying Parameter Configurations

[@] Configuration Reference: nusimsiniiss % iintn/Reference (Active) = O X

Referenced configuration: Base Workspace > | refConfigWithDV1 | -]

Showing a read-only copy of referenced configuration. To edit and save locally, right-click a parameter and select "Override”.

Solver Parameters -
Data Import/Export i
Math and Data Types Parameter confi S 1 bt
» Diagnostics Parameter speq .
Hardware Implementation Parameter ta g:teu;rlf:dlﬂerent from referenced configuration
Model Referencing
Simulation Target Enable Disable Clear Highlight in Model
» Code Generation
Coverage
¥ Design Verifier 1

Block Replacements
Parameters and Variants
Test Generation

Design Error Detection Find parameters | | Import | | Export
Property Proving
Results Parameter configuration file: <emp! Browse.. Edit..
Report
Variants

(ox) [corem | [ver)

5 Similarly, override the values in Parameter table. Right-click in the Parameter table area and
select Override and specify the values for the model by clicking on Find parameters.

Parameter configuration: Use parameter table
Parameter specification
Parameter table

Enable Disable | Clear = Highlight in Model

Use Name Constraint Value Min Max Model Element

JiB <empiy> |0 mModelWithRefCS_paramValue/Subsystem/Constj
| IC > |10 mModelWithRefCS_paramValue/Subsystem/Const|
D <emply> |0 mModelWithRefCS_paramValue/Subsystem/Constj

Find parameters Import | | Export

Parameter configuration file: <emy Browse... | [

6 The Parameter table area highlights the override settings for the model.

You can perform the analysis after specifying the values for the parameter table. For more
information on how to specify constraint values, see “Use Parameter Table” on page 5-7.

Data Types in Parameter Configurations

Consider the following issues related to data types when constraining parameter values:

Parameter Configuration for Analysis

» “Parameters Converted to Fixed Point in the Model” on page 5-5

+ “Parameters Defined as Simulink.Parameter and Referenced by Multiple Locations” on page 5-5
* “Complex Data as Parameters not Supported” on page 5-5

* “Tuning Array of Structure or Bus Data types are not supported” on page 5-5

Parameters Converted to Fixed Point in the Model

If your model references a base workspace parameter whose data type is auto, single, or double,
and the model converts that parameter to a fixed-point data type, you must define the constraints for
that parameter according to its fixed-point type.

Parameters Defined as Simulink.Parameter and Referenced by Multiple Locations

For a parameter defined as Simulink.Parameter or an inherited class of Simulink.Parameter
whose data type is auto, if the parameter is referenced by multiple locations with different data
types, Simulink Design Verifier cannot generate values for that parameter during the analysis.

Complex Data as Parameters not Supported

If the data type of a parameter in the MATLAB workspace is complex, Simulink Design Verifier does
not support generating values for that parameter during the analysis.

Tuning Array of Structure or Bus Data types are not supported

Simulink Design Verifier does not support tuning array of structure or bus data types during the
analysis.

Parameters in Variant Blocks

Parameters can be used to select variants in the model using variant blocks such as Variant
Subsystem, Variant Source and Variant Sinks.

Simulink Design Verifier supports only active variant for blocks the where Variant activation time
parameter is not set to startup. For blocks where Variant activation time is startup, Simulink
Design Verifier analyzes all variants when you select Analyze all Startup Variants under Design

Verifier > Parameters and Variants in Configuration Parameters dialog box.

To analyze a model that contains variant constraints, open the Launch Variant Manager. Use the
Variant Manager to run predefined configurations for a model, and use the model under any of the
configurations. The Simulink Design Verifier analysis report includes the results information about
the variants blocks.

Simulink Design Verifier does not support block replacement in models that contain model reference
with startup variants.

To perform the Simulink Design Verifier analysis on variant blocks with Variant activation time set
to startup, see “Verify and Validate Variant Models with Startup Activation Time”.

See Also
“Variant Manager for Simulink” | “Variant Activation Time for Variant Blocks”

3-5

5 Specifying Parameter Configurations

More About

. “Specify Parameter Configuration for Full Coverage” on page 5-17
. “Extend Existing Test Cases After Applying Parameter Configurations” on page 5-46

Use Parameter Table

Use Parameter Table

In this section...

“Find Parameters” on page 5-8
“Edit Parameter Constraints” on page 5-10
“Highlight Constrained Parameters in Model” on page 5-11

Using the Parameter Table, you can find and autogenerate constraints for parameters in your model.
This example uses the following model, which contains Gain and Constant parameters defined as m
and b, respectively.

double double inte ints
@—'b—’ Conver)

In1 Ot

Zain

b |Constant

[Variables mand b are defined in the MATLAB workspace. .

The model callback function PreLoadFcn defines m and b in the MATLAB workspace.

5-7

5 Specifying Parameter Configurations

Maodel Properties: ex_defining_param_configurations_errwarn @
| Main | Callbacks | History | Description
Model callbacks Model pre-load function:
*
PreLoadFcn m= 5
- PostLoadFcn
- InitFen b = Simulink.Farameter;
- StartFcn b.DataType = 'intd';
- PauseFcn b.value = int8(5);
~ ContinueFcn
- StopFon
- PreSaveFcn
- PostSaveFcn
- CloseFcn
oK] [Cancel] [Help Apply

When the model opens:

* missetto 5.
* bisaSimulink.Parameter object of type int8 whose value is set to 5.

Find Parameters

This example shows how to specify values or ranges of values used for model parameters during
Simulink Design Verifier analysis.

Open the Parameter Table.

On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode settings,
click Settings.

In the Configuration Parameters dialog box, select Design Verifier > Parameters and Variants.
Find parameters that can be constrained for analysis.

At the bottom of the Parameter Table, click Find parameters. The Parameter Table searches your
model for parameters that can be configured and loads them in the table.

Use Parameter Table

When possible, the Parameter Table autogenerates constraint values for parameters. You can use
these autogenerated values or specify your own constraint.

In this example, in the Parameter Table, rows for model parameters m and b appear.

Parameter table

[Enable J [Disable I I Clear I I Highlight in Model I

Use Name Constraint Value Min Max Model Element
[l 3 ex_defining_param_configurations_errwarn/Constant
(] 5 ex_defining_param_configurations_errwarn/Gain

Each row represents a parameter configuration. You can edit the parameter’s constraint value(s) in
the field under Constraint. To use your specified parameter configuration in analysis, select the
check box in the field under Use. The following table provides more details about these and other

columns in the Parameter Table.

For parameter in row, the column...

Shows...

Use

Whether specified constraint for parameter is
used in analysis.

To include parameter configuration in analysis,
select the check box. To exclude parameter
configuration from analysis, clear the selection.

Name

Name of parameter.

Constraint

Autogenerated or user-specified constraint
value(s) for parameter.

To change the specified constraint value(s),
double-click in this field and enter new constraint
value(s).

Value

Value of parameter. If the parameter is defined in
a Simulink data dictionary that is linked to the
model, the column shows the value of the
parameter in the data dictionary. Otherwise, it
shows the value of the parameter in the base
workspace.

Min

Specified minimum value for parameter, if
parameter is of type Simulink.Parameter and
has a specified minimum value.

Max

Specified maximum value for parameter, if
parameter is of type Simulink.Parameter and
has a specified maximum value.

Model Element

Path to model component(s) where parameter is
used.

Note If you use a MATLAB variable from a data dictionary as a model parameter, SLDV analysis does
not consider the parameter as tunable. If you want the parameter to be tunable for the analysis, use a

5-9

5 Specifying Parameter Configurations

Simulink.Parameter object for the parameter. To create a Simulink.Parameter object in the
data dictionary:

1 In the Model Explorer, on the Model Hierarchy pane, select the workspace under the data
dictionary that contains your MATLAB variable.
Select Add > Simulink Parameter. You see a new variable titled Param in the workspace.
Rename the variable. Assign the same data type as the original MATLAB variable.
In your model, use the variable that you just created as your parameter.

Edit Parameter Constraints
For each parameter you want to treat as a variable during analysis, specify constraint values.

In the Parameter Table, in the Constraint column, double-click the field for the parameter you want
to constrain. Enter your constraint values.

For this example:

» For parameter b, specify the value range [4, 10].
* For parameter m, specify the value 5.

Parameter table

Enable Disable Clear Highlight in Model

Use Name Constraint Value Min |Max Model Element
|b [4.10] 5 ex_defining_param_configurations_emwarn/Constant
| 'm |5 | 5 ex_defining_param_configurations_emwarn/Gain

To enable a parameter configuration for analysis, click to select the row that corresponds to the
configured parameter. Click Enable.

To enable multiple parameter configurations at once, shift-click to select multiple rows, and click
Enable.

To exclude parameter configurations from analysis, click to select the row that corresponds to the
configured parameter. Click Disable.

When you disable a parameter configuration, the specified constraint for this parameter is not used in
analysis.

To disable multiple parameter configurations at once, shift-click to select multiple rows, and click
Disable.

To exclude a parameter configuration from analysis and delete its specified constraint, click to select
the row that corresponds to the configured parameter. Click Clear.

The Parameter Table clears the specified constraint for the parameter, and the parameter
configuration is excluded from analysis.

5-10

Use Parameter Table

To clear multiple parameter configurations at once, shift-click to select multiple rows, and click
Clear.

Highlight Constrained Parameters in Model
Highlight model components that use the parameters for which you have specified constraints.
Select the parameter(s) you want to highlight in the model.

To select a parameter, click anywhere inside the Name or Constraint columns for either parameter.
Shift-click to select multiple parameters.

Parameter table

Enable Disable Clear Highlight in Model

Use Name Constraint Value Min Max Model Element
< b [4,10] 5 ex_defining_param_configurations_errwarn/Constant
4 m 5 5 ex_defining_param_configurations_ermwarn/Gain

Click Highlight in Model.

In the Simulink Editor, model components that use the selected parameters are highlighted.

double double ntd ntd

In1 Ot

Zain

ntl

B Constant

Variables m and b are defined in the MATLAB workspace. '

You can also define constraints for parameters using Parameter Configuration File. For more
information, see “Template Parameter Configuration File” on page 5-29 in “Use Parameter
Configuration File” on page 5-29.

To define constraints for structure or bus parameter, see “Specify Parameter Configuration for
Structure or Bus Parameters” on page 5-12.

5-11

5 Specifying Parameter Configurations

Specify Parameter Configuration for Structure or Bus
Parameters

5-12

About This Example Model

This example describes how to generate tests that constrain the values for the structures and bus
signals in a model. Suppose that your model includes a variable called kpGainsStructure, which is
a structure in the MATLAB workspace. The model uses a Bus Selector block to separate the structure
fields into individual bus signals. You can constrain the values of the structure or the values of the bus
signals to ensure that they stay within the specified range during simulation.

kpGain

Gains

GainSalector

This example describes how to create and analyze a simple Simulink model, then use Simulink Design
Verifier to generates test cases for the model. The model contains an input signal Inl whose value is
set between -1 to 1. kpGainsStructure is a structure that contains three fields, Kp1l, Kp2, and Kp3,
and outputs them to a Bus Selector block that separates the fields into individual bus signals. The
block called Mode has a constant value parameter, which is set to mode determines the three bus
signals as an input to the kpGain block.

The value of Inl is multiplied by d, then multiplied by the selected bus signal. The result passes to a
Saturation block whose limit is defined between -0.5 to 0.5.

Based on the mode value, Simulink selects one of the three kpGainsStructure fields and specifies
the constraints. The input signal to the Saturation block must be below the lower limit or fall above
the upper limit to satisfy the decision objective of the Saturation block. Simulink Design Verifier then
tunes these parameters to achieve this limit. The following workflow guides you through the process
of completing this example.

Preload Workspace Variable for Structure Parameter

Preload the value of the MATLAB workspace variable kpGainsStructure. The structure contains
the fields Kp1, Kp2, and Kp3.

On the Modeling tab, select Model Settings > Model Properties.

Click the Callbacks tab.

Click PreLoadFcn, then load the Kp1, Kp2, and Kp3 fields of myStruct:

load('struct param.mat');

myStruct.Kpl 15;
myStruct.Kp2 -5;

Specify Parameter Configuration for Structure or Bus Parameters

_5;

myStruct.Kp3 =
= Simulink.Parameter(myStruct);

gainsParam
mode = 1;
d = Simulink.Parameter(0.012);

Model Properties: DemoModel

Main Callbacks Info Description External Data

Model callbacks Model pre-load function:
PreLoadFcn® load("struct_param.mat’);
PostloadFen

P myStruct.Kpl = 15;
InitFen myStruct.Kp2 = -5;
StartFen myStruct.Kp3 = -5;

PauseFcn

ContinueFcn structParam = Simulink.Parameter{myStruct);

StopFcn mode = 1
PreSaveFcn
PostSaveFcn d = Simulink.Parameter{0.012);

CloseFen

4 Click OK to close the Model Properties dialog box and save the model.

Because the structure parameter is called by the Constant block, you need to define the output of the
Constant block as a bus. Follow these steps:

1 Double-click the Gains block to open Block Parameters dialog box.

2 Under Signal Attributes, select Output data type as Bus:BusO.

3 Click OK.

Define Parameter Constraint Values

There are two ways to constrain the values of structure or bus signals in the Configuration Parameter
window: by using the parameter table or the parameter configuration file.

* Parameter Table

* Parameter configuration file

Define Parameter Constraint Values using Parameter Table

When possible, parameter table automatically generates constraint values for each parameter,
depending on the data type and location of the parameter in the model. For more information, see
“Use Parameter Table” on page 5-7.

Follow these steps to generate the constraint value for each parameter:

On the Apps tab, under Model Verification, Validation, and Test, click Design Verifier.
On the Design Verifier tab, click Test Generation Settings.

In Configuration Parameters dialog box, select Design Verifier > Parameters and Variants.
Select Use parameter table.

Click Find parameters.

O U1 A W N M

The parameter table populates with the parameters from your model.

5-13

5 Specifying Parameter Configurations

5-14

7 In the parameter table, in the Constraint column,

« {1,2,3} formode
+ [-0.01 0.15] ford

Enabie DCesable Clear Highiignt in Mosde
Use Mame Consiraint Vadse Min Max |Model Element
o o Ir-o 01 0.15 0,002 JPConirollan Reguiaion

gansParam.kpl |0, 100] 15 0 100 |myDemobdod

= gainsParam.Kp2 |10, 1 5 10 |10 |[myDemaksodeidiGains
o painsParam. Epd (|[-5, 5 5 5 |5 DT Mol G ains
= 1.2 myDemakiodeld Controid e
Findl in Mo Al o File Exporl o File..

8 Click OK.

Define Constraint Values using Parameter Configuration File

This is an alternative approach that you can use to define the values of constraints instead of using
the Parameter Table. The Simulink Design Verifier software provides a template that you can make a
copy and edit it. For more information, see “Template Parameter Configuration File” on page 5-29 in
“Use Parameter Configuration File” on page 5-29. By default, the path to the parameter
configuration file is:

matlabroot/toolbox/sldv/sldv/sldv_params template.m

To associate the parameter configuration file with your model before analyzing the model, in the
Configuration Parameters dialog box, on the Design Verifier > Parameters and Variants pane,
ensure that Use parameter table is cleared and enter the file name of the configuration file in the
Parameter configuration file field.

Follow these steps to define the constraint values in Parameter configuration file:
1 Insldv params template.m, enter:

function params = params_config
params.mode = {1, 2, 3};
params.d = [-.001 0.15];
params.gainsParam.Kpl
params.gainsParam.Kp2
params.gainsParam.Kp3

Sldv.Interval(0, 50);
Sldv.Interval(-10, 10);
['51 5];

Save the file with the name params config.m.

Open the model DemoModel.

On the Apps pane, under Model Verification, Validation, and Test, click Design Verifier.
On the Design Verifier tab, click Test Generation Settings.

In Configuration Parameters dialog box, select Design Verifier > Parameters and Variants.

N o o1 A W N

Click Browse, then select params config.m parameter configuration file created saved in step
2.

Specify Parameter Configuration for Structure or Bus Parameters

Analyze Example Model

Analyze the model with the parameter constraints enabled and generate the analysis report:

1

On the Design Verifier tab, in the Mode section, select Test Generation. Click Generate
Tests.

Simulink Design Verifier analyzes your model to generate test cases.

When the software completes its analysis, in the Simulink Design Verifier Results Summary
window, next to Detailed analysis report, select HTML.

The software displays an HTML report named DemoModel. html.

Simulink Design Verifier Results Surmnmary: DemoModel x
~
Progress I
Objectives processed 77
Satisfied 7
Unsatisfiable]
Elapsed time 0:21

Test generation completed normally.
7/7 objectives satisfied.

Results:

* Open filter viewer
* Highlight analysis results on model

* View tests in Simulation Data Inspector
 Detailed analysis report: (HTML) (PDF)
* Create harness model

* Export test cases to Simulink Test
* Simulate tests and produce a model coverage report

Data saved in: DemoModel _sldvdata.mat
infolder: _..___._.._ .. J\MATLAB\structorbusparameter\sldv_output\DemoModel

w

< >

In the table of contents of the Simulink Design Verifier report, click Test Cases.
Click Test Case 1 to display the subsection for that test case.

Test Case 1 shows that Simulink Design Verifier tuned all the parameters in such a way that all
the inputs coming from the Inl input signal, the Gain block and the mode variable will either fall
below -0.5 or above 0.5. While generating test cases, all the constraints satisfy the objectives.

5-15

5 Specifying Parameter Configurations

Generated Parameter Values

Parameter Value
d 011128
mode 1

structParam Kpl|50 464
structParam Kp2|1 9482
structParam Kp3|-0.11487

Generated Input Data

Time |0 0.2 04
Step |1 2 3
inl 0.70985|-1 0

Similarly, the parameters for Test Case 2 and Test Case 3 are tuned and satisfy the objectives.

See Also
“Use Parameter Table” on page 5-7

5-16

Specify Parameter Configuration for Full Coverage

Specify Parameter Configuration for Full Coverage

In this section...

“About This Example” on page 5-17

“Construct Example Model” on page 5-17
“Parameterize Constant Block” on page 5-18
“Preload Workspace Variable” on page 5-18
“Autogenerate Parameter Constraint” on page 5-19
“Analyze Example Model” on page 5-20

“Simulate Test Cases” on page 5-22

About This Example

This example describes how to create and analyze a simple Simulink model, for which you generate
test cases that achieve decision coverage. However, in this example, achieving complete decision
coverage is possible only when Simulink Design Verifier treats a particular block parameter as a

variable during its analysis. This example explains how to specify parameter configurations for use
with the analysis.

The following workflow guides you through the process of completing this example.

Task Description See...

1 Construct the example model. “Construct Example Model” on page 5-17

2 Specify a variable as the value of a “Parameterize Constant Block” on page 5-18
Constant block parameter.

3 Constrain the value of the variable “Autogenerate Parameter Constraint” on page 5-
that the Constant block specifies. 19

4 Generate test cases for your model “Analyze Example Model” on page 5-20

and interpret the results.

5 Simulate the test cases and measure |“Simulate Test Cases” on page 5-22
the resulting decision coverage.

Construct Example Model

Construct a simple Simulink model to use in this example:

1 Create an empty Simulink model.
2 Copy the following blocks into the empty Simulink Editor:

* From the Sources library:

* Two Inport blocks to initiate the input signals

* A Constant block to control the switch
* From the Signal Routing library: A Multiport Switch block to provide simple logic
* From the Sinks library: An Outport block to receive the output signal

5-17

5 Specifying Parameter Configurations

5-18

Double-click the Multiport Switch block to access its dialog box and specify its Number of data
ports option as 2.

Connect the blocks so that your model looks like the following.

1 »—]
Constant ;
1} > & e 1]
In1 Ot
*, 2
L2} - |
In2
Multiport
Switch

On the Simulation tab, click the arrow on the right of the Prepare section and click Model
Settings.

In the Configuration Parameters dialog box, select the Solver. Under Solver selection, set the
Type option to Fixed-step, and then set the Solver option to discrete (no continuous
states).

In the Diagnostics pane, set Automatic solver parameter selection to none.
Click OK to apply your changes and close the Configuration Parameters dialog box.
Save your model as ex_defining params_example for use in the next procedure.

Parameterize Constant Block

Parameterize the Constant block in your model by specifying a variable as the value of the Constant
block's Constant value parameter:

A W N M

Double-click the Constant block.
In the Constant value box, enter A.
Click OK to apply your change and close the Constant block parameter dialog box.

Save your model.

Preload Workspace Variable

Preload the value of the MATLAB workspace variable A referenced by the Constant block:

On the Modeling tab, select Model Settings > Model Properties.
Click the Callbacks tab.
In the PreLoadFcn, enter:

A = Simulink.Parameter(int8(1));
A.Min = 1;
A.Max = 2;

Click OK to close the Model Properties dialog box and save your changes.
Close your model.

Specify Parameter Configuration for Full Coverage

Open your model.

When you open the model, the PreLoadFcn defines a variable A of type int8 whose value is 1.

intd:
n o
-~ - 1
Constant . iouble
(1} > £ 1
double
Il Cutl
double * 2
(2 r—>r—
In2
Mutiport

Switch

Autogenerate Parameter Constraint

Use the Parameter Table to constrain variable A to specified values.

1

On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Design Verifier.

On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode
settings, click Settings.

In Configuration Parameters dialog box, select Design Verifier > Parameters and Variants.
Select Use parameter table.
Click Find parameters.

The Parameter Table is populated with parameters from your model. When possible, it
autogenerates constraint values for each parameter, depending on the data type and location of
the parameter in the model.

In this case, a row appears for the parameter A that you defined. The table row for A displays the
following information:
* In the Name column, the parameter name (A).

* In the Constraint column, the constraint specified on parameter A. The Parameter Table
autogenerates the constraint values [1, 2].

* In the Value column, the value of A in the base workspace. This value is 1.

* In the Model Element column, the model component in which A resides
(ex defining params_example/Constant).

* In the Use column, a check box indicating whether the specified constraint values in the table
are configured for analysis.

5-19

5 Specifying Parameter Configurations

Parameter table

l Enable] [Disable] [Clear] [Highlight in Model]
Parameter table Min Max Model Element

R OES . | | occeinng poroms comple/Consiant
Find in Model | | Add from File... | [Export to File...|

6 In the Parameter Table, in the row for parameter A, make sure that you select the Use check box.

When you enable this parameter configuration, during Simulink Design Verifier analysis, the
parameter A takes only the int8 values 1 and 2.

In the Configuration Parameters dialog box, click OK.
Save your model.

Analyze Example Model

Analyze the model using the parameter configuration you just created, and generate the analysis
report:

1 On the Design Verifier tab, in the Mode section, select Test Generation. Click Generate
Tests.

Simulink Design Verifier analyzes your model to generate test cases.

2 When the software completes its analysis, in the Simulink Design Verifier Results Summary
window, select Generate detailed analysis report.

The software displays an HTML report named ex_defining params example report.html.

5-20

Specify Parameter Configuration for Full Coverage

Keep the Results Summary window open for the next procedure.
3 In the Simulink Design Verifier report Table of Contents, click Test Cases.
4 Click Test Case 1 to display the subsection for that test case.

Test Case 1

Summary

Length: 0 second (1 sample period)

Objectives)

Satisfied:

Objectives

Step Time NModel Item Objectives

) 0 Multiport Switch mteger input value = 1 (output is from nput

port 1)
Generated Parameter Values

Parameter Value
A 1

Generated Input Data

Time |0
Step 1
Inl -
In2 -

This section provides details about Test Case 1 that Simulink Design Verifier generated to satisfy

a coverage objective in the model. In this test case, a value of 1 for parameter A satisfies the
objective.

5 Scroll down to the Test Case 2 section in the Test Cases chapter.

5-21

5 Specifying Parameter Configurations

5-22

Test Case 2

Summary
Length: 0 second (1 sample period)
Objectives !
Satisfied:
Objectives
Step Time Model Item Objectives
i i ralue = * i
1 0 Multiport Switch integer input value = *,2 (output is from

input port 2)
Generated Parameter Values

Parameter Value
A 2

Generated Input Data

Time |0
Step (1
Inl -
In2 -

This section provides details about Test Case 2, which satisfies another coverage objective in the
model. In this test case, a value of 2 for parameter A satisfies the objective.

Simulate Test Cases

Simulate the generated test cases and review the coverage report that results from the simulation:
1 In the Simulink Design Verifier Results Summary window, select Create harness model.

The software creates and opens a harness model named

ex _defining params example harness.

2 The block labeled Inputs in the harness model is a Signal Builder block that contains the test

case signals. Double-click the Inputs block to view the test case signals in the Signal Builder
block.

Specify Parameter Configuration for Full Coverage

u Signal Builder (ex_defining_params_sxample_harness/Inputs) El@
File Edit Group Signal Axes Help L
FE| SRR o | —T0(E) & REE] o o | E
Active Grou pi Test Caze 1 - @ . . »
L e e e
Int : : : : : : : : i
L S oo e e S oo e e :
ow—t——— L
7)) R A S S S— A R S A— j
In2 : : : : : : : : :
] s Ao bommooeoos bomoooeeoes ommme s demmmmeees bemnooennos boonnooe eenoee -
0 ; ; ; ; ; ; ; ; ; ;
L e S B
- i i i i i i i i i |
0 01 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
LLett Pormt -
InZ {shown)
Hame: In1 (I i:
Index: 1 v: ¥: ¥:
ok |In1 (#1}) [YMin YMax]
3

all
In the Signal Builder dialog box, click the Run all button ™ i

The Simulink software simulates each of the test cases in succession, collects coverage data for
each simulation, and displays an HTML report of the combined coverage results at the end of the
last simulation.

4 In the model coverage report, review the Summary section:

5-23

5 Specifying Parameter Configurations

Summary

Model Hierarchy/Complexity:

D1
1. ex defining params example harness 2 100% eo—
2. ... Test Unit (copied from ex defining params example) 1 100% —

This section summarizes the coverage results for the harness model and its Test Unit subsystem.
Observe that the subsystem achieves 100% decision coverage.

5 In the Summary section, click the Test Unit subsystem.

The report displays detailed coverage results for the Test Unit subsystem.

5-24

Specify Parameter Configuration for Full Coverage

2. SubSystem block "Test Unit (copied from ex defining param..."

Parent: /ex_defining params_example harness
Metric Coverage (this object) Coverage (Inc.
8] descendants)
Cyclomatic Complexity 0 1
Decision (D1) NA 100% (2/2) decision outcomes

MultiPortSwitch block "Multiport Switch"

ex defining params example harness/Test Unit (copied from

Parent: ex defining params example)
Metric Coverage

Cyclomatic Complexity 1

Decision (D1) 100% (2/2) decision outcomes

Decisions analyzed:

integer input value 100%
= 1 (output is from input port 1) 2/4
= *.2 (output is from input port 2) 2/4

This section reveals that the Multiport Switch block achieves 100% decision coverage because
the test cases exercise each of the switch pathways.

See Also
“Extend Existing Test Cases After Applying Parameter Configurations” on page 5-46

5-25

5 Specifying Parameter Configurations

Store Parameter Constraints in MATLAB Code Files

5-26

In this section...

“Export Parameter Constraints to File” on page 5-26
“Import Parameter Constraints from File” on page 5-27

You can use the Parameter Table to manage constraints on your model parameters for analysis. If you
place a constraint on a parameter in your model, during analysis that parameter takes only your
specified constraint value or values. A group of constraints on parameters in the same model is also
called a parameter configuration. You can store groups of parameter constraints in a MATLAB code
file called a parameter configuration file. For more information on configuring parameters for
Simulink Design Verifier, see “Use Parameter Table” on page 5-7.

To enable parameter configuration, on the Design Verifier tab, in the Prepare section, from the
drop-down menu for the mode settings, click Settings. In the Configuration Parameters dialog box,
on the Design Verifier > Parameters and Variants pane..

Export Parameter Constraints to File

Using the Parameter Table, you can export parameter constraint values to a MATLAB code file. If you
later want to use the same parameter configuration in a different analysis, you can import your
previously specified parameter constraint values from the MATLAB code file.

To export parameter constraint values to a file:

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode
settings, click Settings. In the Configuration Parameters dialog box, select Design Verifier >
Parameters and Variants.

The Parameter Table shows specified constraint values for parameters in your model, as in the
following example screen shot.

Store Parameter Constraints in MATLAB Code Files

Parameter table

[Enable] l Disable] l Clear] [Highlight in Model]
Use Name Constraint Value Min Model Element
V] param_01 {0, 1} _-- ex_many_params/Constant
[l param_02 {0, 1} - ex_many_params/Constant2
V] param_03 {0, 1} 0 ex_many_params/Constantl
[l param_04 {0, 1} 2 ex_many_params/Constant3
[Find in Model] ’ Add from File...] [Export to File...

2 Click Export to File.

The Parameter Configuration File saves the current parameter configurations to a . m file with
the name you specify. Parameters that do not have the Use check box enabled appear as
commented lines in the parameter configuration file.

In the example shown in the previous step, the parameter configuration file contains the
following code:

function params = ex_many params_config
params.param 01 {0, 1};

% params.param 02 = {0, 01};
params.param 03 = {0, 1};

% params.param 04 = {0, 1};

Import Parameter Constraints from File

If you defined parameter configurations for analysis in a release prior to R2014a, you can import
corresponding MATLAB files and manage these parameters in the Parameter Table.

To import parameter constraints from a MATLAB code file:

5-27

5 Specifying Parameter Configurations

5-28

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode
settings, click Settings. In the Configuration Parameters dialog box, select Design Verifier >
Parameters and Variants.

2 Click Add from File. Choose a parameter configuration file.

The Parameter Table loads specified parameter constraints from the code, excluding code
comments, from the file. If you specify a constraint for a parameter and then load a parameter
configuration file containing constraint specification for the same parameter, the constraint
specified in the file overwrites the preexisting constraint in the table.

Simulink Design Verifier provides an example parameter configuration file for the example model
sldvdemo param identification:

matlabroot/toolbox/sldv/sldvdemos/sldvdemo param ident config.m

See Also

More About

. “Generate Parameters Values” on page 5-45

Use Parameter Configuration File

Use Parameter Configuration File

In this section...

“Template Parameter Configuration File” on page 5-29

“Syntax in Parameter Configuration Files” on page 5-29

To specify parameters as variables for analysis, you can use the Parameter Table or define parameter
configurations in a MATLAB code file. You can also export parameter configuration files from the
Parameter Table. For more information, see “Store Parameter Constraints in MATLAB Code Files” on
page 5-26.

This example shows how to define parameter configurations in a MATLAB code file. For an example
that shows how to define these parameter configurations using the Parameter Table, see “Use
Parameter Table” on page 5-7.

Template Parameter Configuration File

The Simulink Design Verifier software provides an annotated template that you can use as a starting
point:

matlabroot/toolbox/sldv/sldv/sldv_params template.m

To create a parameter configuration file, make a copy of the template and edit the copy. The
comments in the template explain the syntax for defining parameter configurations.

To associate the parameter configuration file with your model before analyzing the model, in the

Configuration Parameters dialog box, on the Design Verifier > Parameters and Variants pane,
enter the file name in the Parameter configuration file field.

Syntax in Parameter Configuration Files

Specify parameter configurations using a structure whose fields share the same names as the
parameters that you treat as input variables.

For example, suppose you want to constrain the Gain and Constant value parameters, m and b,
which appear in the following model:

doublke doublke intd int®

In . Ot
Zain

b |Constnt

[Variables m and b are defined in the MATLAB workspace. .

The PreLoadFcn callback function defines m and b in the MATLAB workspace when you open the
model:

5-29

5 Specifying Parameter Configurations

* mis setto 5.
* bisaSimulink.Parameter object of type int8 whose value is set to 5.

P "

Maodel Properties: ex_defining_param_configurations_errwarn @
| Main Callbacks | History | Description

Model callbacks Model pre-load function:

=

PreLoadFcn m= 5

- PostLoadFcn

- InitFen b = Simulink.FParameter;

- StartFen b.DataType = 'int8';

-~ Pausercn b.value = intd(3);

~ ContinueFcn

~ StopFcn

- PreSaveFcn

- PostSaveFcn

~CloseFcn

oK] [Cancel] [Help Apply

In your parameter configuration file, specify constraints for m and b:

params.b
params.m

int8([4 10]);
{};

This file specifies:

* b is an 8-bit signed integer from 4 to 10. The constraint type must match the type of the
parameter b in the MATLAB workspace, int8, in this example.

* mis not constrained to any values.

Specify points using the Sldv.Point constructor, which accepts a single value as its argument.
Specify intervals using the Sldv.Interval constructor, which requires two input arguments, i.e., a
lower bound and an upper bound for the interval. Optionally, you can provide one of the following
values as a third input argument that specifies inclusion or exclusion of the interval endpoints:

* '()' — Defines an open interval.

e '[]' — Defines a closed interval.

5-30

Use Parameter Configuration File

* '(]' — Defines a left-open interval.
¢ '[)' — Defines a right-open interval.

Note By default, Simulink Design Verifier considers an interval to be closed if you omit this
argument.

The following example constrains m to 3 and b to any value in the closed interval [0, 10]:

Sldv.Point(3)

params.m ;
Sldv.Interval(0, 10);

params.b

If the parameters are scalar, you can omit the constructors and instead specify single values or two-
element vectors. For example, you can alternatively specify the previous example as:

params.m
params.b

3;
[0 10];

Note To indicate no constraint for an input parameter, specify params.m = {} orparams.m = [].
The analysis treats this parameter as free input.

You can specify multiple constraints for a single parameter using a cell array. In this case, the
analysis combines the constraints using a logical OR operation.

The following example constrains m to either 3 or 5 and constrains b to any value in the closed
interval [0, 10]:

{3, 5};
[0 10];

params.m
params.b

You can specify several sets of parameters by expanding the size of your structure. For example, the
following example uses a 1-by-2 structure to define two sets of parameters:

{3, 5};
[0 10];

params(1l).m
params(1l).b

{12, 15, Sldv.Interval(50, 60, '()')};
5;

params(2).m
params(2).b

The first parameter set constrains m to either 3 or 5 and constrains b to any value in the closed
interval [0, 10]. The second parameter set constrains m to either 12, 15, or any value in the open
interval (50, 60), and constrains b to 5.

5-31

5 Specifying Parameter Configurations

Automatically Infer Parameter Specification

Simulink Design Verifier automates the process of selecting parameters that is a part of parameter
configuration and determines minimum and maximum values of such parameters configured in the
Simulink.Parameter object.

When test generation target is Model, Simulink Design Verifier selects as many parameters as
possible for parameter configuration.

When test generation target is Code Generated as Top Model or Code Generated as Model
Reference, parameters whose value can be changed in the generated code are selected for
parameter configuration.

The PreLoadFcn callback function model, defines codeTunableParam and constParam in the
MATLAB workspace.

codeTunableParam is tunable in model and code

—
codeTunableParam 1

@ -
@

sldvParam is only tunable in model

sldvParam I - i

]

GO
D %3

The code generation settings for the model:

Model Properties: mTunability

Main | Callbacks | Info | Description | External Data
Model callbacks Model pre-load function:
PreLoadFecn* 7 ;
PostLoadFcn sldvParam = Simulink.Parameter(1);
InitEen s:gvgaram.:m =_i.g
StartFen sldvParam.Max = 10;
PauseFcn § X
ContinnaEan codeTunableParam = Simulink.Parameter(2);
codeTunableParam.Max = 10;
StopFcn 3
PraSaveren codeTunableParam.Min = 0;
PostSaveFcn
CloseFcn*

5-32

Automatically Infer Parameter Specification

Set storage class of constParam to Const and codeTunableParam to ExportedGlobal.

A |
Design = Code Generation | Design Code Generation
|

Storage class: | ExportedGlobal v Storage class: | Const -
\dentifier: Custem attributes
Alignment: e HeaderFile:

DefinitionFile:

Owner:

Preserve array dimensions

Identifier:

Alignment: -1

0K | Cancel Help oK | Cancel Help

Configuring Parameters by Using Automatically infer parameter
specification

This example shows how to automatically infer constraint values used for model parameters during
Simulink Design Verifier analysis.

Open Model Settings > Design Verifier > Parameters and Variants.

2 Click on the drop down for Parameter Configuration and select Automatically infer
parameter specification.

This automatically infers the parameters that will be selected based on the test generation target
and the parameter settings based on their definition.

When the test generation target is Model, Simulink Design Verifier analysis selects all the supported
parameters.

In the above example, both the parameters constParam and codeTunableParam, are configured
during the analysis.

5-33

5 Specifying Parameter Configurations

2.4.1. Parameter Constraints

Constraint 1

Parameter Constraint
codeTunableParam| [0, 10]
sldvParam [-10, 10]

The results window shows that all objectives for both the Multiport switch blocks are satisfied.

'*a.

Test generation completed normally.
6/6 objectives satisfied.

Results:

* Open filter viewer
= View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)

» Create harness mardal

When the test generation target is set to Code Generated as Top Model, parameter constParam
cannot be changed in the generated code. So, Simulink Design Verifier selects codeTunableParam
for parameter configuration.

2.4.1. Parameter Constraints

Constraint 1

Parameter Constraint
codeTunableParam| [0, 10]

5-34

Automatically Infer Parameter Specification

4

~ (@
Test generation completed normally.
4/6 objectives satisfied.

2/6 objectives unsatisfiable

Results:

* Open filter viewer

* \iew tests in Simulation Data Inspector
a Pakailad sam=shoeice ramack: (TR IDOEY

The Undecided objectives are related to the code corresponding to Multiport Switchl.

5-35

5 Specifying Parameter Configurations

Determine from Generated Code

5-36

Simulink Design Verifier selects the parameters whose value can be changed in the generated code
for parameter configuration.

For such parameters, the minimum or maximum value from Simulink.Parameter object is used as
parameter configuration for analysis.

Note

» This workflow is recommended when you have generated the code before the analysis is run.
* This parameter configuration can be used for both Model and Code workflows.

The PreLoadFcn callback function model, defines codeTunableParam and constParam in the
MATLAB workspace.

codeTunableParam is tunable in model and code

—
codeTunableParam i

= £
D

sldvParam is only tunable in model

sldvParam I > i

«»
D c—

The code generation settings for the model:

Determine from Generated Code

Model Properties: mTunability

Main | Callbacks | Info Description External Data
Maodel callbacks Model pre-load function:
Erebaack gn* ldvParam = Simulink.p ter(1);
PostLoadFcn sldvParam = Simulink.Parameter(1);
: sldvParam.Min = -10;
InitFcn P Mid =i
StartFen sldvParam.Max = 10;
PauseFcn i bl e link i
ContinueFcn codeTunableParam = Simulink.Parameter(2);
st codeTunableParam.Max = 10;
opE el deTunableParam.Min = 0;
PreSaveFcn codeTunableParam.Min = 0;
PostSaveFcn
CloseFcn*
Set storage class of constParam to Const and codeTunableParam to ExportedGlobal.
Bl |
Design = Code Generation Design Code Generation
Storage class: | ExportedGlobal » | ||| Storage class: | Const =
Identifier: Custom attributes
Alignment: 1 HeaderFile:
DefinitionFile:
Qwner:

Preserve array dimensions

Identifier:

Alignment: -1

0K | Cancel Help ‘ oK | Cancel Help

Configuring Parameters by Using Determine from generated code

This example shows how to configure parameters by using Determine from generated code
workflow during the Simulink Design Verifier analysis.

1 Open Model Settings > Design Verifier > Parameters and Variants.

2 Click on the drop down for Parameter Configuration and select Determine from generated
code.

This automatically infers the parameters that will be selected based on the code generated and
the parameter settings based on their definition.

In the above example, the parameter constParam cannot be changed in the generated code. So
Simulink Design Verifier selects codeTunableParam for parameter configuration.

5-37

5 Specifying Parameter Configurations

2.4.1. Parameter Constraints

Constraint 1

Parameter Constraint
codeTunableParam| [0, 10]

i =B)

Test generation completed normally. =
4/6 objectives satisfied.
2/6 objectives unsatisfiable

Results:
* Open filter viewer

» \fiew tests in Simulation Data Inspector
a Maksilad sm=sbasic ramack: (LITRILY TDMCY i

The Undecided objectives are related to the code corresponding to Multiport Switchl.

5-38

Using Command Line Functions to Support Changing Parameters

Using Command Line Functions to Support Changing
Parameters

This example shows how to use Simulink® Design Verifier™ command-line functions to generate test
data that incorporates different parameter values.

Controller Model with an Adjustable Parameter

The example model is a simple controller with a single parameter. The constant parameter

'control mode' can be either 1 or 2. The parameter must take both values for the test cases to achieve
complete coverage. The value determines the switch block output and which enabled subsystem will
execute.

open_system('sldvdemo _param controller');

Demonstration Parameterized Model

| control_maode |—>—|

| contral_mode l—b-
|
n 1

L1 3} | dalta throt > — = 1)

delta throt

Pl Controller
| contral_mode l—b-

r

n *
™ delta throt

L

Y

P Controller

This model is configured with a constant parameter that must be changed to achieve
complete model coverage. This model is used to demonstrate parameter handling
within Simulink Design Verifier.

Copyright 2006-2023 The MathWorks, Inc.

Specifying Parameter Values for Analysis
Simulink Design Verifier does not identify parameter values. The tool uses the parameter values at

the start of analysis for generating tests and proving properties. You can force the tool to incorporate
changing parameter values by repeating analysis with different values.

5-39

5 Specifying Parameter Configurations

The first iteration of design verifier will use control mode=1.
control mode = 1;
Simulink® Design Verifier™ Options

Simulink Design Verifier functions use options objects created with the sldvoptions function to
control all aspects of analysis and output.

In this example, we will run Simulink Design Verifier in test generation mode for a maximum of 300
seconds and produce a harness model. We will disable the report generation.

The default values of the remaining options are set correctly to generate tests. You can use the get
command to display all the options and values.

opts = sldvoptions;
opts.Mode = 'TestGeneration';
opts.MaxProcessTime = 300;
opts.SaveHarnessModel = 'on';
opts.SaveReport = 'off"';
opts.HarnessModelFileName =

'$ModelName$ harness.slx';

get(opts)
Mode: 'TestGeneration'
MaxProcessTime: 300
AutomaticStubbing: 'on'
UseParallel: 'off'
DesignMinMaxConstraints: 'on'
QutputDir: 'sldv_output/$ModelName$'
MakeOutputFilesUnique: ‘'on'
BlockReplacement: 'off'

BlockReplacementRulesList:
BlockReplacementModelFileName:
ParameterConfiguration:
ParametersConfigFileName:
ParameterNames:
ParameterConstraints:
ParameterUseInAnalysis:

'<FactoryDefaultRules>"
'$ModelName$ replacement'’
"None'

'sldv_params_template.m

TestgenTarget: 'Model’
ModelCoverageObjectives: 'ConditionDecision'
TestConditions: 'UselocalSettings'
TestObjectives: 'UselocalSettings'
MaxTestCaseSteps: 10000
TestSuiteOptimization: 'Auto'
Assertions: 'UselLocalSettings'
ProofAssumptions: 'UselLocalSettings'
ExtendExistingTests: 'off'
ExistingTestFile: "'
IgnoreExistTestSatisfied: 'on'
IgnoreCovSatisfied: 'off'
CoverageDataFile: ''
CovFilter: 'off'
CovFilterFileName: "'
IncludeRelationalBoundary: 'off'
RelativeTolerance: 0.0100
AbsoluteTolerance: 1.0000e-05
DetectDeadlLogic: 'off'

5-40

Using Command Line Functions to Support Changing Parameters

DetectActivelogic:
DeadLogicObjectives:
DetectOutOfBounds:
DetectDivisionByZero:
DetectIntegerOverflow:
DetectInfNaN:

DetectSubnormal:
DesignMinMaxCheck:
DetectDSMAccessViolations:
DetectHISMViolationsHisl 0002:
DetectHISMViolationsHis1l 0003:
DetectHISMViolationsHisl 0004:
DetectHISMViolationsHisl 0028:
DetectBlockInputRangeViolations:
ProvingStrategy:
MaxViolationSteps:
DataFileName:
SaveExpectedOutput:
RandomizeNoEffectData:
SaveHarnessModel:
HarnessModelFileName:
ModelReferenceHarness:
HarnessSource:

SaveReport:

ReportPDFFormat:
ReportFileName:
ReportIncludeGraphics:
DisplayReport:

SFcnSupport:
CodeAnalysisExtraOptions:
CodeAnalysisIgnoreVolatile:
ReduceRationalApprox:
SlTestFileName:
SlTestHarnessName:
SlTestHarnessSource:
StrictEnhancedMCDC:
RebuildModelRepresentation:
AnalyzeAllStartupVariants:

'off"'
'ConditionDecision'
‘on'

‘on'

‘on'

'off"'

'off"'

'off"'

'off"'

'off'

'off"'

'off"'

'off"'

'off'

'"Prove’

20

'$ModelName$ sldvdata'
'off"'

'off"'

‘on'

'$ModelName$ harness.slx'
on'

'Signal Editor'
'off"'

'off"'

'$ModelName$ report'’
'off'

‘on'

‘on'

on'

‘on'

'$ModelName$ test'
'$ModelName$ sldvharness'
"Inport’

'off"'
'IfChangeIsDetected’
‘on'

Generating Tests and Collecting Coverage

The sldvgencov function generates test suites and model coverage together. All tests that can be
generated with the current parameter values will be collected into the harness model and the
resulting coverage returned in a coverage data object.

[status,coverageData, files] =

04-Mar-2023 00:18:27

sldvgencov('sldvdemo param controller',opts);

Checking compatibility for test generation: model 'sldvdemo param controller'

Compiling model...done

Building model representation...done

04-Mar-2023 00:18:32

'sldvdemo _param controller' is compatible for test generation with Simulink Design Verifier.

5-41

5 Specifying Parameter Configurations

5-42

Generating tests using model representation from 04-Mar-2023 00:18:32...

04-Mar-2023 00:18:41
Completed normally.
Generating output files:

Harness model:
C:\TEMP\Bdoc23a 2213998 3568\1ib570499\28\tp27ale6fc\sldv-ex05697027\sldv_output\sldvdemo par:

04-Mar-2023 00:18:44
Results generation completed.

Data file:
C:\TEMP\Bdoc23a 2213998 3568\1ib570499\28\tp27ale6fc\sldv-ex05697027\sldv_output\sldvdemo par:

Size-Type

1stCasa_1 eldvdemo_param_controller
= delta —Fl—b delbgl throt —F@
ru
— throt

Inputs Tast_Unit

e
0oC
Text

Test Case Explanation

Integrating Parameter Initialization Into a Test Harness

Generated test cases must be run with the same parameter values used during analysis. An
initialization command configures the values during simulation of test cases. The
sldvmergeharness function incorporates initialization commands into test harnesses.

initCmdStr = 'control mode=1;"
[path,modelName] = fileparts(files.HarnessModel);
sldvmergeharness (modelName,modelName, initCmdStr);

initCmdStr =

‘control_mode=1;"

Modifying Parameters and Repeating Test Generation

Modifying parameter values enables additional test generation. Passing a coverage data object as the
third input to sldvgencov forces the function to ignore all model coverage test objectives that have
been satisfied. We use the coverage data that was returned from the earlier call to sldvgencov to
restrict test generation to unsatisfied test objectives.

control mode=2;
[status,newCov,newFiles] = sldvgencov('sldvdemo param controller',opts,false,coverageData);

04-Mar-2023 00:18:48

Using Command Line Functions to Support Changing Parameters

Validating cached model representation from 04-Mar-2023 00:18:32...change detected
04-Mar-2023 00:18:48

Checking compatibility for test generation: model 'sldvdemo param controller'
Compiling model...done

Building model representation...done

04-Mar-2023 00:18:52

'sldvdemo _param controller' is compatible for test generation with Simulink Design Verifier.

Generating tests using model representation from 04-Mar-2023 00:18:52...

04-Mar-2023 00:18:56
Completed normally.
Generating output files:

Harness model:
C:\TEMP\Bdoc23a 2213998 3568\1ib570499\28\tp27ale6fc\sldv-ex05697027\sldv_output\sldvdemo par:

04-Mar-2023 00:18:58
Results generation completed.

Data file:
C:\TEMP\Bdoc23a 2213998 3568\1ib570499\28\tp27ale6fc\sldv-ex05697027\sldv_output\sldvdemo par:

Size-Type

1stCasa_1 eldvdemo_param_controller
= delta F———® d B throt f————™
= ety -
- L8 2] throt

Inputs Tast_Unit

e
DoC
Text

Test Case Explanation

Merging Test Harnesses Into a Single Model

Another call to sldvharnessmerge merges the test data from the new harness and its initialization
command into the existing harness model.

newInitCmd = 'control mode=2;'
[path,newModelName] = fileparts(newFiles.HarnessModel);
sldvmergeharness (modelName, newModelName, newInitCmd);

newInitCmd =

‘control _mode=2;'

5-43

5 Specifying Parameter Configurations

Executing the Tests in the Harness Model

We close the second harness model that was created because the test cases have been merged into
the first harness model. You can execute the suite of tests by clicking the 'Run all' button on the
Signal Builder.

close system(newModelName,0);
sldvdemo playall(modelName);

Clean Up

To complete the example, close the models and remove the generated files.
close system(modelName,0);

close system('sldvdemo param controller',0);

delete(files.HarnessModel);
delete(newFiles.HarnessModel);

5-44

Generate Parameters Values

Generate Parameters Values

This example shows how to tune parameters using parameter configuration file for Simulink® Design
Verifier™ analysis. The model contains the parameter control mode that enables the active
controller and selects its output to be the model output. Simulink Design Verifier treats this
parameter as an input that is constrained to be either 1 or 2 and generates the appropriate value for
each test case.

open_system('sldvdemo param identification');

Simulink Design Verifier
Parameter Identification

| contral_made |—>—|

| control_mode l—p
r

n 1
i1 ; M delta throt -—0 e 1)
delta throt
Pl Controller
| contral_mode |—>
v
ﬂ. * 2
™ dalta throt —

P Controller

Copyright 2006-2019 The MathWaorks, Inc.

5-45

5 Specifying Parameter Configurations

Extend Existing Test Cases After Applying Parameter
Configurations

5-46

This example shows how to achieve missing coverage by extending existing test cases after applying
parameter configurations.

In this example, you generate test cases for a model and review the analysis results. The results show
that the model consists of unsatisfiable objectives and does not achieve full coverage. Then, you apply
parameter configurations in the model and reuse the previously generated test cases to achieve full
model coverage.

Step 1: Generate Initial Test Cases and Review Results

The sldvexParameterController model is a cruise control model that controls the throttle speed
by selecting a P Controller or PI Controller. The ControllerModeSelection subsystem uses the
SelectMode parameter to select the controller mode. Define the enumerated data type for
Selectmode by using the function Simulink.defineIntEnumType. For more information on
enumerated values, see “Use Enumerated Data in Simulink Models”.

Simulink.defineIntEnumType('EnumForControllerSelection', ...
{'Pmode', 'PImode'},[1;2]);

SelectMode = Simulink.Parameter;

SelectMode.Value = EnumForControllerSelection.Pmode;

model = 'sldvexParameterController';

open_system(model);

Extend Existing Test Cases After Applying Parameter Configurations

Simulink Design Verifier
Extend Test Cases in Presence of Parameter Configuratios

h 4

D,
enable targat > @
2

brake

D,
set [0 1007
Actual speed
O ——
d Tl
spee I Throttle ——#(2)
1 throttle

¥

-
[
=
LA

¥

Active Control | Active Control

8
¥

inc Throttle Input
Target Speed —l_..

@
¥

dec ControllerModeSelection

Controller

This example shows how to extend exisiting test cases in presence of parameter configurations.
The ControllerModeSelection selects the mode of the controller based on the parameter value.

Copyright 2018 The MathWorks, Inc.

Set the sldvoptions and analyze the model by using the specified options.

opts = sldvoptions;

opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'MCDC';

[status, files] = sldvrun(model, opts, true);

After the analysis completes, the Results Summary window displays that 15 out of 54 objectives are
unsatisfiable.

In the Results Summary window, click Highlight analysis results on model. Double-click the
ControllerModeSelection subsystem. The PI ModeSelection and P_ModeSelection
subsystems are highlighted in red and consist of unsatisfiable objectives.

5-47

5 Specifying Parameter Configurations

SelectMode I In1
In2 Outt >
Active Control > merge
B In3
G
Throftie Input PI_ModeSelection
I In
B In2 . Outt
B In3
P_ModeSelection

To view the model coverage report, in the Results Summary window, click Simulate tests and

produce a model coverage report. The report shows that the model does not achieve full coverage.

Summary

Model Hierarchy/Complexity

Decision Condition MCDC Test Condition Execution
1. sldvexParameterController 10 64% e 230 o 3% 100% o 240 ——
2. .. Controller 0 64% o 230 o 3% NA 4% m—
k. ControlletModeSelection 6 38% mm 670 — 250 == NA 670 —
4o P _ModeSelection 2 100% 57 — 30% — NA 100% eo—
b T P Controller? 2 100% eo—— A NA NA 100% —
Bl PI ModeSelection 4 17% m 670 — 0% NA 43% o
T PI Controller] 4 17% m NA NA NA 0%

5-48

Full coverage is not achieved because the parameter value SelectMode is restricted to the default
value of EnumForControllerSelection.Pmode. Consequently, full coverage is not achieved for
the PI ModeSelection subsystem.

Step 2: Configure Parameter Configurations and Extend Existing Test Cases

If you apply parameter configurations, Simulink Design Verifier treats the parameter as a variable
during analysis and constraints the values based on the constraint values that you specify.

Apply parameter configurations for the SelectMode parameter by specifying the constraint values
for parameterValue.

Extend Existing Test Cases After Applying Parameter Configurations

controlParameter = [{'SelectMode'}];

parameterValue = [{'[EnumForControllerSelection.Pmode EnumForControllerSelection.PImode]'}];
opts.Parameters = 'on';

opts.ParametersUseConfig = 'on';

opts.ParameterNames = controlParameter;

opts.ParameterConstraints = parameterValue;

opts.ParameterUseInAnalysis = {'on'};

To reuse the previously generated test cases, configure the analysis option to extend the existing test
cases and specify the existing test file.

opts.ExtendExistingTests = 'on';
opts.IgnoreExistTestSatisfied = 'off';
opts.ExistingTestFile = files.DataFile;

Step 3: Perform Analysis and Review Coverage Report
Analyze the model by using the specified options.

[status, fileNames] = sldvrun(model, opts, true);

After the analysis completes, the Results Summary window displays that all the objectives are
satisfied.

To generate model coverage report, click Simulate tests and produce a model coverage report.
The report shows that the model achieves full coverage.

Summary

Model Hierarchy/Complexity Test 1
Decision Execution

1. sldvexFollApController & 10090 s 10079 S———

(=]

2. ... Eoll Reference 100% = 100% —

.. Latch Phi 1 100% o 100% ——

Lad

To complete this example, close the model.
close system('sldvexParameterController', 0);
See also

» “Parameter Configuration for Analysis” on page 5-2
* “When to Extend Existing Test Cases” on page 8-2

5-49

Detecting Design Errors

“What Is Design Error Detection?” on page 6-2

“Derived Ranges in Design Error Detection” on page 6-3

“Analyze Models for Design Errors” on page 6-4

“Dead Logic Detection” on page 6-7

“Detect Dead Logic Caused by an Incorrect Value” on page 6-12

“Common Causes for Dead Logic” on page 6-15

“Detect Integer Overflow and Division-by-Zero Errors” on page 6-19

“Check for Specified Minimum and Maximum Value Violations” on page 6-23
“Detect Out of Bound Array Access Errors” on page 6-28

“Detect Non-Finite, NaN, and Subnormal Floating-Point Values” on page 6-33
“Detect Data Store Access Violations” on page 6-37

“Detect Violations of High-Integrity Systems Modeling Guidelines” on page 6-41
“Filter Objectives by Using Simulink Design Verifier Filter Explorer” on page 6-46
“Detect Integer Overflow Errors” on page 6-51

“Detect Out of Bound Array Access Example Model” on page 6-54

“Detect Design Errors in C/C++ Custom Code” on page 6-57

“Exclude and Justify Objectives for Design Error Detection” on page 6-59

“Detect Integer Overflow in a Model with Complex Inputs” on page 6-65

“Debug Integer Overflow Design Error Detection Using Model Slicer” on page 6-68
“Analyzing the Results for a Dead Logic Analysis” on page 6-73

Analyzing the Results for a Dead Logic Analysis

6 Detecting Design Errors

What Is Design Error Detection?

Design error detection is a Simulink Design Verifier analysis mode that detects the following types of
erTors:

* Dead logic

* Out of bound array access

* Integer or fixed-point data overflow

» Division by zero

* Errors in floating-point usage (Inf/NaN and subnormal)

* Intermediate signal values that are outside the specified minimum and maximum values
» Data store access violations

» Specified block input range violations

* High-Integrity Systems Modeling checks

Before you simulate your model, analyze your model in design error detection mode to find and
diagnose these errors. Design error detection analysis determines the conditions that cause the error,
helping you identify possible design flaws. Design error detection analysis also computes a range of
signal values that can occur for block outports and Stateflow local data in your model.

Model objects that have decision or condition outcomes receive dead logic detection.
After the analysis, you can:

* Click individual blocks to view the analysis results for that block.
* Create a harness model containing test cases that demonstrate the errors.
* Create an analysis report that contains detailed results for the entire model.

See Also
“Analyze Models for Design Errors” on page 6-4 | “Design Verifier Pane: Design Error Detection” on
page 15-42

6-2

Derived Ranges in Design Error Detection

Derived Ranges in Design Error Detection

When you specify minimum and maximum values for a signal or data in a model, these values define a
design range.

During design error detection, the software analyzes the model behavior and computes the values
that can occur during simulation for:

* Block Outports
o Stateflow local data

The range of these values is called a derived range.

The Use specified input minimum and maximum values parameter in the Configuration
Parameters dialog box, on the Design Verifier pane, if enabled, tells the analysis to consider the
design ranges on the model input ports as constraints when calculating the derived ranges. By
default, the Use specified input minimum and maximum values parameter is enabled.

If Use specified input minimum and maximum values is disabled, the software does not restrict
the signals when computing the derived ranges.

To see how this process works, consider the following model.

[-35..35] [0..30]

| —C

In this model, the design ranges are:

* Inport block: [-35..35]
* Abs block output: [0..30]

Given the design range on the Inport block, the only possible values for the Abs block output are
values from 0 to 35. Therefore, the derived range for the Abs block is [0..35].

However, if you disable the Use specified input minimum and maximum values parameter, the
analysis calculates the derived ranges based on unrestricted values of the input ports of the model. In
the preceding model, the only valid outputs of the Abs block are nonnegative numbers. Consequently,
the derived range for the Abs block is [0..Inf].

6-3

6 Detecting Design Errors

Analyze Models for Design Errors

6-4

In this section...

“Workflow for Detecting Design Errors” on page 6-4

“Understand the Analysis Results” on page 6-4

“Review the Latest Analysis Results in the Results Summary Window” on page 6-5
“Check For Design Errors using the Model Advisor” on page 6-6

Workflow for Detecting Design Errors

To analyze your model for design errors, use the following workflow:

Verify that your model is compatible with Simulink Design Verifier software.

2 Ifyou have Stateflow objects in your model, in the Configuration Parameters dialog box, on the
Diagnostics > Stateflow pane, set Unreachable execution path to error.

3 Specify options that control how Simulink Design Verifier detects design errors in your model.
Execute the Simulink Design Verifier analysis.
5 Review the analysis results.

Understand the Analysis Results

When you run a design error detection analysis, by default, the software highlights model objects in
one of four colors so that the analysis results are easy to review.

Model Object Analysis Results
Highlighting Color

Green Both of the following:

* The analysis proved the absence of dead logic.

* The analysis proved the absence of errors for the other design error
detection checks.

Red At least one of the following:

* The analysis found dead logic.

* The analysis found an error for one of the other design error detection
checks.

Analyze Models for Design Errors

Model Object Analysis Results
Highlighting Color
Orange For at least one objective, the analysis could not determine if the model
object has dead logic or one of the other design error detection errors.
This situation can occur when:
* The analysis times out.
* The software cannot determine if an error occurred or not. This result
is due to:
* Automatic stubbing; for more information, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-7.
* Limitations of the analysis engine.
Gray The model object was not part of the analysis.
Steel blue All objectives from this model object were excluded or justified using a
filter files provided during the analysis.

The Simulink Design Verifier Results window initially displays a summary of the analysis results, as in

the following example.

'D'ﬁ Results: sldvdemo_design_error_detection — O >

5/7 objectives valid

Results:

Design error detection completed normally.

2/7 objectives falsified - nead simulation

* Open filter viewer
* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (FDF)
* Create harness model

* Export test cases to Simulink Test

When you click an object in the model, additional details about the results for that object are
displayed in the Simulink Design Verifier Results window.

Tip By default, the Simulink Design Verifier Results window is always the topmost visible window. To
change that setting, click the & icon and on the context menu, clear the check mark next to Always

on top.

Review the Latest Analysis Results in the Results Summary Window

If you close the analysis results to fix the cause of the errors in your model, you might need to review
the analysis results again. As long as your model remains unchanged, you can view the results of your
most recent analysis results in the Results Summary Window.

6 Detecting Design Errors

6-6

To view the latest results, on the Design Verifier tab, in the Review Results section, click Results
Summary.

For any Simulink Design Verifier analysis, from the Results Summary Window, you can perform the
following tasks:

Open filter explorer.

Highlight the analysis results on the model.

View tests in Simulation Data Inspector.

Generate a detailed analysis report.

Create the harness model, or if the harness model already exists, open it.

Note If no objectives are falsified or satisfied, you cannot create the harness model.

Export test cases to Simulink Test.
View the data file.
View the log file.

Check For Design Errors using the Model Advisor

You can perform design error detection analysis from the Model Advisor, which is particularly useful
if you need to perform other model checks. To analyze your model from the Model Advisor, follow this
high-level workflow:

A W N R

Specify options that control how Simulink Design Verifier detects design errors in your model.
Open the Model Advisor.
From the system hierarchy, select the model or model component you want to analyze

Expand the design error detection analysis items. Look for Simulink Design Verifier under either
By Product or By Task.

If you have not checked your model for compatibility, enable the compatibility check for Simulink
Design Verifier.

Select the design error detection checks you want to run.
Run the selected checks.
Review the analysis results.

See Also

More About

“Check Your Model Using the Model Advisor”

Dead Logic Detection

Dead Logic Detection

In this section...

“Run a Partial Check for Dead Logic” on page 6-7
“Run an Exhaustive Analysis for Dead Logic” on page 6-7
“Run a Dead Logic Analysis and Review Results” on page 6-8

Before you simulate a model, use dead logic detection to analyze the model for dead logic. In
Simulink Design Verifier, design error detection for dead logic consists of two analysis options:

Dead logic (partial): If you select this option, Simulink Design Verifier analyzes your model without
making any approximations, such as rational approximation for floating points, or while loop
approximation. For more information, see “Role of Approximations During Model Analysis” on
page 2-20. With this option, Simulink Design Verifier does not report active logic or undecided
objectives and it may not identify some dead logic in your model.

This option is available in:

* The Model Advisor. See “Check For Design Errors using the Model Advisor” on page 6-6.
* The Configuration Parameters dialog box, on the Design Verifier > Design Error Detection
pane.

Run exhaustive analysis: With this option, Simulink Design Verifier reports active logic in addition
to dead logic as well as undecided objectives. This option may in some cases identify or find
additional dead logic. The analysis may use approximations and are reported accordingly.

This option is available in Configuration Parameters dialog box, on the Design Verifier > Design
Error Detection pane.

Run a Partial Check for Dead Logic

If you are not using the Model Advisor, to detect dead logic:

On the Design Verifier tab, in the Mode section, select Design Error Detection.

Click Error Detection Settings.

In the Configuration Parameters dialog box, on the Design Verifier > Design Error Detection
pane:

a Enable the “Dead logic (partial)” on page 15-43 option.

b Clear the “Run exhaustive analysis” on page 15-43 option, if it is selected.

¢ Set “Coverage objectives to be analyzed” on page 15-44 to MCDC. The available options
from the drop-down menu are Decision, Condition Decision, and MCDC.

To apply these settings, click OK and close the Configuration Parameters dialog box.
Click Detect Design Errors.

Run an Exhaustive Analysis for Dead Logic

1
2

On the Design Verifier tab, in the Mode section, select Design Error Detection.
Click Error Detection Settings.

6 Detecting Design Errors

6-8

In the Configuration Parameters dialog box, on the Design Verifier > Design Error Detection
pane:

Enable the “Dead logic (partial)” on page 15-43 option.

Clear the “Run exhaustive analysis” on page 15-43 option, if it is selected.

¢ Set “Coverage objectives to be analyzed” on page 15-44 to MCDC. The available options
from the drop-down menu are Decision, Condition Decision, and MCDC.

To apply these settings, click OK and close the Configuration Parameters dialog box.
Click Detect Design Errors.

Run a Dead Logic Analysis and Review Results

This example shows how to detect dead logic in the sldvSlicerdemo dead logic example model.
Dead logic detection finds the unreachable objectives in the model that cause the model element to
remain inactive.

1

Open the sldvSlicerdemo dead logic model.

open_system('sldvSlicerdemo dead logic');

On the Design Verifier tab, in the Mode section, select Design Error Detection.

Click Error Detection Settings.

In the Configuration Parameters dialog box, on the Design Verifier > Design Error Detection
pane:

a Enable the “Dead logic (partial)” on page 15-43 option.

b Clear the “Run exhaustive analysis” on page 15-43 option, if it is selected.

¢ Set “Coverage objectives to be analyzed” on page 15-44 to MCDC. The available options
from the drop-down menu are Decision, Condition Decision, and MCDC.

Click Detect Design Errors.

The software analyzes the model for dead logic and displays the results in the Results Summary
window. The result indicates that 10 of the 32 objectives were found to be dead logic.

Dead Logic Detection

Imulin esign Vernfier Besults Summanrny: sldvslicer emo_dead_logic
[*a] Simulink Design Verifier Results § ry: sldvSlicerdemo_dead_logi e
Progress |
Objectives processed 24/24
Valid 0
Falsified 7
Elapsed time 0:38

Design error detection completed normally.

Simulink Design Verifier ran a partial check for dead logic. Consider enabling the 'Dead
logic > Run exhaustive analysis' configuration option in order to perform an exhaustive
analysis.

7/24 objectives are dead logic

Results:

* Open filter viewer
* Highlight analysis results on maodel
* Detailed analysis report: (HTML) (FDF)

Data saved in: sldvslicerdemo dead logic_sldvdata.mat
in folder: matlab\sldv_output\sldvSlicerdemo _dead logic

View Log Close

Click Highlight analysis results on model. The dead logic model elements are highlighted in
red.

Open the Controller subsystem, and click the OR block highlighted in red. The Result
Inspector displays the summary of the dead logic.

The set input is equal to 1, so the input port 1 of the OR block can only be true. The status
implies that the input port 1 false condition is a dead logic. Similarly, the input port 2is
unreachable, as the objective never executes and is dead logic.

6-9

6 Detecting Design Errors

*L Results: sldvSlicerdemo_dead_logic — O X
~ O

Back to summary

enable sldvSlicerdemo_dead_logic/Controller/Logical Operator2
Possible causes for dead logic:

(2) NOT AND

brake This block is treated as short-circuiting during analysis. This causes the dead logic for input port 2. For
maore information, see documentation.

peA Locic:
Logic: input port 1 can only be true Jusiify Logic: input port 1
N P fals=
Active last step | = Logic: input port 2 unreachable Justify Logic: input port 2 Justify Logic: input port 2
true false

6-10

Derived Ranges:

Outport 1:T

8 To view the detailed analysis report, in the Results Summary window, click HTML.

The report displays the summary of all the results that are dead logic in the model.

Tvpe Model Item Description
. . logical trigger input can never be false (output is from
1 Decision Controller/Switchl = == P (outp
3rd input port)
2 Condition Controller/T.ogical Operator? Logic: input port 1 can only be true
3 Condition Controller/T ogical Operator? Logic: input port 2 unreachable
4 Condition Controller/T ogical Operator Logic: wnput port 3 can only be true
5 Decision Controller/PT Controller/Discrete-Time Intesrator integration result == lower limit can never be true
6 Decision Controller/PT Controller Diserete-Time Integrator integration result == upper limit can never be true
Dead Logic

The software stores the detailed analysis results in the DeadLogic field in the “Manage
Simulink Design Verifier Data Files” on page 13-7. You can use the data file for further analysis
of the results.

Suggestion:

You can use Model Slicer to find the parameters which could have an impact on a particular block by
following these steps:

a. Create an object of SLSlicerAPI.ParameterDependence using Model Slicer.

slicerObj = slslicer('sldvSlicerdemo _dead logic');
pd = slicerObj.parameterDependence;

b. Find the parameters affecting the Discrete-I'ime Integrator block.

param = parametersAffectingBlock(pd, 'sldvSlicerdemo dead logic/Controller/PI Controller/Discret

Dead Logic Detection

param =

VariableUsage with properties:

Hame: 'c!'
Source: 'kbase workspace'
SourceType: 'base workspace'
Users: {'sldelicerdemn_dead_lngichDnstant'}

The image above displays the parameters returned by the function parametersAffectingBlock
which have an impact on the Discrete-Time Integrator block. The parameters returned by the
function can be considered for tuning.

c. Perform clean-up to exit compile state of the model.

slicerQObj.terminate;

See Also

More About

. “Design Verifier Pane: Design Error Detection” on page 15-42

6-11

6 Detecting Design Errors

Detect Dead Logic Caused by an Incorrect Value

6-12

In this section...

“Analyze the Fuel System Model” on page 6-12

“Review the Results and Trace to the Model” on page 6-13
“Investigate the Cause of the Dead Logic” on page 6-13

“Update the Input Constraint and Reanalyze the Model” on page 6-14

Dead logic detection helps you to identify:

* Model design errors.

+ Extraneous model elements.

* Model elements that should be executed, but are not.

In this example, you analyze a fuel rate controller model to determine if the model contains dead

logic. Dead logic detection finds the incorrect variable value that causes a transition condition in a
Stateflow chart to remain inactive.

Analyze the Fuel System Model

1 Open the model.
sldvdemo fuelsys logic simple

Ensure that the current folder is writable.
2 Configure dead logic detection.

On the Design Verifier tab, in the Mode section, select Design Error Detection.
3 Select Error Detection Settings.
In the Configuration Parameters dialog box, on the Design Verifier > Design Error Detection
pane:
a Enable the “Dead logic (partial)” on page 15-43 option.
Clear the “Run exhaustive analysis” on page 15-43 option, if it is selected.

¢ Set Coverage objectives to be analyzed to Condition Decision. The available options
from the drop-down menu are Decision, Condition Decision, and MCDC.

5 Click Detect Design Errors.
The results dialog box shows that there are 2/109 objectives that are dead logic.

Detect Dead Logic Caused by an Incorrect Value

L Results: sldvdemo_fuelsys_logic_simple — O ot

Design error detection completed normally.
2/109 objectives are dead logic

Results:

* Open filter viewer
* Detailed analysis report: (HTML) (PDF)

Review the Results and Trace to the Model

Create an analysis report. From the results inspector window, click HTML.
Scroll to the Dead Logic section. The table lists two instances of dead logic.

In the Description column, one of the dead logic instances is the false condition of press <
zero_thresh. The dead logic result indicates that in the simulation, the false condition was
not executed. This logic is part of the Sens Failure Counter.INC transition.

4 Click the Model Item link. Simulink highlights the transition in the chart.

s peed_Sensor_Maode

peed==0 & press < zero_thresh]/

i Sens_Failure_Counter.INC :
E e speed_ngrm speed_fail i
i entry: fall_state[SPEED] = 0 entry: fail_state[SPEED] = 1 | !
i . ,.] |
| ::5 [speed = 0] | i
! \ Sens_Failure_Counter.DEC ~ i

' —

e #

Investigate the Cause of the Dead Logic

1 The logical statement controlling the transition is

speed==0 & press < zero_thresh
Return to the report. Scroll to the Constraints section.

The value of the input control logic/Input Data "press" is constrained from O through 2.
Click the link to open the input in the Model Explorer.

4 Select the Model Workspace in the Model Explorer. In the contents table, select zero thresh.
The value of zero thresh is 250.

Given the constrained value of press, it is always less than zero_thresh and therefore, the
false condition is never exercised.

6-13

6 Detecting Design Errors

Update the Input Constraint and Reanalyze the Model

1 Change the value of zero thresh to 0.250.
2 Reanalyze the model. On the Design Verifier tab, click Detect Design Errors.
3 Inthe new results, the objective is no longer dead logic.

See Also

Related Examples
. “Dead Logic Detection” on page 6-7

6-14

Common Causes for Dead Logic

Common Causes for Dead Logic

Common modeling patterns that lead to dead logic in a model include:

In this section...

“Short-Circuiting of a Logical Operator Block During Analysis” on page 6-15
“Conditional Execution of a Block” on page 6-15

“Parameter Values Treated as Constants” on page 6-16

“Upstream Blocks” on page 6-17

“Library-Linked Blocks” on page 6-17

“Restrictions on Signal Ranges” on page 6-17

When you perform design error detection analysis, Simulink Design Verifier reports the common
causes of dead logic in the Results window.

Short-Circuiting of a Logical Operator Block During Analysis

Simulink Design Verifier treats logic blocks as if they are short-circuiting when analyzing for dead
logic.

For example, in this model, if In2 is false, the software ignores the third input due to the short-

circuiting. The Results window lists this port as dead logic. See “Logic Operations Short-Circuiting”
on page 2-26.

*a

Back to summary
sldvexDeadLogic/Logical Operatorl

Possible causes for dead logic:

3 AMND —h- This black is treated as short-circuiting during analysis. For more information, see documentation.

Out2
DEAD LOGIC:

Logic: input port 3 can only be true Justify Logic: input port 3 false

Derived Ranges:

Outport 1:[F..T]

Logical
Operator

Conditional Execution of a Block

If your model consists of Switch or Multiport Switch blocks and the Conditional input branch
execution parameter is set to On, the conditional execution can often cause unexpected dead logic.

6-15

6 Detecting Design Errors

Consider this example model where the Conditional input branch execution parameter is set to
On. The AND Logical Operator block is conditionally executed, which causes the dead logic for the
block. For more information, see “Conditional input branch execution”.

~ O#
Back to summary
Imd
sldvexDeadLogic/Logical Operator2
1 = » I -0 _._ Possible causes for dead logic:
Constant Outl This block is conditionally executed as a result of the 'ConditionallyExecuteInputs' configuration parameter. For
more information, see documentation.
In5 AND - I:l DEAD LOGIC:
Logic: input port 1 unreachable Justify Logic: input port 1 true Justify Logic: input port 1 false
Im T " Logic: input port 2 unreachable Justify Logic: input port 2 true Justify Logic: input port 2 false
*gICE Switch
Operator2

Parameter Values Treated as Constants

If your model contains parameters, Simulink Design Verifier treats the values as constants by default.
This might cause dead logic in the model. In these cases, consider configuring these parameters to be
tuned during analysis.

For example, consider this model, where all of the parameters are set to zero. These settings cause
the dead logic for the Less Than block.

6-16

Common Causes for Dead Logic

(1) —*
<
In1
Param#a I+
Constant
ParamB I+
Constant1
Md = . L L - D ri 1 }
Ot
Logical
ParamC = + Operator
Constant2 Less Than
Paraml I+
Constant3 m =5 I
Add1 In AMND »
(33— I:I
o
In3
Logica
Jparator

Switch

Upstream Blocks

When a particular block has dead logic, this often leads to a cascade effect that causes downstream
blocks to have dead logic.

Consider the above example model. The dead logic in the Less Than block causes the dead logic in
the corresponding downstream blocks. It is therefore often helpful to review the upstream dead logic
before reviewing any downstream dead logic.

Library-Linked Blocks

Library blocks may be written with defensive conditions that are redundant in some of the locations
where they are used. In some cases, this may cause dead logic. See “Exclude and Justify Objectives
for Design Error Detection” on page 6-59.

Restrictions on Signal Ranges

Root-level Inport blocks with minimum and maximum values as constraints and Test Condition blocks
in the test generation may cause dead logic. For example, consider ConditionGreaterThan0 Switch
block, where the second Inport block has a minimum and maximum range of 1 and 100, respectively.
This causes the Switch block in this subsystem to have dead logic.

6-17

6 Detecting Design Errors

P1 Results: sldvexCommonCausesOfDeadLogic - O >
- B

@ Back to summary

sldvexCommonCausesOfDeadLogic/ Assumptions/ ConditionGreaterThan0

[1..800] |
(D e DEAD LOGIC:
trigger > threshold can never be false Justify trigger > threshold
(output is from 3rd false (output is from 3rd

@ — input port) input port}

S —
Conditordsreater Thanl

Derived Ranges:

Outport 1:[-1.7977e+308..1.7977e+308]

See Also

More About

. “Run a Dead Logic Analysis and Review Results” on page 6-8
. “Analyzing the Results for a Dead Logic Analysis” on page 6-73

6-18

Detect Integer Overflow and Division-by-Zero Errors

Detect Integer Overflow and Division-by-Zero Errors

In this section...

“About This Example” on page 6-19
“Analyze the Model” on page 6-19

“Review the Analysis Results” on page 6-19

About This Example

The following sections describe how to analyze the sldvdemo cruise control fxp fixed model
for integer overflow and division-by-zero errors.

Analyze the Model

Open and check model for integer overflow and division-by-zero errors:

Open the sldvdemo cruise control fxp fixed model.

2 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode
settings, click Settings.

3 In the Configuration Parameters dialog box, select Design Verifier > Design Error Detection.
On the Design Error Detection pane, select:

* Integer overflow
* Division by zero

5 In the Configuration Parameters dialog box, on the Diagnostics > Data Validity pane, set
Signals > Wrap on overflow, Signals > Saturate on overflow and Parameters > Detect
overflow to error.

Click OK to save these settings and close the Configuration Parameters dialog box.
In the Mode section, select Design Error Detection.
Click Detect Design Errors.

When the analysis is complete:

* The software highlights the model with the analysis results.
* The Simulink Design Verifier Results dialog box opens and displays a summary of the analysis.

Review the Analysis Results

* “Review the Results on the Model” on page 6-19
* “Review the Harness Model” on page 6-21
* “Review the Analysis Report” on page 6-22

Review the Results on the Model

The derived ranges can help you understand the source of an error by identifying the possible signal
values, as you can see by taking the following steps:

6-19

6 Detecting Design Errors

6-20

1

At the top level of the sldvdemo cruise control fxp fixed model, click the Fixed-Point
Controller subsystem.

The Simulink Design Verifier Results window displays the derived range of possible signal values
for the Outports, as calculated by the analysis:

The values of Outport 1 (throt) range from —2.6101 to 2.6096.
The values of Outport 2 (target) range from 0 to 255.9960.

'D'i Results: sldvdemo_cruise_control_fup_fixed — O)4

~

Back to summary
sldvdemo_cruise_control_fxp_fixed/Fixed-Point Controller

Derived Ranges:

Outport 1: [-2.610107421875..2.609619140625]
Outport 2: [0..255.99609375]

Click the Outport blocks of the sldvdemo cruise control fxp fixed model to see the same
signal bound values.

Open the Fixed-Point Controller subsystem.

Two objects in this subsystem are outlined in red. The PI Controller subsystem is outlined in
green.

Click the Sum block, outlined in red, that provides the error input to the PI Controller subsystem.

-, Slf_Eng :
+ error throt -

Pl Controller

This Sum block can produce an overflow error. The analysis found a test case that can result in a
computation where the output of the Sum block exceeds the range [-128..127.9960].

Detect Integer Overflow and Division-by-Zero Errors

'D'ﬁ Results: sldvdema_cruise_control_fxp_fixed — O >
~ 9
Back to summary

sldvdemo_cruise_control_fxp_fixed/Fixed-Point ControllerfSum1
Owverfloww ERROR - View test case

Derived Ranges:
Cutport 1: [-128..127.99609375]

To more fully understand this error, click the two blocks that provide the inputs to the Sum block.
In the Simulink Design Verifier Results window, view their derived ranges:

* The third Outport from the Bus block has a range of [0..256].
* The Outport from the Switch block has a range of [0..256].

You can see that the sum operation for these signal ranges can compute a value that exceeds the
range [-128..128] for the Outport of the Sum block.

The analysis reports the overflow error on the Sum block. The analysis does not propagate this
error and assumes that the Sum block output is within the valid range for any subsequent
computations.

Click the PI Controller subsystem, outlined in green. None of the blocks in the PI Controller
subsystem can produce overflow or division-by-zero errors. When the software analyzes the PI
Controller subsystem, it ignores the overflow error from the Sum block and assumes that the
inputs to the subsystem are valid.

Keep the sldvdemo_cruise control fxp fixed model open. In the next section, you create the
harness model to see the test case that generates the Sum block overflow error.

Review the Harness Model

To see the test cases that demonstrate the errors, generate the harness model from the Simulink
Design Verifier Results window:

1

In the sldvdemo cruise control fxp fixed model, open the Fixed-Point Controller
subsystem.

Click the Sum block, outlined in red, that provides the error input to the PI Controller subsystem.

The Simulink Design Verifier Results window displays information that an overflow error
occurred.

In the Simulink Design Verifier Results window, click View counterexamples.

The software creates a harness model containing the test case with the signal values that cause
this overflow error.

In the harness model, the Signal Builder dialog box opens, with Test Case 2 displayed.
Click the Start simulation button to simulate the model with this test case.

As expected, the simulation fails due to an overflow error at the Sum block in the Fixed-Point
Controller subsystem.

6-21

6 Detecting Design Errors

6-22

For more information, see “Manage Simulink Design Verifier Harness Models” on page 13-13.
Review the Analysis Report

To view an HTML report containing detailed information about the analysis report for the
sldvdemo cruise control fxp fixed model:

1 In the Simulink Design Verifier Results window, to redisplay the results summary, click Back to
sumimary.

2 Click Generate detailed analysis report.
The software generates a detailed analysis report that opens in a browser.

For the sldvdemo cruise control fxp fixed model, the Design Error Detection Objectives
Status chapter of the report provides detailed results in two categories:

* Objectives Valid — Model objects that did not produce errors

* Objectives Falsified with Counterexamples — Model objects for which test cases generated
errors

Model objects that have decision or condition outcomes receive dead logic detection. For more
information on the complete list of model objects that have decision or condition objectives, see
“Model Objects That Receive Coverage” (Simulink Coverage).

For more information, see “Review Results” on page 13-35.
See Also

More About

. “Detect Integer Overflow Errors” on page 6-51
. “Detect Integer Overflow in a Model with Complex Inputs” on page 6-65

Check for Specified Minimum and Maximum Value Violations

Check for Specified Minimum and Maximum Value Violations

In this section...

“Limitations of Checking Specified Minimum and Maximum Value Violations” on page 6-23
“About This Example” on page 6-23

“Create the Example Model” on page 6-24

“Analyze the Model” on page 6-25

“Review the Analysis Results” on page 6-25

During a design error detection analysis, the software checks the specified minimum and maximum
values on intermediate signals throughout the model and on the output ports. These values define the
design ranges.

The analysis checks for specified minimum and maximum values on:

» Simulink block outputs, with the exception of the limitations described in the next section
* Simulink.Signal objects

» Stateflow data objects

* MATLAB for code generation data objects

* Global data store writes

If the analysis detects that a signal exceeds the design range, the results identify where in the model
the errors occurred. In addition, you can generate a harness model that contains test cases that
demonstrate how the error occurred.

Limitations of Checking Specified Minimum and Maximum Value
Violations

If you analyze a model checking if specified minimum and maximum values are exceeded, the
software cannot check minimum and maximum values specified on:

* Any Mux block with an output connected to a Selector block
* Merge block inputs

To work around this limitation, use a Simulink.Signal object on the Merge block output and
specify the range on the Simulink.Signal object.

Note For information about how a Simulink Design Verifier analysis handles specified minimum and
maximum values on input ports, see “Minimum and Maximum Input Constraints” on page 11-2.

About This Example

In this section, you create and analyze a model that has specified design minimum and maximum
values on:

* The input ports

6-23

6 Detecting Design Errors

6-24

* The output ports of two of the intermediate blocks

The design error detection analysis identifies blocks where the output values exceed the design
range. If the analysis detects this error, this example demonstrates how the analysis uses the

specified minimum and maximum values when continuing the analysis.

Create the Example Model

Create the model for this example:

1 Inthe MATLAB toolstrip, on the Home tab, select New > Simulink Model.

2 From the Simulink Commonly Used Blocks library, add the following blocks to the model and

assign the indicated parameter values.

Block Tab Parameter Value
Inport Signal Attributes Minimum 0
Inport Signal Attributes Maximum 5
Gain Main Gain 5
Gain Signal Attributes Output minimum 0
Gain Signal Attributes Output maximum |20
Gain Signal Attributes Output data type intl6
Saturation Main Upper limit 25
Saturation Main Lower limit -25
Saturation Signal Attributes Output minimum -25
Saturation Signal Attributes Output maximum |25
Outport No changes

Connect the four blocks as shown.

O F——

Im1 . 5 Out
Gain Saturation

To display the specified minimum and maximum values, on the Debug tab, select Information
Overlays > Signal Data Ranges.

On the Modeling tab, click Model Settings.
In the Configuration Parameters dialog box, on the Solver pane, under Solver selection:

a Set Type to Fixed-step.

The Simulink Design Verifier software does not support variable-step solvers.
b Set Solverto discrete (no continuous states).
On the Design Verifier pane, set Mode to Design error detection.
On the Design Verifier > Design Error Detection pane:

a Select Specified minimum and maximum value violations.

Check for Specified Minimum and Maximum Value Violations

b Clear the Integer overflow and Division by zero parameters.

In this example, you check only for intermediate minimum and maximum violations.
9 To save these settings and exit the Configuration Parameters dialog box, click OK.
10 Save the model and name it ex_interim_minmax.

Analyze the Model

To analyze the example model to identify any intermediate signals that violate the specified minimum
and maximum values, perform design error detection analysis.

On the Design Verifier tab, click Detect Design Errors.
After the analysis is complete:

* The software highlights the model with the analysis results.

B [0..5] : [0..20] [-25..25]

Im1 Dt

8in Saturation

» The Simulink Design Verifier Results dialog box opens and displays a summary of the analysis.

'p'} Results: ex_interim_minmax - O >

w

Design error detection completed normally.
1/2 objective is valid.
1/2 objective is falsified.

Results:

* View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (FDE)
* Create harness model

* Export. test cases to Simulink Test

Review the Analysis Results

» “Review Results on the Model” on page 6-25
* “Review the Harness Model” on page 6-26
* “Review the Analysis Report” on page 6-27

Review Results on the Model

In the model window, the Gain block is colored red and the Saturation block is colored green. This
indicates that:

* At least one objective associated with the Gain block was falsified. For this example, the analysis
falsified exactly one objective.

6-25

6 Detecting Design Errors

» All objectives associated with the Saturation block were satisfied. For this example, the analysis
satisfied exactly one objective.

To understand these results:

1 Click the Gain block.

The Simulink Design Verifier Results window shows that the design range for the output was
[0..20], but the analysis detected an error and generated a test case that demonstrates that error.
Because the design range for the input block is [0..5], when the input to the Gain block is 5, the
output is 25, which exceeds the specified maximum value on that port.

The analysis computes and displays the derived range to help you understand how the design
range was exceeded.

'D'i Results: ex_interim_minmax — O >
~ 9
Back to summary

ex_interim_minmax/Gain
Design Range: [0..20] ERROR - View test case

Derived Ranges:
Qutport 1: [0..25]

2 Click the Saturation block.

The Simulink Design Verifier Results window shows that the output of the Saturation block never
exceeded the design range [-25..25]. The input to the Saturation block never exceeded [0..25],
which is the derived range that the analysis propagated from the Gain block.

'n'i Results: ex_interim_minmax — O >
~ 9
Back to summary

ex_interim_minmax/Saturation
Design Range: [-25..25] VALID

Derived Ranges:
Qutport 1: [0..25]

Review the Harness Model

When the analysis completes, you can create a harness model contains the test cases that result in
erTors.

For the example model, view the test case that caused the design range error in the Gain block:

6-26

Check for Specified Minimum and Maximum Value Violations

After the analysis completes and the model is highlighted, click the Gain block.
In the Simulink Design Verifier Results window, click View test case.

The software creates a harness model named ex_interim minmax harness and opens the
Signal Builder block in the harness model that contains the test case.

In the Signal Builder block, one test case, whose signal value is 5, caused the output of the Gain
block to be 25, which exceeds the specified maximum of 20.

Before you simulate this test case, in the Configuration Parameters dialog box, on the
Diagnostics > Data Validity pane, set Simulation range checking to warning or error.

Setting this parameter specifies the diagnostic action to take if Simulink detects signals that
exceed specified minimum or maximum values during simulation.

+ Ifyou specify warning, the simulation displays a warning message and continues.

* Ifyou specify error, the simulation displays an error message and stops.

Click OK to save your change and close the Configuration Parameters dialog box.

In the Signal Builder block window, click Start simulation to simulate the model with this test
case.

As expected, in the MATLAB window, the simulation displays a warning or error that the output
value of the Gain block exceeds the specified maximum.

Review the Analysis Report

You can also generate an HTML report containing detailed information about the analysis report for
the ex_interim minmax model. To create this report, in the Simulink Design Verifier Results
window, click Generate detailed analysis report. The analysis report opens in a browser.

In the analysis report, the Design Error Detection Objectives Status chapter of the report
provides detailed results in two categories:

Objectives Proven Valid — The output values for the Saturation block are always within the
design range.

Objectives Falsified with Test Cases — The output values for the Gain block violated the design
range.

6-27

6 Detecting Design Errors

Detect Out of Bound Array Access Errors

6-28

In this section...

“Design Error Detection for Out of Bound Array Access” on page 6-28
“Detect Out of Bound Array Access Example Model” on page 6-28

“Limitations of Support for Out of Bound Array Access Design Error Detection” on page 6-31

Design Error Detection for Out of Bound Array Access

Simulink Design Verifier design error detection analysis detects out of bound array access errors in
your model. In simulation, when your model attempts to access an array element using an invalid
index, an out of bound array access error occurs.

To detect out of bound array access errors in your model:

On the Design Verifier tab, in the Mode section, select Design Error Detection.
Click Error Detection Settings.

In the Configuration Parameters dialog box, in Design Error Detection pane, select Out of
bound array access.

Click OK.
5 Click Detect Design Errors.

The Simulink Design Verifier log window opens, showing the progress of the analysis.
When the analysis is complete:

* The software highlights the model with the analysis results.
* The Simulink Design Verifier Results dialog box opens and displays an analysis summary.

Note If a model contains out of bound array access error, after the first occurrence of array access,
Simulink Design Verifier assumes that the array index is within bounds for the remaining analysis.
Hence, design error detection objectives that are analyzed after this assumption may be reported as
valid, even if the design errors occur in the model.

Detect Out of Bound Array Access Example Model

This example shows how to detect out of bound array access errors and review the analysis results. In
the sldvdemo array bounds example model, the ComputeIndex MATLAB Function block uses the
input signal values to determine range of indices with minimum minIdx and maximum maxIdx. The
ArrayOp Matlab, ArrayOp MAL, and ArrayOp_ SF blocks use the set of integer indices between
minIdx and maxIdx to access array elements and perform array operations.

Step 1: Open the Model

At the command prompt, enter:

open_system('sldvdemo _array bounds');

Detect Out of Bound Array Access Errors

B Simulink Design Verifier
' Design Error Detection for Out of Bound Array Access

L U

#{ minldx # ¥ —h'

fun

P maxddx

@ 14 ArrayOp_Matlab

minldx

fon maxldx

Computalndex AmayOp MAL

-
ninldg_] L ¥
L

maxddx

AmrayOp_SF

Copyright 2010-201% The MathWaorks, Inc.

Step 2: Perform Design Error Detection Analysis

The analysis options in the model are preconfigured for out of bound array access error detection. To
view these options, in the Simulink Editor, double-click the View Options button.

To perform design error detection analysis, in the Simulink Editor, double-click the Run button. The
Simulink® Design Verifier™ Results Summary window opens that displays the progress of the
analysis. When the analysis completes, the example model is highlighted with the analysis results.

6-29

6 Detecting Design Errors

= U
[F2ed]
p| miinlcix y—»{(1)
fun Out1
P el dze
[1 =[1:e4] ArrayCp Matlab
In —,
vl
[T2ed]
il dbx . mim@"ﬁ ¥
o 4) T TS
[12e4] fen maseldie ..":-xmaxldx
Computelndesx ArrayOp_MAL
ez
[f2ed]
4 minl@qﬁ ¥ —..@
‘O ouz
Po-{ el de
Arraylp SF

Step 3: Review Analysis Results

To view the analysis results inside the chart, double-click the ArrayOp SF Chart block that is
highlighted in red.

i

Design error detection completed normally.
7/9 objectives valid
2/9 objectives falsified

Results:

* Open filter explorer

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)

® Create harness model

* Save test cases/counterexamples to spreadsheet
* Export test cases to Simulink Test

Simulink Design Verifier detects that the index out of bound errors occurs in array u in state Diff.

Step 4: Create Harness and Simulate Test Cases

Click the first View test case link. Simulink Design Verifier creates and opens a harness model that
contains test cases, that demonstrate out of bound array access errors. In the Signal Builder dialog
box, click Start simulation to simulate the harness model with Test Case 2.

The simulation stops before entering the state Diff. The Stateflow® Debugger opens. The following
error is shown:

6-30

Detect Out of Bound Array Access Errors

Attempted to access index 4 of u with smaller dimension sizes. The valid
index range is 0 to 3. This error will stop the simulation. State 'Diff' in
Chart 'sldvdemo array bounds harness/Test Unit (copied from

sldvdemo _array bounds)/ArrayOp SF': y = u[maxIdx] - u[minIdx];

Keep the Stateflow® Debugger open at this breakpoint. In the sldvdemo_array bounds harness
model, hold your cursor over the Diff state to see the data values at this simulation breakpoint.

*~

"
oh
(V]

Diff
en:

y = u[maxldx] - u[minldx];

3

Data used by Diff:
maxIdx =1
minldx = 4

=

i
LAY T

y=0

Using Test Case 2 input signal values, the Computelndex MATLAB Function block determines the
range of array indices to be 1:4. One-based indexing is consistent with MATLAB syntax, so these
indices are valid for the ArrayOp Matlab MATLAB Function block and the ArrayOp MAL Stateflow®
chart.

The ArrayOp SF Stateflow® chart uses C as the action language, which does not support one-based
indexing. Thus, 1:4 is not a valid index range for array access in the chart. The valid index range for
array access in the chart is 0:3, as reported by the error message. When either maxIdx or minldx
evaluates to 4, an out of bound array access error occurs in the ArrayOp SF Chart block. For more
information on zero-based indexing support, see “Differences Between MATLAB and C as Action
Language Syntax” (Stateflow).

Limitations of Support for Out of Bound Array Access Design Error
Detection

Inf Index Values

Design error detection does not support indexing by Inf. If your model attempts to access an array

using an index value that evaluates to Inf, design error detection does not report an out of bound
array access error, but in simulation, an out of bound array access error occurs.

6-31

6 Detecting Design Errors

Index Vector Block with Scalar Data Input

Out of bound array access design error detection does not support Index Vector blocks with scalar
data inputs. If your model includes an Index Vector block that specifies a scalar data input instead of
a vector data input and the control input causes an out of bounds array access, design error detection
does not report an error, but an error occurs in simulation.

See Also

More About
. “Detect Out of Bound Array Access Example Model” on page 6-54

6-32

Detect Non-Finite, NaN, and Subnormal Floating-Point Values

Detect Non-Finite, NaN, and Subnormal Floating-Point Values

To detect occurrences of nonfinite, NaN, and subnormal floating-point values in a model:

On the Design Verifier tab, in the Mode section, select Design Error Detection.
Click Error Detection Settings.
In the Configuration Parameters dialog box, in Design Error Detection pane:

a Select the check box for “Non-finite and NaN floating-point values” on page 15-47.

b Select the check box for “Subnormal floating-point values” on page 15-47.

¢ To apply these settings, click OK and close the Configuration Parameters dialog box.
4 Click Detect Design Errors.

Simulink Design Verifier analyzes the model to detect the occurrences of nonfinite, NaN, and
subnormal floating-point values.

After the analysis is complete:

* The software highlights the model with the analysis results.
* The Results Summary windows displays the summary of the analysis.

Assumptions and Limitations

When you analyze a model and select “Non-finite and NaN floating-point values” on page 15-47, the
software assumes that the floating-point input values and the tunable parameter values are finite.

When you analyze a model and select “Subnormal floating-point values” on page 15-47, the software
assumes that the floating-point input values and the tunable parameter values are normal.

Models that use double-precision floating-point signals take more time to analyze than similar models
that use single-precision floating-point signals. As a result, models that use double-precision floating-
point signals might time out whereas similar models that use single-precision floating-point signals
complete their analysis. To improve analysis performance, consider specifying minimum and
maximum values that mimic environmental constraints on root-level Inport blocks.

If the model contains cast operations between floating-point signals and multiword fixed-point
signals, the analysis might not be able to decide all objectives.

Run Design Error Detection Analysis to Detect Floating-Point Errors

This example shows how to detect nonfinite, NaN, and subnormal floating-point values in the
sldvexFloatingPointErrorChecks example model. The model consists of floating-point
arithmetic operations that result in an error. Perform design error detection analysis to detect these
errors in the model.

1. Open the Model

This example model consists of Add and Divide blocks that handle floating-point calculations. The
design error detection analysis detects the occurrences of floating-point errors in the model and
reports the results.

6-33

6 Detecting Design Errors

open_system('sldvexFloatingPointErrorChecks");

Simulink Design Verifier
Design Error Detection for Non-Finite, NaN, and Subnormal Floating-Point Values

Yy
1
a

@ > —
':2 } »- Relaticnal " S“tch outz
in2 |+ Ciperator i
Add

This example shows how to detect non-finite, NaN, and subnormal floating-point values by using
Simulink Design Verifier.

This model contains errors that result from floating-point arithmetic operations.

Run View Options
{double-click) (double-click)
Run Simulink Design Verifier View Simulink Design Verifier Options

Copyright 2018 The MathWorks, Inc.

2. Perform Design Error Detection Analysis

The model is preconfigured with Non-finite and NaN floating-point values and Subnormal
floating-point values options set to On. For more information see “Design Verifier Pane: Design
Error Detection” on page 15-42.

To perform design error detection analysis, on the Design Verifier tab, in the Mode section, select
Design Error Detection. Click Detect Design Errors.

The software analyzes the model for floating-point errors and displays the results in the Results
Summary window. The result indicates that 4 out of 6 objectives are falsified.

3. Review Analysis Results

a. Click Highlight analysis results on model. The model blocks that result in floating-point errors
are highlighted in red.

6-34

Detect Non-Finite, NaN, and Subnormal Floating-Point Values

b. Click the Add block highlighted in red. The Result Inspector displays the summary of the floating-
point error objectives.

'B'} Results: sldvexFloatingPointErrorChecks

- A3
Q l Back to summary
1

sldvexFloatingPointErrorChecks [Add
Floating-point error Objectives
+/-Infinity Error - needs simulation - View test case
MalM Valid

in2

Subnormal value Valid
Derived Ranges:

Qutport 1:[-Inf..Inf]

c. Click the Division block highlighted in red. The Result Inspector displays the summary of the
floating-point error objectives.

'D'i Results: sldvexFloatingPointErrorChecks

Back to summary

i

;
:

sldvexFloatingPointErrorChecks / Divide

Floating-point error Objectives
out1 +/-Infinity
MaM

Error - needs simulation

- Wiew test case
Error - needs simulation - Wiew test case
Subnormal value

Error - needs simulation - View test case

Derived Ranges:

Qutport 1:[-Inf..Inf]

4. View Detailed Analysis Report

To view the detailed analysis report, in the Results Summary window, click HTML. The report
displays the summary of all occurrences of floating-point errors in the model.

6-35

6 Detecting Design Errors

Chapter 3. Design Error Detection Objectives Status

Table of Contents

Objectives Valid
Objectives Falsified - Meeds Sunulation

Objectives Valid

o IT}'pe MModel Item Description IAnalysis Time (sec)|Test Case
2 Il-'lnnting-pcinr error |Add Al 14 A

3 Il-'lnnting-pcinr error |Add Subnormal value 14 A

Objectives Falsified - Needs Simulation

o IT}'pe Model Ttem Description IAnalysis Time (sec)|Test Case
1 I}'Ionring-poinr error [Add - -Infinity 39 2
2 I}'Ionring-poinr error [Divide - -Infinity 39 1
o Il-'lnating-point error [Divide M al 190 =3
10 Il-'lnating-point error [Divide Subnormal value 114 3

5. Clean Up

To complete this example, close the model.

close system('sldvexFloatingPointErrorChecks', 0);

See Also

More About

. “Design Verifier Pane: Design Error Detection” on page 15-42

. “Simulink Design Verifier Options” on page 15-2

6-36

Detect Data Store Access Violations

Detect Data Store Access Violations

Simulink Design Verifier design error detection analysis identifies unintended sequences of data store
reads and writes that occur during simulation. The analysis detects these data store access violations:
* Read-before-write

* Write-after-read

* Write-after-write

To detect data store access violations in your model:

On the Design Verifier tab, in the Mode section, select Design Error Detection.
Click Error Detection Settings.

In the Configuration Parameters dialog box, in the Design Error Detection pane, select “Data
store access violations” on page 15-45. Click OK.

4 Click Detect Design Errors.

After the analysis is complete, the software highlights the model with the analysis results and the
Results Summary window displays the summary of the analysis.

Detect Data Store Access Violations in a Model

This example shows how to detect data store access violations and review the analysis results. The
sldvexDataStoreAccessViolations example model consists of Data Store Memory blocks that
define the alpha and beta data stores. In the example model, the Write Subsystem writes the
data to the data store by using Data Store Write blocks and the Read Subsystem reads the data
from the data store by using the Data Store Read blocks.

Step 1: Open the Model

At the command prompt, enter:

open_system('sldvexDataStoreAccessViolations');

6-37

6 Detecting Design Errors

Simulink Design Verifier
Detect Design Error for Data Store Access Violations

alpha beta
Data Store Data Store
Memory Memory 1

'

O =
2 In3 Ot

In2

Write Subsystem Read Subsystemn

This example shows how to detect data store access violations using Simulink Design Verifier.

This model contains a read-before-write viclation that results from the "beta” data store not being

written on certain execution paths.

Copyright 2018 The MathWorks, Inc.

Step 2: Configure Analysis Options to Detect Data Store Access Violations
The model is preconfigured with the Data store access violations parameter set to On.
Step 3: Perform Design Error Detection Analysis

On the Design Verifier tab, click Detect Design Errors. Simulink Design Verifier analyzes the
model for data store access violations. After the analysis completes, the Results Summary window
displays that one objective was falsified.

Step 4: Review Analysis Results
The model is highlighted with the analysis results.

(1) Open the Read Subsystem and click Data Store Readl block that is highlighted in red. The
Results Inspector window displays the Read-before-write objective that violates the data store access
order.

6-38

Detect Data Store Access Violations

alpha 1 4\
Co——H-
Im1 Chut2
beta ™—
Data Store .
Read1 Swatch

i’
~ O
Back to summary
sldvexDataStoreAccessViolations /Read Subsystem/Data Store Readl
Data store access violation Objectives
Read-before-write Error - needs simulation - VWiew test case Justify

Derived Ranges:

Outport 1:[0..5]

(2) To view the test case that replicates the error, click View test case. The harness model and the
Signal Builder block open that displays the test case.

(3) To simulate the test case, in the Signal Builder dialog box, click Start simulation. After the
simulation completes, the Diagnostic Viewer window displays this warning message:

The block 'sldvexDataStoreAccessViolations harness/Test Unit (copied from
sldvexDataStoreAccessViolations)/Read Subsystem/Data Store Readl' is reading
from the data store 'sldvexDataStoreAccessViolations harness/Test Unit
(copied from sldvexDataStoreAccessViolations)/Data Store Memoryl' before any
blocks have written to this entire region of memory at time 0.0. For
performance reasons, occurrences of this diagnostic for this memory at other
simulation time steps will be suppressed.

Step 5: Fix the Data Store Access Violation Error

The read-before-write objective results in error because no block has been written to the beta data
store before the read operation executes.

Open the Write Subsystem and double-click Write "alpha".Inthe Write "alpha" subsystem,
only the alpha data store is written with a constant value. Hence, the read-before-write data store
access violation occurs for the "beta" Data Store Read block.

To fix the error, in the Write "alpha" subsystem, add a Constant block and write its value to beta
data store by using the Data Store Write block (highlighted in figure below).

6-39

6 Detecting Design Errors

Write "alpha" and "beta" Write "alpha" *
(] {::l “I} sld'.rexDataﬂtnre.ﬁ.ccess'l.fiDIatinns b Wr'rte Subsystem b Wr'rte "alpha”
G}" else {}
IE' Action Paort
= g B alpha
Constant Data Store
El Write
I:‘ 5 | beta

Constant1 Data Store

Wite1

On the Design Verifier tab, click Detect Design Errors. After the analysis completes, the software
reports that all the objectives are valid.

See Also

* “Data Store Basics”
» “Detect Data Store Access Violations”

See Also

More About

. “Design Verifier Pane: Design Error Detection” on page 15-42

6-40

Detect Violations of High-Integrity Systems Modeling Guidelines

Detect Violations of High-Integrity Systems Modeling
Guidelines

Simulink Design Verifier design error detection analysis detects violations of the following High-
Integrity Systems Modeling Guidelines:

* Usage of rem and reciprocal operations - hisl 0002
* Usage of square root operations - hisl 0003

* Usage of log and log10 operations - hisl 0004

* Usage of Reciprocal Square Root blocks - hisl 0028

Usage of rem and reciprocal operations - hisl 0002

Specify whether to check the usage of rem and reciprocal operations that cause non-finite results.

This corresponds to the hisl 0002 check for High-Integrity Systems Modeling. For more information,
see hisl 0002: Usage of Math Function blocks (rem and reciprocal).

Usage of square root operations - hisl 0003
Specify whether to check the usage of Square Root operations with inputs that can be negative.

This corresponds to the hisl 0003 check for High-Integrity Systems Modeling. For more information,
see hisl 0003: Usage of Square Root blocks.

Usage of log and log10 operations - hisl 0004
Specify whether to check the usage of Log and 10g10 operations that cause non-finite results.

This corresponds to the hisl 0004 check for High-Integrity Systems Modeling. For more information,
see hisl 0004: Usage of Math Function blocks (natural logarithm and base 10 logarithm).

Usage of Reciprocal Square Root blocks - hisl 0028

Specify whether to check the usage of Reciprocal Square Root blocks with inputs that can go zero or
negative.

This corresponds to the hisl 0028 check for High Integrity Systems Modeling. For more information,
see hisl 0028: Usage of Reciprocal Square Root blocks.

Detect Violations of High-Integrity Systems Modeling Guidelines

This example shows how to detect violations of High-Integrity Systems Modeling guidelines.
1. Open the Model

This example model explains about usage of remainder and reciprocal operations, square root
operations, log and log10 operations, and Reciprocal Square Root blocks.

6-41

6 Detecting Design Errors

open_system('sldvexHislChecks');

Simulink Design Verifier
Design Error Detection for High -Integrity Systems Modeling Guidelines

Simulink Blocks

Hisl_0002 Hisl_0003 Hisl_0004 Hisl_002&

o

Rem Output Data:real Output Datacreal Output Datacreal RecSqrt
Output Data:real
O @ -
CGor—*vu D Go— Q)
Reciprocal
Output Data:complex Output Data:complex Output Data:complex
~ 1
Reciprocal 1 Output Datacreal Output Datacreal Output Datacreal RecSgrt1
Output Data:real
MATLAEB Function Block Stateflow Charts.
Y ‘ p B T ——(E) G o ——GD)
(16 } w g 2b——r(i5) (19} o uz ¥3 »{ 10 D w2 ¥2 »{ 22
u o Ap———™
3_mifen y3 (20) »lua 2 »(20 (23) > v »(23
MATLAB Function MAL Chart CAL Chart
Run View Options
(double=click) (double-click)
Run Simulink Design Verifier View Simulink Design Verifier Options

Copyright 2021 The MathWorks, Inc.

2. Perform Design Error Detection Analysis

The model is preconfigured with High-Integrity Systems Modeling checks, Usage of remainder and
reciprocal operations- hisl 0002, Usage of square root operations-hisl 0003, Usage of log
and log10 operations-hisl 0004, and Usage of Reciprocal Square Root blocks-hisl 0028. For
more information see “Design Verifier Pane: Design Error Detection” on page 15-42.

To perform design error detection analysis, on the Design Verifier tab, in the Mode section, select
Design Error Detection. Then click Detect Design Errors.

The software analyzes the model for violations of the High-Integrity Systems Modeling guidelines and
displays the results in the Results Summary window. The results indicate that 15 out of 29 objectives
are falsified.

6-42

Detect Violations of High-Integrity Systems Modeling Guidelines

Simulink Design Verifier Results Summary: sldvexHislChecks
Progress |
Objectives processed 29/29
Valid 14
Falsified 15
Elapsed time 0:23

Design error detection completed normally.
14/29 objectives valid
15/29 objectives falsified - need simulation

Results:

® Open filter viewer

» Highlight analysis results on model

e View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (PDF)
e Create harness model

® Export test cases to Simulink Test

Data saved in: sldvexHisIChecks sldvdata2.mat

in folder: C:\Users\pdasbasu\OneDrive - MathWorks\Documents\MATLAB
\ExampleManager\pdasbasu.Bdoc21b.j1706738\sldv-ex65254669\sldv_output
\sldvexHislChecks

View Log Close

LY

3. Review Analysis Results

Click Highlight analysis results on model. The blocks that result in violations of High-Integrity

Systems Modeling guidelines are highlighted in red.

a. Click the Rem and Reciprocal blocks highlighted in red. The Result Inspector displays the

summary of the violation of hisl 0002 guideline.

6-43

6 Detecting Design Errors

Hisl_0002 | ’ﬁ 2sults: sldvexHislChecks - *ﬁ Results: sldvexHislChecks - O s
-~ [@ l
Back to summary Back to summa A |
| sidvexHisiChecks/Rem | |sidvexHisiChecks/ Reciprocal | |

Rem High-Integrity Modeling Checks C High-Integrity Systems Modeling Checks Objectives
Hisl_0002 Error - needs simulation - View counterexample Justify Hisl_0002 Error - needs - View Justif
simulation counterexample
double double Derived Ranges:
Derived Ranges:
Outport 1:{ [-Inf..Inf] NaN }
Reciprocal Outport 1:[-Inf..Inf] v

b. Click the Sqrt block highlighted in red. The Result Inspector displays the summary of the violation
of hisl 0003 guideline.

P4 Results: sidvexHisIChecks - O >
Hisl_0003 |
- [&
Back to summary
donbie e uFie sldvexHisIChecks/Sqrt
n u n
v High-Integrity Systems Modeling Checks Objectives
Sqrt Hisl_0003 Error - needs - View counterexample Justify
Output Data:real simulation
Derived Ranges:
OQutport 1:{ [0..1.3408e+154] NaN }

c. Click the Log and Log10 blocks highlighted in red. The Result Inspector displays the summary of
the violation of hisl 0004 guideline.

Hisl_0004

double double double double
Log Log2
QOutput Data:real QOutput Data:real
| [|
¥ m b m
Back to summary A Back to summary -
sldvexHisiChecks /Log ‘ |ddvul-ns'ru|muog2 |
|
High-Integrity Systems Modeling Checks Objectives High-Integrity Systems Modeling Checks Objectives
Hisl_DO04 Error - needs simulation - View counterexample Justify Hisl_0004 Error - needs simulation - View counterexample Justify
Derived Ranges: | | ' Derived Ranges:
Outport 1:{ [Inf..709.78] NaN } v l Outport 1:{ [-Inf..308.25] NaN } v
|

d. Click the Reciprocal Square Root block highlighted in red. The Result Inspector displays the
summary of the violation of hisl 0028 guideline.

6-44

Detect Violations of High-Integrity Systems Modeling Guidelines

Hisl_0028 Ji'i-'e:.':::: exHislChecks - U

Back to summary ~

double 1 double
— sldvexHislChecks, rt
7 IRecsa

RecSgrt High-Integrity Systems Modeling Checks Objectives
Output Data:rea Hisl_0028 Error - needs simulation - View counterexample Justify

Derived Ranges:

Outport 1:{ [-Inf..Inf] NaN } v

e. Click the MATLAB Function block highlighted in red. The Result Inspector displays the summary
of hisl 0002, hisl 0003, and hisl 0004 checks.

MATLAB Function Block >
double double | |

18 1 1 15 -
- double [1..] Y ¥ double - 2
(16 Joouie 2 4y double (16) Back to summary ~
mifen y3
u3 sldvexHisiChecks /MATLAB Function
MATLAB Function

High-Integrity Systems Modeling Checks Objectives

Hisl_0003: sgrt{ul) Error - needs simulation - View counterexample Justify
Hisl_0003: sqrt(u2) Valid |
Hisl_0004: log(ul) Error - needs simulation - View counterexample Justi |

Hisl_0004: loglo{u2) Valld
Hisl_0002: rem(ul,u2) Valid
Hisl_0002: rem(ul,u3) Error - needs simulation - View counterexample Justify

Derived Ranges:
Outport 1:{ [1..2.6816e+154] NaN } -

4. View Detailed Analysis Report

To view the detailed analysis report, in the Results Summary window, click HTML. The report
displays the summary of all occurrences of High-Integrity Systems Modeling violations in the model.

5. Clean Up

To complete this example, close the model.

close system('sldvexHislChecks', 0);
See Also

More About

. “Simulink Design Verifier Options” on page 15-2
. “Design Verifier Pane: Design Error Detection” on page 15-42

6-45

6 Detecting Design Errors

Filter Objectives by Using Simulink Design Verifier Filter
Explorer

6-46

Filtering model objects and code expressions from design error detection or test generation analysis
allows you to focus on a subset of objects for Simulink Design Verifier analysis. Use filters when you
have model objects that take a long time to analyze or when you want to focus on specific objectives
for analysis.

You can add one or more filter files by opening the Configuration Parameters window, clicking
Design Verifier and, under Advanced parameters, selecting “Ignore objectives based on filter” on
page 15-17. Enter your filter files in the Filter file(s) parameter. For more information about
coverage filter files, see “Creating and Using Coverage Filters” (Simulink Coverage). You can also
filter the Design Verifier objectives for code-based analysis to align code-based results to model-
based results.

After you perform design error detection or test generation analysis, you can justify unsatisfiable,
dead logic, undecided, and falsified objectives by using the Simulink Design Verifier Filter
Explorer. When you edit filters by using Simulink Design Verifier Filter Explorer, you can update the
Simulink Design Verifier report and highlight the analysis results on the model without reanalyzing
the model. For detailed example on how to filter objectives, see “Exclude and Justify Objectives for
Design Error Detection” on page 6-59.

Use the Simulink Design Verifier Filter Explorer to Edit Filter Files

After analyzing your model, you can use Simulink Design Verifier Filter Explorer to justify the
falsified, unsatisfiable, undecided, and dead logic objectives and update the filter files.

You can open the filter explorer from the Results Summary window or from the Results Inspector
window.

* In the Results Summary window, click Open filter explorer.

Design error detection completed normally.
3/6 objectives valid

1/6 objective falsified

1/6 objective excluded

1/6 objective justified

Results:

* Open filter explorer

* Highlight analysis results on model

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)

* Create harness model

* Save test cases/counterexamples to spreadsheet
* Export test cases to Simulink Test

* In the Results Inspector window,

* To see the filter rule for a justified objective, click View.
* To justify an objective, click Justify.

Filter Objectives by Using Simulink Design Verifier Filter Explorer

‘Pi Results: sid

I
|
>

~ HA

Back to summary
sldvexControllerIntegerOverflow /Sum

Integer overflow Objectives
Overflowr Justified View

Derived Ranges:

Outport 1:[0..255]

'bi“f__ ger

m
(]
[a]
m
m
m
(]
m
(]

Back to summary
sldvexControllerIntegerOverflow [Divide

Division by zero Objectives
Division by zero Error - needs simulation - View fest case

Integer overflow Objectives
Overflow Valid
Derived Ranges:

Outport 1:[-32768..32767]

Justify

In the Simulink Design Verifier Filter Explorer, you can:

* Create, load, edit, or save filter files.

* Create a filter file to justify all the Unsatisfiable, Falsified and Dead Logic objectives from

the active sldvData.

» Navigate to the model to inspect the model objects associated with a filter rule.

* Add rationale description about why the objective or model object or code expression is excluded

or justified.

6-47

6 Detecting Design Errors

Simulink Design Verifier Filter Exploren sldvexControllerFilterObjectives

= Simulink Design Verifier Filter Explorer: sldvexControllerFilterObjectives
W Applied fi 1
& Applied filters (1) Add justification rules to the selected filter.
== Untitled
Mew filter
Load filter

Create justification rules for violations and dead logic from the active sldvData

6-48

Design error detection completed normally.

3/6 objectives valid

1/6 objective falsified - needs simulation
1/6 objective excluded

1/6 objective justified

Results:

E Open filter viewer |
* Highlight analysis results on model
& View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (FDF)
* Create harness model

& Export test cases to Simulink Test

Apply

Filter Objectives by Using Simulink Design Verifier Filter Explorer

Task

Action

Navigate to a model object associated with a rule.

Note This step is valid only for model objective
analysis.

1 Select the rule.

2 (Click View in model. The model object is
highlighted in blue.

Delete a rule.

Select the rule.
Click Remove rule.

Save the current rules to a file.

Click Apply.

Specify a file name and folder for the filter
file and click Save.

N BRI N =

Rename a filter file

Click Save as.

Specify a file name and folder for the filter
file and click Save.

N =

Load an existing filter file.

Click Load filter.
Navigate to the filter file and click Open.

Highlight the model and update the current
analysis report with the current filter files.

1 Apply or Revert any changes you have
made.

The model is highlighted with the updated
filter rules.

2 In the Results Summary window or in the
Results inspector window, click HTML or
PDF.

Create an empty filter file.

Click New filter

Remove a filter from Filter Explorer.

Right-click the corresponding node under
Applied filters and select Remove

Create a filter file to justify all Unsatisfiable,

Falsified, and Dead Logic objectives in the
active sldvData

1 (Click Create justification rules for
violations and dead logic from the active
sldvData

Click Save as

Specify a file name and folder for the filter
file and click Save

Limitations

Simulink Design Verifier does not support filtering objectives associated with property proving

analysis.

6-49

6 Detecting Design Errors

See Also

More About

. “Design Verifier Pane” on page 15-9
. “Create, Edit, and View Coverage Filter Rules” (Simulink Coverage)
. “Review Results” on page 13-35

6-50

Detect Integer Overflow Errors

Detect Integer Overflow Errors

This example shows how to detect integer overflow errors in a model by using design error detection
analysis. Simulink® Design Verifier™ identifies the model constructs that may result in integer
overflows and then either proves that the integer overflow cannot occur during simulation or
generates test cases that demonstrates the integer overflow error.

In this example, you will perform design error detection analysis on a model, then generate a report
that shows which integer overflow objectives were valid and which objectives resulted in errors.

Step 1: Open the Model
At the command prompt, enter:

open_system('sldvdemo design error detection');

Simulink Design Verifier
Detecting Design Errors

thirot —F'

throt

.. InputBasFxp
InBus

InBus
target | ———>(2)
target

Controller

Toggle Saturation
on overflow
(double-click)

Teggle Saturation

Copyright 2006-2023 The MathWorks, Inc.

Step 2: Perform Design Error Detection Analysis

The model is preconfigured with the Integer overflow option enabled in the Configuration
Parameters dialog box, on the Design Verifier > Design Error Detection pane.

On the Design Verifier tab, click Detect Design Errors.

The software analyzes the model for integer overflow errors. After the analysis completes, the Results
Summary window reports that five objectives are valid and two objectives are falsified.

6-51

6 Detecting Design Errors

Simulink Design Verifier Results Summarny: sldvdemo_design_error_detection >
Progress -
Objectives processed 77
Valid 5
Falsified 2
Elapsed time 0:24

Design error detection completed normally.

5/7 objectives valid
2/7 objectives falsified - need simulation

Results:

* Dpen filter viewer

* Highlight analysis results on model

* View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (FDF)
* Create harness model

» Export test cases to Simulink Test

Data saved in: sldvdemo design_error_detection sldvdata.mat
in folder: H:\Documents'sldv_output\sldvdemo_design_error_detection

View Log Close

Step 3: Review Analysis Results
To highlight the analysis results on the model, in the Results Summary window, click Highlight

analysis results on model. The valid objectives are highlighted in green and the falsified objectives
are highlighted in red.

6-52

Detect Integer Overflow Errors

| " ~ B9

<in Back to summary
1
. sldvdemo_design_error_detection/Controller/Sum2
1 0 T Integer overflow Objectives
|] | Owerflow Error - needs simulation - Wiew test case Justify
£dans L
> E Derived Ranges:
Cutport 1:[0..255.99609375]

Double-click the Controller subsystem. Click the Sum block that is highlighted in red. The Results
Inspector window displays the integer overflow objectives.

To view the test case that results in the error, click View test case. The harness model opens and the
Signal Builder block displays the test case that results in the error.

Step 4: Fix the Integer Overflow Error

For both the Sum blocks that generated the integer overflow, enable the Saturate on integer
overflow option. Alternatively, you can double-click the Toggle Saturation on overflow button in
the Simulink Editor.

To confirm that the integer overflow error was resolved, on the Design Verifier tab, click Detect
Design Errors. After the analysis completes, the software reports that all the objectives are valid.

Related Topics

* “Detect Integer Overflow and Division-by-Zero Errors” on page 6-19
* “Understand the Analysis Results” on page 6-4

6-53

6 Detecting Design Errors

Detect Out of Bound Array Access Example Model

6-54

This example shows how to detect out of bound array access errors and review the analysis results. In
the sldvdemo array bounds example model, the ComputeIndex MATLAB Function block uses the
input signal values to determine range of indices with minimum minIdx and maximum maxIdx. The
ArrayOp Matlab, ArrayOp MAL, and ArrayOp_ SF blocks use the set of integer indices between
minIdx and maxIdx to access array elements and perform array operations.

Step 1: Open the Model

At the command prompt, enter:

open_system('sldvdemo array bounds');

Design Error Detection for Out of Bound Array Access

? | Simulink Design Verifier

minldx 4 ¥ —h‘

fun

P mexdds

@ [14 ArrayOp_Matlab

In
| u
@)
minld: - miinldsg 2 ¥ —h'
» L)
fon maxlds | meddx
e
AmayOp_ MAL

Computelndex

Y

Y

¥

ArmrayOp_5SF

Copyright 2010-201% The MathWarks, Inc.

Step 2: Perform Design Error Detection Analysis

The analysis options in the model are preconfigured for out of bound array access error detection. To
view these options, in the Simulink Editor, double-click the View Options button.

To perform design error detection analysis, in the Simulink Editor, double-click the Run button. The
Simulink® Design Verifier™ Results Summary window opens that displays the progress of the
analysis. When the analysis completes, the example model is highlighted with the analysis results.

Detect Out of Bound Array Access Example Model

= U
[F2ed]
p| miinlcix y—»{(1)
fun Out1
P el dze
[1 =[1:e4] ArrayCp Matlab
In —,
vl
[T2ed]
il dbx . mim@"ﬁ ¥
o 4) T TS
[12e4] fen maseldie ..":-xmaxldx
Computelndesx ArrayOp_MAL
ez
[f2ed]
4 minl@qﬁ ¥ —..@
‘O ouz
Po-{ el de
Arraylp SF

Step 3: Review Analysis Results

To view the analysis results inside the chart, double-click the ArrayOp SF Chart block that is
highlighted in red.

i

Design error detection completed normally.
7/9 objectives valid
2/9 objectives falsified

Results:

* Open filter explorer

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)

® Create harness model

* Save test cases/counterexamples to spreadsheet
* Export test cases to Simulink Test

Simulink Design Verifier detects that the index out of bound errors occurs in array u in state Diff.

Step 4: Create Harness and Simulate Test Cases

Click the first View test case link. Simulink Design Verifier creates and opens a harness model that
contains test cases, that demonstrate out of bound array access errors. In the Signal Builder dialog
box, click Start simulation to simulate the harness model with Test Case 2.

The simulation stops before entering the state Diff. The Stateflow® Debugger opens. The following
error is shown:

6-55

6 Detecting Design Errors

6-56

Attempted to access index 4 of u with smaller dimension sizes. The valid
index range is 0 to 3. This error will stop the simulation. State 'Diff' in
Chart 'sldvdemo array bounds harness/Test Unit (copied from

sldvdemo _array bounds)/ArrayOp SF': y = u[maxIdx] - u[minIdx];

Keep the Stateflow® Debugger open at this breakpoint. In the sldvdemo_array bounds harness
model, hold your cursor over the Diff state to see the data values at this simulation breakpoint.

Diff
en:

y = u[maxldx] - u[minldx];

®

Data used by Diff:

maxIdx = 1
minldx = 4
u =

1

1

0

-1
y=0

Using Test Case 2 input signal values, the Computelndex MATLAB Function block determines the
range of array indices to be 1:4. One-based indexing is consistent with MATLAB syntax, so these
indices are valid for the ArrayOp Matlab MATLAB Function block and the ArrayOp MAL Stateflow®
chart.

The ArrayOp SF Stateflow® chart uses C as the action language, which does not support one-based
indexing. Thus, 1:4 is not a valid index range for array access in the chart. The valid index range for
array access in the chart is 0:3, as reported by the error message. When either maxIdx or minldx
evaluates to 4, an out of bound array access error occurs in the ArrayOp SF Chart block. For more
information on zero-based indexing support, see “Differences Between MATLAB and C as Action
Language Syntax” (Stateflow).

Detect Design Errors in C/C++ Custom Code

Detect Design Errors in C/C++ Custom Code

To detect division by zero and out of bound array access errors in a model with C/C++ custom code
in model blocks or Stateflow® charts, use design error detection analysis. Simulink Design Verifier
identifies the code that results in errors and then either proves that the errors are valid or generates

test cases that replicate the error.

This example shows how to detect division by zero errors in a model that consists of C/C++ code in a

Stateflow® chart.

Step 1: Open the Model

The example model sldvexCustomCodeErrorDetectionExample contains a Stateflow® chart that

calls C/C++ custom code that uses input and output buses.

open_system('sldvexCustomCodeErrorDetectionExample');

Simulink Design Verifier

Detect Design Errors in C/C++ Custom Code

input !5IGN.-'-1LEIUS
D >
doubls i nputsigna
SIGNALBUSCreator = LBUS
COUNTERBUS
dioubla
40 »

»
upper_saturation_limit

Liameug LIMITEUS

imits

¥

<inpat=

<upper_saturation_limi=

I—»@

<lower_saturation_Emit=

| (L

Y

0 double COUNTERBUSCreator
owwer_saturation_limit "
LIMITBUS Creator
@ > j
This model contains a stateflow chart which is calling C custom-code with buses input and output.
Open View -
- View Optiens
Custom code sources Custom code settings . -
(double-click) {doubla-click) {double-click) {double-click)

Open Source Files View Custom code settings

Copyright 2018 The MathWeorks, Inc.

Step 2: Perform Design Error Detection Analysis

To perform design error detection analysis, on the Design Verifier tab, click Detect Design Errors.
After the analysis completes, the Results Summary window indicates that one objective is falsified.

6-57

6 Detecting Design Errors

Step 3: Review the Analysis Results

On the Design Verifier tab, in the Review Results section, click Highlight in Model. To view the
C/C++ run-time error objectives that resulted in the error, click on the Simulink® Editor. The Results
Inspector window displays the division by zero objectives.

iIc

Back to summary
sldvexCustomCodeErrorDetectionExample

C/C++ Runtime Error Objectives

Division by zero (file Error - needs - View test case
sldvexCustomCodeErrorDetection.c, line 23) simulation

Note: When you click View test case for the Error - needs simulation objective, Simulink® Design
Verifier™ displays the test case that replicates the error. If you simulate the test case, MATLAB® may
crash during custom code analysis.

To view the HTML report, on the Design Verifier tab, click HTML Report. The Design Error
Detection Objectives Status section in the report describes the falsified objective.

Objectives Falsified - Needs Simulation

& Type Model Item Description ?::EEE::(:) Test Case
C/C++ Division by zero (file

20 Runtime sldvexCustomCodeErrorDetectionExample |sldvexCustomCodeErrorDetection c. 21 1
Error lime 23)

6-58

Step 4: Fix Design Errors

In the example model, right-click the Saturation block that is greyed out and Uncomment the block.
Reanalyze the model, by clicking Detect Design Errors. The results show that the C/C++ run-time
objective is valid.

Step 5: Clean Up

To complete the example, close the model.

close system('sldvexCustomCodeErrorDetectionExample', 0);

Related Topics

“Design Error Detection Objectives Status” on page 13-43
“Design Verifier Pane: Design Error Detection” on page 15-42

Exclude and Justify Objectives for Design Error Detection

Exclude and Justify Objectives for Design Error Detection

This example shows how to exclude a model object from Simulink® Design Verifier™ analysis by
using a coverage filter file. After performing analysis, you can justify objectives by using Analysis
Filter viewer, update the filter file, you can justify objectives by using Analysis Filter explorer,
update the filter file, you can justify objectives by using Simulink® Design Verifier™ Filter Explorer,
update the filter file, and review the analysis results.

Step 1: Open the Model

The example model sldvexControllerFilterObjectives is a controller model that operates
according to the controller algorithm.

open_system('sldvexControllerFilterObjectives"');

Simulink Design Verifier
Filter Objectives for Design Error Detection Analysis

Diff Gain
CO+—/ ">
Sensord =
Saturation
—ai > ‘
! = <l 4
> u.._//_ u.."::"\ o - ‘ Cutl
|: : L ru L I
SensorB
Saturation Sum Relational
Cperator
Divide
G/ g
Sensorc -
Saturation2
(1 -
Constant Switch

Caopyright 2019 The MathVWorks, Inc.

Step 2: Exclude a Model Object from Analysis

The model is preconfigured with the Ignore objectives based on filter option set to On and a
coverage filter file specified by sldvexControllerFilterObjectives filter.cvf. The
coverage filter file consists of a rule that excludes the Abs block from the analysis. For more
information on coverage filter file, see “Creating and Using Coverage Filters” (Simulink Coverage).

6-59

6 Detecting Design Errors

6-60

On the Apps tab, under Model Verification, Validation, and Test, click Design Verifier. Then,
click Detect Design Errors. After the analysis completes, the Results Summary window reports that
5 objectives were processed, out of which, 3 were valid and 2 were falsified. The summary shows that
1 objective was excluded from analysis.

Progress |
Objectives processed 5/5

Valid 3

Falsified 2

Elapsed time 0:22

Design error detection completed normally.
3/6 objectives valid

2/6 objectives falsified

1/6 objective excluded

Results:

* Open filter explorer
* Highlight analysis results on model

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)

* Create harness model

* Save test cases/counterexamples to spreadsheet
* Export test cases to Simulink Test

Data saved in: sldvexControllerFilterObjectives_sldvdata.mat
in folder:

View Log Close

Step 3: Open the Analysis Filter Viewer

On the Results Summary window, click Open filter viewer. The Analysis Filter viewer opens that
displays the name, type, and rationale for the excluded

Step 3: Open the Analysis Filter Explorer

On the Results Summary window, click Open filter explorer. The Analysis Filter explorer opens
that displays the name, type, and rationale for the excluded

Step 3: Open the Simulink Design Verifier Filter Explorer

On the Results Summary window, click Open filter explorer. The Filter Explorer opens.

Exclude and Justify Objectives for Design Error Detection

Simulink Design Verifier Filter Exploren sldvexControllerFilterObjectives — O X

Filter Editor

v = ppplied filters (1)

= Untitled

Filter Name |Untitled

Filename: sldvexControllerFilterObjectives_filter
Save as

Description

Filter Rules

Model Code

Name Type Mode Rationale

Abs by block path Excluded ~ | Design error depends on up...

Remave rule

View in model

Selected rule Abs

Revert Help Apply

Click on the applied filter's node to view the names, type, and rationale for the excluded objectives
specified in the coverage filter file.

Step 4: Justify Objectives
(a) Close the Filter Explorer.

(b) On the Results Summary window, click Highlight analysis results on model. The model is
highlighted with the analysis results. The excluded model objects are highlighted in steel blue and the
model objects that result in errors are highlighted in red.

(b) To view the excluded objectives, click Abs block and click View. The Analysis Filter viewer
opens. The Analysis Filter explorer opens. The Filter Explorer opens and displays the relevant filter
rule.

(c) Click the Divide block. The Results Inspector window displays a summary of the objectives.

L Results: sldvexControllerFilterObjectives - m} X
v 53
Back to summary

sldvexControllerFilterObjectives / Divide
Division by zero Objectives
Division by zero ERROR - View counterexample Debug Justify

Integer overflow Objectives
Overflow valid
Derived Ranges:

Outport 1:[-32768..32767]

6-61

6 Detecting Design Errors

(d) To justify the division by zero objective, click Justify. The Analysis Filter viewer is updated with
a rule that justifies this objective. Optionally, you can update the Mode or Rationale for the
objectives. (d) To justify the division by zero objective, click Justify. The Analysis Filter explorer is
updated with a rule that justifies this objective. Optionally, you can update the Mode or Rationale
for the objectives. (d) To justify the division by zero objective, click on the Applied filters node in
Filter Explorer and click Justify in the Results Inspector window. The Filter Explorer opens and
queries about where to add the justification rule. You may choose to add it to the existing filter file or
create a new filter file. Create a new file.

Simulink Design Verifier Filter Explorer: sldvexControllerFilterObjectives

v = applied filters (1)
ppaediiies il Add justification rules to the selected filter.

-: Untitled
Mew filter

Load filter
Create justification rules for violations and dead logic from the active sldvData

4

Select where to add the new justification rule

Untitled P
=Create new filter file=
L
OK Cancel
Rievert Help Apply
4 >

6-62

Exclude and Justify Objectives for Design Error Detection

Filter Editor

Applied filters (2

Filter Name |Untitled_1 -
Untitled

Filename: (not saved)

o Untitled_1

Save as

Description

Filter Rules

Model Code

Name Type Mode Rationale

Division by zero... by division by ze... Justified ¥ due to sum bloc... | Remove rule

View in model

ol el wssalla M dafa s bhi: maca fa WML 0.8

Revert Help Apply

Step 5: Apply the Filter File and View Results

On the Analysis Filter viewer, click Apply. The model is highlighted with the updated filter. The
Divide block is highlighted in green because all the objectives of the block are valid.

To save the updated filter file, in the Analysis Filter viewer, click Save Filter, enter the name of file,
and click OK. On the Analysis Filter explorer, click Apply. The model is highlighted with the
updated filter. The Divide block is highlighted in green because all the objectives of the block are
valid.

To save the updated filter file, in the Analysis Filter explorer, click Save Filter, enter the name of
file, and click OK. On the Filter Explorer, click Apply. You will be prompted to provide a file name for
the new filter. Enter the desired name and click Save. The model is highlighted with the applied
filters. The Divide block is highlighted in green because all the objectives of the block are valid or
justified.

Note: After applying the filter, the highlighting of the model objects is as follows:
+ [If all the objectives of a block are excluded or justified, it is highlighted in steel blue.
» If a block has valid and excluded or justified objectives, it is highlighted in green.

» If a block has falsified and excluded or justified objectives, it is highlighted in red.

6-63

6 Detecting Design Errors

For a detailed analysis report, in the Results Summary window, click HTML or PDF. The Design
Error Detection Objectives Status chapter reports the excluded and justified objectives along with the
valid and falsified objectives.

Objectives Excluded

Type Model Item Description Rationale
Design error
11 Integer Abs Overflow depends on
overflow upstreatm
blocks

Objectives Justified

Tvpe Model Item Description Rationale
Division by due to sum
g < |Divide Division by zero block integer
zero
overflow

Related Topics

* “Filter Objectives by Using Simulink Design Verifier Filter Explorer” on page 6-46
* “Detect Integer Overflow and Division-by-Zero Errors” on page 6-19

6-64

Detect Integer Overflow in a Model with Complex Inputs

Detect Integer Overflow in a Model with Complex Inputs

This example shows how to detect integer overflow errors in a model that consists of complex type
inputs.

Step 1: Open the Model

The sldvexComplexInputs model contains SensorA, SensorB, and SensorC complex inputs and a
Control input. The SensorA and SensorB inports are constraint to Maximum output value equal to
100.

open_system('sldvexComplexInputs');

Simulink Design Verifier
Detect Integer Overflow Errors in Model with Complex Inputs

Y

uirtd (c)
O r— r

Sensorf

intd (c}
G

SensorB

. . uirt3
@ uirtd (c) - >

P Control

-

Switch

Caopyright 2018 The MathWorks, Inc.

Step2: Perform Design Error Detection Analysis
On the Apps tab, in the Model Verification, Validation, and Test group, select Design Verifier.

To detect design errors, click Detect Design Errors. After the analysis completes, the Results
Summary window displays that one objective is valid and one objective is falsified.

6-65

6 Detecting Design Errors

Pﬁ Results: sldvApproximationsExample

Test generation completed normally.
1/2 objective satisfied
1/2 objective unsatisfiable

Results:

* Open filter viewer
* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (PDF)
* Create harness model

* Export test cases to Simulink Test
* Simulate tests and produce a model coverage report

Step 3: Review Analysis Results

In the Results Summary window, click Highlight analysis results on model. The Sum block whose
output results in integer overflow error is highlighted in red.

+,)
Sensori

D |

SensorB

D

SensorC Control

-

Switch

To view the analysis report, click HTML or PDF in the Results Summary window. The Design Error
Detection Objectives Status chapter lists the description of the valid and falsified objectives.

6-66

Detect Integer Overflow in a Model with Complex Inputs

Objectives Excluded

Type Model Item Description Rationale
Design error
11 [njreger) Abs Overflow depends on
overflow upstream
blocks
Objectives Justified
& Type Model Item Description Rationale
Division bv due to sum
g TSI OY IDivide Division by zero block integer
zero
overflow

The Design Errors chapter contains the test case inputs that results in integer overflow.

Time

0

Step

1

Sensord

16+931

SenzorB

26+781

SensorC

94+931

Control

1

See also

* “Detect Integer Overflow Errors” on page 6-51

* “Understand the Analysis Results” on page 6-4

6-67

6 Detecting Design Errors

Debug Integer Overflow Design Error Detection Using Model
Slicer

This example shows how to use Model Slicer to debug integer overflow design errors in a Simulink®
model.

Prerequisites

This example uses the following products to demonstrate debugging the Design Error Detection
violations:

* Simulink Design Verifier™
* Simulink Check™ (Model Slicer)

Example

1. Open model sldvdemo design error detection.

open_system('sldvdemo design error detection');

Simulink Design Verifier
Detecting Design Errors

thirot —F'

throt

.. InputBasFxp
InBus

InBus

target —F@
target

Controller

Teggle Saturation
on overflow
(double-click)

Toggle Saturation

Copyright 2006-2023 The MathWorks, Inc.
2. Open Simulink Design Verifier by clicking on Apps > Design Verifier.

3. In the Design Verifier tab, click Detect Design Errors. Simulink Design Verifier analyzes the
model and displays the results in Results Summary window.

6-68

Debug Integer Overflow Design Error Detection Using Model Slicer

SIMULATION MODELING FORMAT DESIGM VERIFIER x
& == >

: ; sldvdemo_design_error_detection
Design Error dvisor Emor Detection _Cesign. = Detect

Detection = Settings « Target Vodel - Check Compatibility § Design Errors =
MODE PREPARE AMALYZE

The model highlights the subsystem where the failed objectives are located.

sldwdemo_design_error_detection tﬂz;j
& sldvdemo_design_error_detection # ¥
@ ? Simulink Design Verifier
£ | Detecting Design Errors
=
tharot sfix1 Em13 :
——, InpuiBusFup thiret
InBus
InBus
ufocis_End
o trgot £ (7)
target
Controller
Toggle Saturation
on overflow
(double-click)
| Toggle Saturation
oy Capyrighl 2006-2019 The MathWorks, Inc.
Ready View diagnostics 83% FixedStepDiscrete

4. Open Controller subsystem and select either of the blocks that are highlighted in red.

6-69

6 Detecting Design Errors

|"&|sldvdemo_design_error_detection b [Pa|Controller # -

-
-

boolean
NOT baclean AND . Active Control

Ty Determine if the
o control is active

1
z

R
Active last step boolean

T booleang
; |U||X16_En8 Target speed iy CLILE=LN n e IEENTS |
wintf —a F
Pl Controller
3\, it B_EnB 7] Al =ficlB_Ent3
boakan ;O\ s Ene throt
= uintg ! winlE
| 4 F Compute the o —
- target speed
\Ax16_EnB i
D
Boafean A % 16_End
. N
= [+],
1
z »(2)
pravious target ufix16_En8| 2 i

5. In the Results window, click Debug to debug the violation using Model Slicer. Alternatively, in the

Design Verifier tab, click Review Results > Debug using Slicer to debug the violation using Model
Slicer.

i

Back to summary
sldvdemo_design_error_detection / Controller /Suml

Integer overflow Objectives
Overflow Error - needs simulation - View counterexample Debug Justify

Derived Ranges:

Outport 1:[-128..127.99609375]

On clicking either of the entry points for debugging, the following setup is done on the model:

The selected block with a failed objective is added as a starting point for Model Slicer.
The model is highlighted with the slice responsible for the failing objective.
* The design model is simulated and paused at the time of violation.

6. Debug and analyze the model by inspecting the port labels.

Tip: Click on the output signal line of the Sum block to enable the port value label for the block.

6-70

Debug Integer Overflow Design Error Detection Using Model Slicer

~aKes L i + 1 I ‘J

Active last step boolean

L
. - o Ulix18_Eng 1 ’7
r s | T
You can observe that the sum of the input variables should result in a non-zero number.

7. Investigate the input and output data types of the sum block.

Block Parameters: Sum1 e

sum
Add or subtract inputs. Specify one of the following:

Main signal Attributes

Require all inputs to have the same data type

Accumulator data type: | Inherit: Inherit via internal rule > >
Output minimunm: Output maximum:

0 [
Output data type:| | fixdi(1,16,8) >

Lock data type settings against changes by the fixed-point tools
Integer rounding mode: Floor

Saturate on integer overflow

‘}- Cancel Help Apply

Here, the datatype conversion results in the integer overflow. The datatype for inputs is ufix16 En8,
which have a maximum value of 255.9961, whereas the datatype for output block is sfix16 EnS8,
which has a maximum of 127.9961. In the counterexample the value is between these two values. The
overflow happens when the sum block (without saturation) first casts the input values down to its
output type and then does the arithmetic operation.

Verification

To confirm that the integer overflow error was resolved, on the Design Verifier tab, click Detect
Design Errors. After the analysis completes, the software reports that all the objectives are valid.

6-71

6 Detecting Design Errors

Additional Capabilities

You can use the workflow demostrated in this example to debug the other Design Error Detection
violations using Model Slicer. Following are the design errors supported:

» Division by zero

* Integer Overflow

* Non-Finate and NaN (Not a Number) floating-point values

* Specified minimum and maximum value violations

» Datastore access violations

* Specified block input range violations

6-72

Analyzing the Results for a Dead Logic Analysis

Analyzing the Results for a Dead Logic Analysis

This example demonstrates how to isolate potential causes of dead logic using the
sldvexCommonCausesOfDeadlLogic model. Dead logic detection finds unreachable objectives in the
model that cause the model element to remain inactive.

Workflow

The sldvexCommonCausesOfDeadlLogic model demonstrates some of the common patterns that
often lead to dead logic in a model. The six subsystems in the model represent a different pattern.
These subsystems are:

1 Conditional execution of a subsystem

2 Short-circuiting of a logical operator block during analysis
3 Parameter values treated as constants

4 Library-linked blocks

5 Upstream blocks

6

Restrictions on signal ranges
Section 1 : Run a Dead Logic Analysis
Follow these steps to run the dead logic analysis:

1: Open the model sldvexCommonCausesOfDeadlLogic.

open_system('sldvexCommonCausesOfDeadLogic');

6-73

6 Detecting Design Errors

ka

L&D

ConditionallyExecutenputs

ka

Parameters

[*]

CascadingDeadLogic

6-74

— ()
2
3

— ()
4

ShortCircuiting

— (&)

: 2
Library

'
2 — ()

Assumptions

Analyzing the Results for a Dead Logic Analysis

2: In the Apps pane, open Design Verifier.

3: On the Design Verifier tab, click Error Detection Settings.
4: In the Configuration Parameters dialog box:

a. Enable the Dead logic (partial) option.

b. Clear the Run exhaustive analysis option, if it is selected.

c. Set Coverage objectives to be analyzed to Condition Decision option. The available options
from the drop-down menu are Decision, Condition Decision, and MCDC.

5: In the Design Verifier tab, Click Detect Design Errors.
Section 2: Analyze and Review the Results

The software analyzes the model for dead logic and displays the results in the Results Summary
window. The results indicate that 19 of the 44 objectives are dead logic.

6-75

6 Detecting Design Errors

6-76

Simulink Design Verifier Results Summarny: sldvexCommonCausesOfDeadlogic

Progress -

Objectives processed 44/44
Valid o
Falsified 19
Elapsed time 1:00

Design error detection completed normally.

Simulink Design Verifier ran a partial check for dead logic. Consider enabling the 'Dead
logic > Run exhaustive analysis' configuration option in order to perform an exhaustive
analysis.

19/44 objectives are dead logic

Results:

* Dpen filter viewer
* Highlight analysis results on model
= Detailed analysis report: (HTML) (PDF)

Data saved in: sldvexCommonCausesOfDeadlogic sldvdata.mat
in folder: i \MATLAB\g2246348 (2)
‘\sldv_outputhsldvexCommonCausesOfDeadlLogic

View Log Close

Section 3: Highlight Analysis Results in the Subsystem Blocks

This section explains the common patterns that lead to dead logic in the

sldvexCommonCausesOfDeadLogic model. In the Results Summary window, click on Highlight
analysis results on model. The subsystems with dead logic are highlighted in red. These

subsystems are:

1
2
3
4

ConditionallyExecutelnputs
ShortCircuiting
Parameters

Library

Analyzing the Results for a Dead Logic Analysis

5
6

CascadingDeadLogic

ConditionGreaterThanO

The subsystems in the sldvexCommonCausesOfDeadLogic model explain these patterns. Each
subsystem block highlighted in red has a dead logic red. Consider each subsystem one by one to
analyze and highlight the results.

1. Conditional Execution of a Subsystem

If your model includes Switch or Multiport Switch blocks and the conditional input branch

execution parameter is set to On, the conditional execution can often cause unexpected dead logic.
Open the ConditionallyExecutelnputs subsystem and click the AND block highlighted in red. The
Results window summarizes the dead logic.

AND

D
)

Logical

Operatori

bﬁ Results: sldvexCommonCausesOfDeadlogic —

Back to summary
sldvexCommonCausesOfDeadLogic/ConditionallyExecuteInputs /Logical Operatorl

—————————»{(2) | | Possible causes for dead logic:

For more information, see documentation.

DEAD LOGIC:

This block is conditionally executed as a result of the 'ConditionallyExecutelnputs' configuration parameter,

Logic: input port 1 unreachable Justify Logic: input port 1 true Justify Logic: input port 1 false

Logic: input port 2 unreachable Justify Logic: input port 2 true Justify Logic: input port 2 false

In this subsystem, the Conditional input branch execution parameter is set to On. The AND Logical
Operator block is conditionally executed, which causes the dead logic for the subsystem.

2. Short-Circuiting of a Logical Operator Block During Analysis

Simulink Design Verifier treats logic blocks as if they are short-circuiting when analyzing for dead
logic. Open the ShortCircuiting subsystem, and click the AND block highlighted in red. The Results
window summarizes the dead logic.

{a : -
- AND

G r—
Logical
Operatori

"3

Back to summary
sldvexCommonCausesOfDeadLogic/ShortCircuiting /Logical Operatorl

Possible causes for dead logic:
This block is treated as short-circuiting during analysis. For more information, see documentation.

DEAD LOGIC:
Logic: input port 2 can only be true Justify Logic: input port 2 false

Derived Ranges:

QOutport 1:[F..T]

In this model, if In3 is false, the software ignores the third input due to the short-circuiting. This is
suggested as a potential explanation for the dead logic in the Results window.

6-77

6 Detecting Design Errors

3. Parameter Values Treated as Constants

If your model contains parameters, Simulink Design Verifier treats the values as constants by default,
which might cause dead logic in the model. In these cases, consider configuring these parameters to
be tuned during analysis. Open the ShortCircuiting subsystem and click the Switch block highlighted
in red. The Results window summarizes the dead logic.

Parama -+
.
ParamB -+
X
ParamC -+
ParamD -+
Po Results: sldvexCommonCausesOfDeadlLogic — O >
~ B3
Back to summary
sldvexCommonCausesOfDeadLogic/ Parameters/ Switch
DEAD LOGIC:
trigger > threshold can never be true (output is from Justify frigger = threshold true (output

1st input port) is from 1st input port)

Derived Ranges:

Outport 1:[-1.7977e+308..1.79772+308]

Here, all of the parameters are set to zero. This causes the dead logic for the Less Than block.

Suggestion

You can use Model Slicer to find the parameters which could have an impact on a particular block by
following these steps:

a. Create an object of SLSlicerAPI.ParameterDependence using Model Slicer.

slicerObj = slslicer('sldvexCommonCausesOfDeadlLogic');
pd = slicerObj.parameterDependence;

b. Find the parameters affecting the Product block.

params = parametersAffectingBlock(pd, 'sldvexCommonCausesOfDeadlLogic/Parameters/Product');

6-78

Analyzing the Results for a Dead Logic Analysis

>>» params (1)

ans

VariableUsage with properties:

»»> params(2)

ans =

SourceType: 'base workspace'

VariableUsage with properties:

Hame: "Paramh' Hame: 'ParamB'

Source: 'base workspace' Source: 'base workspace'
SourceType: 'base workspace!

Uzer=s: {2Z=1 cell} Tzerzs: {2Z=1 cell}

> params(3) »> params (4)
ans ans =
VariableUsage with properties: VariableUsage with properties:
HName: 'ParamC' Name: 'ParamD’
Source: 'base workspace' Source: 'base workspace'
SourceType: 'base workspace' SourceType: 'base workspace'
Users: {2=1 cell} Users: {2=1 cell}

The image above displays the parameters returned by the function parametersAffectingBlock

which have an impact on the Product block. The list of parameters returned by the function can be
considered for tuning.

c. Perform clean-up to exit compile state of the model.

slicerQObj.terminate;

4. Library-Linked Blocks

The ProtectedDivide library subsystem has protection for division by zero. Library blocks may be
written with defensive conditions that are redundant in some of the locations where they are used. In
some cases, this may cause dead logic. Open the Library block, and click the ProtectedDivide
subsystem highlighted in red. In this case, the inputs to the ProtectedDivide library subsystem can
never experience a division by zero. This causes the guarding logic to be dead. The Equal block
shows the dead logic. The Results window summarizes the dead logic.

6-79

6 Detecting Design Errors

Equal

255 .- E

*L Results: sldvexCommonCausesOfDeadLogic — O et

Back to summary
sldvexCommonCausesOfDeadLogic/Library / ProtectedDivide f Equal

DEAD LOGIC:
RelationalCperator: inputl == can never be true Justify RelationalCperator: inputl ==
input2 input? true

Derived Ranges:

Outport 1:F

Consider justifying the dead logic that arises from those library blocks.
5. Upstream Blocks

When a particular block has dead logic, this often leads to a cascading effect that causes downstream
blocks to also have dead logic. Open the CascadingDeadLogic subsystem and click the Less Than
block highlighted in red. The Results window summarizes the dead logic.

6-80

Analyzing the Results for a Dead Logic Analysis

L
e

P13 Results: sldvexCommenCausesOfDeadLogic — O >

Back to summary
sldvexCommonCausesOfDeadLogic/ CascadingDeadLogic/Less Than

DEAD LOGIC:
RelationalOperator: inputl < inputz2 can never be true Justify RelationalOperator: inputl < input2 true

Derived Ranges:

Qutport 1:F

The dead logic in the Less Than block causes the dead logic in the corresponding downstream
blocks. It is therefore often helpful to review the upstream dead logic before reviewing any
downstream dead logic.

6. Restrictions on Signal Ranges

Root-level Inport blocks with minimum and maximum values as constraints and Test Condition
blocks in the test generation may cause dead logic. For example, consider the ConditionGreaterThan0
Switch block, where the second Inport block has a minimum and maximum range of 1 and 100,
respectively. This causes the Switch block in this subsystem to have dead logic, because the
constrained range means the signal will always be greater than 0.

6-81

6 Detecting Design Errors

P1 Results: sldvexCommonCausesOfDeadLogic - O >
- B

'E} Back to summary

sldvexCommonCausesOfDeadLogic/ Assumptions/ ConditionGreaterThan0

[1..800] |
) " DEAD LOGIC:
trigger > threshold can never be false Justify trigger > threshold
{output is from 3rd false (output is from 3rd
@ — input port) input port}
Conditordsreater Thand Derived R.BI'IEH-:
Outport 1:[-1.79772+308..1.79772+308]

Section 4: View the Analysis Report

In the Results summary window, click HTML to view the detailed analysis report. The report
summarizes all of the dead logic results in the model.

Chapter 3. Dead Logic

Simulink Design Venfier proved these decisions and conditions to be unreachable or dead logic. Dead logic can be a side effect of
parameter configurations of minimum and maximum constraints specified on inputs. Simulink Design Verifier ran a partial check
for dead logic. Consider enabling the 'Dead logic = Run exhaustive analvsis' configuration option in order to perform an
exhaustive analysis.

Type Model Item Description
1 Condition ConditionallvExecutelnputs Togical Operator Logic: input port 2 can only be true
2 Decision ConditionallyExecuteInputs/Switch 1 trigger ﬂ.]IEShOId can never be false (output is
g from 3rd input port)
3 Condition ConditionallvExecutelnputs T ogical Operator] Logic: mput port 1| unreachable
4 Condition ConditionallyExecutelnputs T ogical Operator] Logic: input port 2 unreachable
. . { = i i
5 Decision Parameters/Switch trigger tlhreshold can never be true (output is
I — from lst input port)
6 Condition ShortCircwating T ogiecal Operator Logic: input port 1 can only be true
7 Condition ShortCircuiting Togical Operatorl Logic: input port 2 can only be true
. — — S -
g Condition Library ProtectedDivide Equal izl:honal()perator. inputl input? can never be
9 Decision Library/ProtectedDivide/Switch logical [TIZEEr MPUT Can never be true (output is
- from lst input port)
- N . . - =4 2 _
10 Condition CascadingDeadlogic/Tess Than izl:honal()perator. inputl < input? can never be
11 Condition CascadingDeadlogic/Logical Operator Logic: mput port 1 can never be true
12 Decision CascadingDeadl ogic/Switch logical [MZEET MPUT Can never be false (output is
= from 3rd input port)
13 Condition CascadingDeadl ogic/Logical Operatorl Logic: mput port 1| unreachable
14 Condition CascadingDeadl.ogic/T.ogical Operatorl Logic: input port 2 unreachable
135 Decision Assumptions'ConditionGreater Than(trigger tl.u'eshold can never be false (output is
from 3rd input port)

6-82

Analyzing the Results for a Dead Logic Analysis

To perform an exhaustive analysis for dead logic, in the Configuration Parameters Window in the
Design Error Detection pane, select Run exhaustive analysis. The software stores the detailed
analysis results in the DeadLogic field in the Simulink Design Verifier data files. You can use the
data file to further analyze the results.

Related Topics

* “Common Causes for Dead Logic” on page 6-15

6-83

Generating Test Cases

* “What Is Test Case Generation?” on page 7-3

+ “Workflow for Test Case Generation” on page 7-5

* “Generate Test Cases for Model Decision Coverage” on page 7-6

* “Generate Test Cases for a Subsystem” on page 7-18

* “Generate Test Cases for a Reusable Library Subsystem” on page 7-21

» “Use Test Generation Advisor to Identify Analyzable Components” on page 7-24
* “Generate Test Cases for Embedded Coder Generated Code” on page 7-28

* “Model Coverage Objectives for Test Generation” on page 7-30

* “Enhance Model Coverage of Older Release Models” on page 7-32

* “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-42

* “Analyze Model for Enhanced MCDC Analysis” on page 7-44

» “Basic Workflow for Enhanced MCDC Analysis” on page 7-47

* “Author Custom Test Objective Workflow” on page 7-52

* “What Is a Specification Model?” on page 7-60

* “Test Generation Examples” on page 7-66

» “Test Generation for Custom Code in MATLAB Function Block” on page 7-67
» “Use Specification Models for Requirements-Based Testing” on page 7-69

» “Flip Flop Test Generation” on page 7-80

* “Model Coverage Test Generation” on page 7-81

* “Test Objective Block” on page 7-82

» “Test Condition Block” on page 7-83

* “Cruise Control Test Generation” on page 7-84

* “Fuel Rate Controller Logic” on page 7-85

« “Extend an Existing Test Suite” on page 7-86

* “Defining and Extending Existing Tests Cases” on page 7-91

* “Using Existing Coverage Data During Subsystem Analysis” on page 7-97

* “Creating and Executing Test Cases” on page 7-100

* “Using Specified Input Minimum and Maximum Values as Constraints” on page 7-107
* “Configuring S-Function for Test Case Generation” on page 7-109

* “Code Coverage Test Generation” on page 7-111

» “Test Generation on Model with C Caller Block” on page 7-119

* “Debug Enhanced Modified Condition Decision Coverage Using Model Slicer” on page 7-121
» “Test Generation for Custom Code in a Stateflow Chart” on page 7-124

* “Generate Test Cases for Model Blocks” on page 7-126

» “Use Observer Reference Block for Test Case Generation” on page 7-130

7 Generating Test Cases

* “Inspect Test Generation Objectives by Using Model Slicer” on page 7-135

* “Generate Tests for Model Block Component by Using Default Simulation” on page 7-138
* “Add Test Cases Using Excel File” on page 7-142

* “Achieve Missing Coverage in Custom Code” on page 7-146

* “Achieve Missing Coverage in Generated Code of RLS” on page 7-149

7-2

What Is Test Case Generation?

What Is Test Case Generation?

The Simulink Design Verifier software can generate test cases that satisfy coverage objectives for
your model, including:

* “Decision” on page 7-30

* “Condition” on page 7-30

+ “MCDC” on page 7-31

* “Enhanced MCDC” on page 7-31

Test cases help you confirm model performance by demonstrating how the blocks in the model
execute in different modes. When generating test cases, the software performs a formal analysis of
your model. After completing the analysis, the software provides several ways for you to review the
results.

Note If your model does not have conditions, decisions, or custom test objectives, then Simulink
Design Verifier generates a test case that represents a basic simulation of your model. The test inputs
satisfy minimum or maximum constraints on input ports and intermediate signal values satisfy
constraints specified by the Test Condition blocks in the model.

Test Case Blocks

For customizing test cases for your Simulink models, Simulink Design Verifier provides two blocks:

* The Test Objective block defines the values of a signal that a test case must satisfy.
* The Test Condition block constrains the values of a signal during analysis.

Test Case Functions

To customize test cases for a Simulink model or Stateflow chart, Simulink Design Verifier provides
two MATLAB functions. You can use these functions in a MATLAB Function block. Both functions are
active in generated code and in Simulink Design Verifier.

* sldv.test — Specifies a test objective.

* sldv.condition — Specifies a test condition.

These functions:
* Identify mathematical relationships for testing in a form that can be more natural than using block

parameters.

* Support specifying multiple objectives, assumptions, or conditions without complicating the
model.

* Provide access to the power of MATLAB.
* Support separation of verification and model design.

For an example of how to use these functions, see the sldv.test or sldv.condition reference
page.

7 Generating Test Cases

Note Simulink Design Verifier blocks and functions are saved with a model. If you open the model on
a MATLAB installation that does not have a Simulink Design Verifier license, you can see the blocks
and functions, but they do not produce results.

See Also

More About

. “Workflow for Test Case Generation” on page 7-5

Workflow for Test Case Generation

Workflow for Test Case Generation

To generate test cases for your model, use the following workflow.

Task Description For an example, see
1 Verify that your model is compatible for “Check Compatibility of the Example
use with Simulink Design Verifier. Model” on page 7-7
2 Optionally, use the Test Generation “Use Test Generation Advisor to Identify
Advisor to select model components Analyzable Components” on page 7-24
(atomic subsystems and model blocks) for
test generation. Before test generation,
you can use the results to better
understand your model, particularly large
models, complex models, or models for
which you are uncertain of the test
generation compatibility.
3 If you have Stateflow objects in your
model, in the Configuration Parameters
dialog box, on the Diagnostics >
Stateflow pane, set Unreachable
execution path to error.
4 Optionally, instrument your model with “Customize Test Generation” on page 7-
blocks or MATLAB functions that specify |14
test objectives and test conditions.
5 Specify options that control how Simulink |“Configure Test Generation Options” on
Design Verifier generates test cases for page 7-8
your model.
6 Execute the Simulink Design Verifier “Analyze the Example Model” on page 7-
analysis. 8 and “Reanalyze the Example Model”
on page 7-16
7 Review the analysis results. “Review Analysis Results” on page 7-8
See Also
More About

. “Flip Flop Test Generation” on page 7-80

. “Cruise Control Test Generation” on page 7-84

. “Fuel Rate Controller Logic” on page 7-85

7-3

7 Generating Test Cases

Generate Test Cases for Model Decision Coverage

In this section...

“Construct the Example Model” on page 7-6

“Check Compatibility of the Example Model” on page 7-7
“Configure Test Generation Options” on page 7-8
“Analyze the Example Model” on page 7-8

“Review Analysis Results” on page 7-8

“Customize Test Generation” on page 7-14

“Reanalyze the Example Model” on page 7-16

“Analyze Contradictory Models” on page 7-16

Construct the Example Model

Construct a model for this example:

1 Create a Simulink model.
2 Copy the following blocks into your empty model window:
* From the Sources library, an Inport block to initiate the input signal whose value Simulink
Design Verifier controls.
* From the Sources library, two Constant blocks to serve as Switch block data inputs.
* From the Signal Routing library, a Switch block to provide simple logic.
* From the Sinks library, an Outport block to receive the output signal.

3 In your model, double-click one of the Constant blocks and specify its Constant value parameter
as 2.

4 Connect the blocks so that your model appears similar to the following diagram.

1

Constant
(RN R
Cor—>)
I - Cuti
™
Switch
2
Constant1

5 On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Design Verifier.

6 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode
settings, click Settings.

7 In the Configuration Parameters dialog box, select Solver pane. In the Solver selection:

Generate Test Cases for Model Decision Coverage

* Set the Type option to Fixed-step.
* Set the Solver option to Discrete (no continuous states).

Simulink Design Verifier analyzes only models that use a fixed-step solver.
Click OK to save your changes and close the Configuration Parameters dialog box.
Save your model with the name ex generate test cases example.

Check Compatibility of the Example Model

Every time Simulink Design Verifier analyzes a model, before the analysis begins, the software
performs a compatibility check. If your model is not compatible, the software cannot analyze it.

Before you start the analysis, you can also make sure that your model is compatible with Simulink
Design Verifier software:

Open the ex generate test cases example model.
2 On the Design Verifier tab, click Check Compatibility.

The software displays the log window, which states whether or not your model is compatible for
analysis.

The model you just created is compatible.

Simulink Design Verifier Results Surmmary: ex_generate_test_cases_example >

21-Mov-2018 17:20:53

Checking compatibility for test generation: model 'ex_generate_test_cases_example’
Compiling modd.g.done

Building model representation...done

21-Nowv-2018 17:20:58
'ex_generate_test cases_example' is compatible for test generation with Simulink Design
Verifier.

Save Log Generate Tests Close

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible, your model contains at
least one object that Simulink Design Verifier does not support. You can analyze a partially
compatible model, but, by default, the unsupported objects are stubbed out. The results of the
analysis can be incomplete.

For detailed information about automatic stubbing, see “Handle Incompatibilities with Automatic
Stubbing” on page 2-7.

7-7

7 Generating Test Cases

Configure Test Generation Options

Configure Simulink Design Verifier to generate test cases that achieve 100% decision coverage for
the ex _generate test cases example model:

Open the ex _generate test cases example model.

On the Design Verifier tab, in the Mode section, select Test Generation.

Click Test Generation Settings.

In the Configuration Parameters dialog box, on the Test Generation pane, set the Model
coverage objectives parameter to Decision.

A W N -

For this example, the analysis generates test cases that record only decision coverage.

The Test suite optimization parameter is set by default to Auto. If you want to generate fewer
but longer test cases, select LongTestcases for the Test suite optimization parameter.

Click OK to save your changes and close the Configuration Parameters dialog box.
Save the ex generate test cases example model.

Analyze the Example Model

On the Design Verifier tab, click Generate Tests. The Simulink Design Verifier analyzes your model
to generate test cases.

During the analysis, the Results Summary window shows the progress of the analysis. It displays
information such as the number of test objectives processed and which objectives are satisfied.

Review Analysis Results

When the software completes its analysis, the Results Summary window displays these options for
reviewing the results.

Generate Test Cases for Model Decision Coverage

Simulink Design Verifier Results Summary: ex_generate_test_cases_example *

Progress |

Objectives processed 22
2

Satisfied
Unsatisfiable 0
Elapsed time 0:12

Test generation completed normally.
2/2 objectives are satisfied.

Results:

* Highlight analysis results on model

= View tests in Simulation Data Inspector

= Detailed analysis report: (HTML) (FDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: ex_generate test cases example sldvdata.mat
in folder: H:\Documents\MATLAB\sldv_output
‘ex_generate test cases example

View Log

Close

“Review Analysis Results on the Model” on page 7-9
“Review Detailed Analysis Report” on page 7-11
“Review Harness Model” on page 7-12

The following sections describe how you can review the analysis results:

“Simulate Tests and Produce a Model Coverage Report” on page 7-12

“View sldvData File” on page 7-14

“Review Analysis Results in the Results Summary Window” on page 7-14

Review Analysis Results on the Model

Highlight the analysis results on the example model:

In the Results Summary window for the ex_generate test cases example analysis, click

Highlight analysis results on model.

7 Generating Test Cases

7-10

Constant —
i
CO— D
In1 Ot
"
Sw itch
2
Constantl

The Switch block is highlighted in green, which indicates that the Switch block has test cases
that satisfy its test objectives.

The Simulink Design Verifier Results window opens. As you click objects in the model, this
window changes to display detailed analysis results for that object. By default, the Simulink
Design Verifier Results window is always the topmost visible window. To allow the window to
move behind other window, click 8 and clear Always on top.

'D'E Results: ex_generate_test_cases_sxample — O >

[

Test generation completed normally.
22 objectives are satisfied.

Results:

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (FDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Click the highlighted Switch block.

The Simulink Design Verifier Results window indicates that the analysis generated test cases for
both test objectives:

* trigger > threshold
* trigger < threshold

Generate Test Cases for Model Decision Coverage

'D'} Results: ex_generate_test_cases_example — O >
- B9
Back to summary

ex_generate_test_cases_example/Switch

trigger = threshold false (output is from 3rd input SATISFIED - View test case
port)

trigger = threshold true (output is from 1st input SATISFIED - View test case
port)

For more information about highlighted analysis results on a model, see “Highlight Results on the
Model” on page 13-2.

Review Detailed Analysis Report

Create a detailed HTML analysis report:

1

In the Simulink Design Verifier Results Summary window, in Detailed analysis report, click
HTML.

The HTML report opens in a browser window.

The report includes the following Table of Contents. Click a hyperlink to navigate to a section in
the report.

Table of Contents

1. Summary
2. Analysis Information

3. Test Objectives Status
4. Model ltems
5 Test Cases

In the Table of Contents, click Summary to display the report's Summary chapter.

The Summary chapter lists information about the model and the status of the objectives—
satisfied or not.

In the Table of Contents, click Analysis Information to display the Analysis Information
chapter.

The Analysis Information chapter provides information about:

* The model that you analyzed.
* The options that you specified for the analysis.
* Approximations the software performed during the analysis.

In the Table of Contents, click Test Objectives Status to display the report's Test
Objectives Status chapter.

This table indicates that the analysis satisfied both test objectives associated with the Switch
block in the ex_generate test cases example model, for which it generated two test cases.

7-11

7 Generating Test Cases

7-12

6 Under the table Test Case column, click 2 to display the Test Case 2 section.
This section provides details about a test case that the analysis generated to achieve an objective
in your model. This test case achieves test objective 1, when the Switch block passes its third
input to its output port. Specifically, the software determines that a value of -1 for the Switch
block control signal causes the block to pass its third input as the block output.

For more information about the HTML reports, see “Review Results” on page 13-35.

Review Harness Model

To create a harness model with test cases that satisfy the test objectives in your model, in the
Simulink Design Verifier Results Summary window, click Create harness model.

The software creates a harness model named ex generate test cases example harness.

Size Type
Test Case 1
(= Ot
Inputs Test Unit {copied from ex_generate test cases_esample)
Doc
Text

Test Case Explanation

The Signal Builder block named Inputs contains the test cases. Double-click the Inputs block to see
the test cases. From the Signal Builder block, you can simulate the model using the test cases and
produce a model coverage report, as described in “Simulate Tests and Produce a Model Coverage
Report” on page 7-12.

For more information about the harness model, see “Manage Simulink Design Verifier Harness
Models” on page 13-13.

If Analysis Generates Many Test Cases

If you have a large model, the analysis might produce a harness model that contains a large number
of test cases.

To generate fewer test cases:

1 Set the Test suite optimization parameter to LongTestcases.
2 Rerun the analysis.

In the LongTestcases optimization, the analysis generates fewer but longer test cases that each
satisfy multiple test objectives.

Simulate Tests and Produce a Model Coverage Report

To simulate the harness model using the generated test cases in the harness model:

1 In the harness model, double-click the Inputs block to open the Signal Builder dialog box.

Generate Test Cases for Model Decision Coverage

4| Signal Builder (&x_g ate test_

—

File Edit Group

Signal Axes

GH| % BE| oo~

Click to select, Shift+click to add

Active Group: | Test Case 1 vi| |G (= | =
EL In1 o
5 [
4
3 -
2 |
1 —
0 * &
1 1 1 | 1 1 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time (sec)
]
Hame: In1
Index: 1 e
W

| In1 (#1) [¥Min YMax]

2

all
In the Signal Builder dialog box, click Run all ﬂ

The software simulates the harness model using both test cases, collects model coverage
information, and displays a coverage report. The coverage report indicates that the test cases
record 100% decision coverage for the ex generate test cases example model.

You can also simulate the model without creating a harness model. In the Simulink Design Verifier log
window, click Simulate tests and produce a model coverage report.

For more information about model coverage, see “Top-Level Model Coverage Report” (Simulink

Coverage).

7-13

7 Generating Test Cases

7-14

View sldvData File

The Simulink Design Verifier data file is a MAT-file that contains a structure named sldvData. This
structure stores all the data that the analysis gathers and produces during the analysis. You can use
the data file to conduct your own analysis or to generate a custom report.

To view the data file, click the data file name in the log window, in this example,

ex_generate test cases example sldvdata.mat. When you click the file name, a copy of the
sldvData object is instantiated in the MATLAB workspace so that you can review and manipulate
the data.

For more information about Simulink Design Verifier data files, see “Manage Simulink Design Verifier
Data Files” on page 13-7.

Review Analysis Results in the Results Summary Window

As long as your model remains open, you can view the results of your most recent Simulink Design
Verifier analysis in the Results Summary window.

On the Design Verifier tab, in the Review Results section, click Load Earlier Results or Results
Summary to view the results.

For any Simulink Design Verifier analysis, from the Results Summary window, you can perform these
tasks.

Task For more information
Highlight the analysis results on the model. “Highlight Results on the Model” on page 13-2
Generate a detailed analysis report. “Review Results” on page 13-35

Create the harness model, or if the harness model | “Manage Simulink Design Verifier Harness
already exists, open it. Models” on page 13-13

If no test cases were generated during the
analysis, this option is not available.

View the data file. “Manage Simulink Design Verifier Data Files” on
page 13-7
View the log file. “View Log Files” on page 13-56

After you close your model, you can no longer view analysis results.

Customize Test Generation

You can use the Test Condition block to constrain signals in your model to certain values during the
analysis.
At the MATLAB command prompt, enter sldvlib to display the Simulink Design Verifier library.
Open the Objectives and Constraints sublibrary.

3 Copy the Test Condition block to your model by dragging it from the Simulink Design Verifier
library to your model window.

4 In the model window, insert the Test Condition block between the Inport and Switch blocks.

Generate Test Cases for Model Decision Coverage

1

Constant
true -h:._\
CO—B—f +—(D
Il . Outl
™ —n
Switch
2
Constanti

5 Double-click the Test Condition block to access its attributes.

The Test Condition block parameters dialog box opens.

6 In the Values box, enter [-0.1, 0.1]. When generating test cases for this model, the analysis
constrains the signal values, entering the Switch block control port to the specified range.

Block Parameters: Test Condition et
Design Verifier Test Condition (mask) (link)

Constrains signal values in Simulink Design Verifier test cases. The
"Walues' parameter constrains the block input signal. Two element
vectors specify intervals. Cell arrays specify lists. The signal must
satisfy at least one of the values or intervals at every time step.
Example Values:

true

{[01], 2, [45], 6}
{Sldv.Interval(-2, -1), Sldv.Point(0}, Sldv.Interval(0, 1, '()], 1}

Parameters
Enable
Type Test Condition -

Values

[-0.1, 0.1]

Display values
Pass through style (show Outport)

Cancel Help Apply

7 Click OK to save your changes and close the Test Condition block parameters dialog box.

8 Save your model as ex _generate test cases with tc block and keep it open.

7-15

7 Generating Test Cases

7-16

Reanalyze the Example Model

Analyze the ex_generate test cases with tc block model with the Test Condition block. To
observe how the Test Condition block affects test generation, compare the result of this analysis to
the result that you obtained in “Analyze Example Model” on page 5-20.

1

On the Design Verifier tab, click Generate Tests.

The Simulink Design Verifier software displays a log window and begins analyzing your model to
generate test cases. When the software completes the analysis, the Results Summary window
displays the options for reviewing the results.

In the Results Summary window, click HTML Report.
To begin reviewing the report, in the Table of Contents, click Summary.

The Summary chapter indicates that Simulink Design Verifier satisfied two test objectives in the
model.

In the Table of Contents, click Analysis Information. Scroll to the bottom of this chapter,
to the Constraints section.

This section lists the Test Condition block that you added to constrain the value of the Switch
block control signal to the interval [-0.1, 0.1].

In the Table of Contents, click Test Objectives Status.

This table indicates that Simulink Design Verifier satisfied both test objectives for the Switch
block through the two test cases generated.

Under the table Test Case column, click 1.

This section provides details about a test case that the software generated to achieve an
objective in your model. This test case achieves test objective 1, when the Switch block passes its
third input to its output port. Although the Test Condition block restricts the domain of input
signals to the interval [-0.1, 0.1], the software determines that a value of -0.1 for the Switch
block control signal satisfies this objective.

To confirm that the test case achieves 100% decision coverage, open the harness model.
Double-click the Inputs block to open the Signal Builder dialog box.

all
In the Signal Builder dialog box, click Run all ﬂ

The Simulink software simulates the harness model using both test cases, collects model
coverage information, and displays a coverage report. The Summary section of the report
indicates that Simulink Design Verifier generated test cases that achieve complete decision
coverage for your example model.

Analyze Contradictory Models

If the analysis produces the error The model is contradictory in its current
configuration, the software detected a contradiction in your model and cannot analyze the model.

You can have a contradiction if your model has Test Objective blocks with incorrect parameters. For
example, a contradiction can be an objective that states that a signal must be between 0 and 5 when
the signal is the constant 10.

Generate Test Cases for Model Decision Coverage

If the software detects a contradiction, all previous results are invalidated and the software reports
that some of the objectives cannot be satisfied.

See Also

More About

. Model Coverage Test Generation on page 7-81

7-17

7 Generating Test Cases

Generate Test Cases for a Subsystem

7-18

You can analyze a subsystem within a model. This technique is good for large models, where you want
to review the analysis in smaller, manageable reports. Following two methods help you to generate
test cases for subsystem in different modes:

“Generate Test Cases for Subsystems for Normal Mode” on page 7-18
“Generate Test Cases for Subsystems for Software-in-the-Loop Mode” on page 7-19

Generate Test Cases for Subsystems for Normal Mode

This example shows how to analyze the Controller subsystem in the sldvdemo cruise control
model.

1

Open the example model:

sldvdemo cruise control

Right-click the Controller subsystem, and select Design Verifier > Enable ‘Treat as Atomic
Unit’ to Analyze.

The Function Block Parameters dialog box for the Controller subsystem opens.

Select Treat as atomic unit.

An atomic subsystem executes as a unit relative to the parent model. Subsystem block execution
does not interleave with parent block execution. You can extract atomic subsystems for use as
standalone models.

To analyze a subsystem with Simulink Design Verifier, set the Treat as atomic unit parameter.

After you set the parameter, other parameters become available, but you can ignore them.
To close the dialog box, click OK.

On the Simulation tab, in the File section, select Save > Save As and save the Cruise Control
Test Generation model with a new name.

To start the subsystem analysis and generate test cases, right-click the Controller subsystem,
and select Design Verifier > Generate Tests for Subsystem.

The Simulink Design Verifier software analyzes the subsystem. When the analysis is complete,
view the analysis results for the Controller subsystem by clicking one of the following options:
* Highlight analysis results on model

* View tests in Simulation Data Inspector

* Detailed analysis report

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Note After processing a certain number of objectives, if the analysis stops, or if the analysis
times out, you can use the Test Generation Advisor to better understand which subsystems are

Generate Test Cases for a Subsystem

causing the problem. For more information, see “Use Test Generation Advisor to Identify
Analyzable Components” on page 7-24.

Review the results of the subsystem analysis and compare the results to the results of the full-
model analysis as described in “Analyze a Model” on page 1-4:
* The subsystem analysis analyzes the Controller as a standalone model.

* The Controller subsystem contains all the test objectives in the Cruise Control Test
Generation model. Both the analyses generate the same test cases.

Generate Test Cases for Subsystems for Software-in-the-Loop Mode

This example shows how to generate test cases for atomic subsystems in software-in-the-loop (SIL)
mode by using the sldvdemo_cruise control ATS model.

1

Open the example model: sldvdemo cruise control ATS

model = 'sldvdemo cruise control ATS';
open_system(model);

In the Configuration Parameters window, click Code Generation and set System Target File
to ert.tlc. Alternatively, enter:

set param(model, 'SystemTargetFile', 'ert.tlc');

Click Hardware Implementation, then set Device vendor and Device type to the vendor and
type of your SIL system. For example, for a 64-bit Linux machine, set Device vendor to Intel
and Device type to x-86-64 (Linux). Alternatively, enter:

if ismac

1ProdHWDeviceType = 'Intel->x86-64 (Mac 0S X)';
elseif isunix

1ProdHWDeviceType = 'Intel->x86-64 (Linux 64)';
else

1ProdHWDeviceType = 'Intel->x86-64 (Windows64)';
end
set param(model, 'ProdHWDeviceType', 1ProdHwDeviceType);

Generate the code for the target. For subsystem analysis in SIL mode, code needs to be
generated before invoking test generation.

a Ifthe test generation target is Code Generated as Top model, generate the code for the
target by entering:

slbuild(model, 'StandaloneCoderTarget');

b If the test generation target is Code Generated as Model Reference, generate the code
for the target by entering:

slbuild(model, 'ModelReferenceCoderTargetOnly');

Note

+ Ifthere is a mismatch of the test generation target and the generated code interface target,
then test generation returns an error.

» Ifyou generate a code for both targets, the test generation returns an error.

7-19

7 Generating Test Cases

7-20

5 Set up the function packaging of the subsystem by right-clicking PI Controller > Block
Parameters (Subsystem) > Code Generation > Function Packaging and set as Reusable
function or Nonreusable function.

Alternatively enter:

ssPath = [model '/PI Controller'];
set param(ssPath, 'RTWSystemCode', 'Reusable function'); % For Resuable function

set param(ssPath, 'RTWSystemCode', 'Nonreusable function'); % For Nonresuable function

6 In the Apps tab, click Design Verifier. Then, in the Design Verifier tab, set Target to Code
Generated as Top Model. Generate tests by using one of these methods:

* Right click the PI Controller block, then click Design Verifier > Generate Tests for
Subsystems.

* Select the PI Controller block by unpinning it from the toolstrip. Then click Generate Tests.

* Create a harness for the subsystem and then invoke test generation by right-clicking the PI
Controller block, then clicking Test Harness > Create for PI Controller.
Select the harness name and click OK.

Open the new harness. Then click Design Verifier and click Generate Tests.

Alternatively, you can use the API to generate the tests by entering:

opts = sldvoptions;
opts.TestgenTarget = Sldv.utils.Options.TestgenTargetGeneratedCodeStr;
[status, fileNames] = sldvrun(ssPath,opts,true);

7 Review the results of the subsystem analysis and compare the results to the results of the full-
model analysis as described in “Generate Test Cases for Subsystems for Normal Mode” on page
7-18.

Generate Test Cases for a Reusable Library Subsystem

Generate Test Cases for a Reusable Library Subsystem

A reusable library subsystem (RLS) is a subsystem that you define and include in a library and
configure for reuse across models. For more information on how to configure an RLS for analysis, see
“Generate Reusable Code for Subsystems Shared Across Models” (Embedded Coder). You must test
the configured RLS by creating a harness from the library and not from an instance in a design
model.

This example uses sldvdemo_cruisecontrol model, where PI controller is the RLS block. You
can create a harness from the instance of this RLS block as shown. Test generation of RLS can be
invoked on a harness RLS block created from the library and not from its instance.

f.__)—-
(}
& NOT Hﬂl‘ul] ey

- r [Geiermine 1 i

&l

Specify the prnperhﬂ, of the test hamess. T're :umpnnert uvme tut m
for which th & baing created, After
and opon hamesses.

Comp under Test: gldvde sryise controlCont P Controlls
u ‘
Basic Properties | Advanced Properties Description throt

Name: |sidvidema_cruise_control_Hamess2

Harnesses saved internally. Morg information

Sources and Sinks

—~
i3 Cancel Help *“ij

When you create the test harness from the library as shown, the test generation for the RLS code
from this harness is supported by the design model.

S |
Cal Create Test Harness A X

Specify the properties of the test hamess. The component under test is the system
for which the harmess is being created. After creation. use the block badge to find
and open hamesses

Component under Test: mPiController RLS/P1 Controller

Basic Properties Description

oo

oot

P Controlier Nameé: mPIController RLS MHarmess]

Harnesses saved internally. More information

Select Function Interface

PiController_CodeSpecificationl

This example shows how to analyse RLS code in the Software-in-the-Loop mode.

Generate Test Cases for RLS in Software-in-the-Loop Mode

This example shows how to generate test cases for RLS in the software-in-the-loop (SIL) mode.

1. Open the example model: 'mRLS'

7-21

7 Generating Test Cases

model = 'mRLS';
open_system(model);

2. Unlock the library model. In the Configuration Parameters window, click Code Generation and set
System Target File to ert.tlc. Alternatively, enter the following command:

set_param(model, 'Lock','off");
set_param(model, 'SystemTargetFile', 'ert.tlc');

3. Click Hardware Implementation, then set Device vendor and Device type to the vendor and
type of your SIL system. For example, for a 64-bit Linux machine, set Device vendor to Intel and
Device type to x-86-64 (Linux). Alternatively, enter the following code:

if ismac

1ProdHWDeviceType = 'Intel->x86-64 (Mac 0S X)';
elseif isunix

1ProdHWDeviceType = 'Intel->x86-64 (Linux 64)';
else

1ProdHWDeviceType = 'Intel->x86-64 (Windows64)';
end
set param(model, 'ProdHWDeviceType', 1ProdHWDeviceType);

4. Use the device settings to set up the function interface. For more information on how to set the
function interface from within a library, see Configure Function Interfaces from Within a Library.

5. Generate the top-model code before generating tests for the RLS. Before you generate the code,
set up the code generation target environment. For more information on setting up the target
environment, see SIL Testing a Reusable Library Subsystem.

orig = Simulink.fileGenControl('get', 'CodeGenFolderStructure');
Simulink.fileGenControl('set', 'CodeGenFolderStructure', ...
Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder);

slbuild('mRLS");

Starting build procedure for: Controller CodeSpecificationl

Generating code and artifacts to 'Target environment subfolder' folder structure

Generating code into build folder: C:\TEMP\Bdoc23a 2213998 3568\1b570499\0\tp65d2e03e\sldv-e
Invoking Target Language Compiler on Controller CodeSpecificationl.rtw

Using System Target File: B:\matlab\rtw\c\ert\ert.tlc

Loading TLC function libraries

Initial pass through model to cache user defined code

Caching model source code

Writing header file Controller LpOGdbbft.c

Writing header file Controller_CodeSpecificationl types.h
Writing header file Controller CodeSpecificationl.h

Writing header file rtwtypes.h

Writing header file Controller LpOdbbft.h

Writing source file Controller CodeSpecificationl.c

Writing header file Controller CodeSpecificationl private.h

Writing source file ert main.c

TLC code generation complete (took 8.15s).

Saving binary information cache.

Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)

7-22

Generate Test Cases for a Reusable Library Subsystem

Creating 'C:\TEMP\Bdoc23a 2213998 3568\1ib570499\0\tp65d2e03e\sldv-ex41550386\IntelWin64\ sha
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)

Creating 'C:\TEMP\Bdoc23a 2213998 3568\1ib570499\0\tp65d2e03e\sldv-ex41550386\IntelWin64\Cont
Successful completion of code generation for: Controller CodeSpecificationl

The following files will be copied from IntelWin64_ shared to C:\TEMP\Bdoc23a 2213998 3568\1ib570
Controller LpOdbbft.c
Controller LpOdbbft.h
shared file.dmr

Files copied from IntelWin64\ shared to C:\TEMP\Bdoc23a 2213998 3568\ib570499\0\tp65d2e03e\sldv-¢

6. If the library model is locked, unlock the library model to create a Simulink test harness for the
subsystem block.

Create the harness for the subsystem block for a particular function interface. In this example, create
the harness for the function interface Double.

7. Open the harness model and select the appropriate target and then start test generation.

Note: For RLS you can generate subsystem code from the library that gets compiled into a static
library and can be reused by components. Test generation on the harness, created from the library
and if you set the target as Code Generated as Model Reference you will receive an error message
as this is not supported.

See Also

More About

. “Generate Reusable Code for Subsystems Shared Across Models” (Embedded Coder)
. “Test Library Blocks” (Simulink Test)

7-23

7 Generating Test Cases

Use Test Generation Advisor to Identify Analyzable
Components

7-24

In this section...

“Test Generation Advisor” on page 7-24

“Test Generation Advisor Requirements” on page 7-25

“Identify Analyzable Components” on page 7-25

“Analyze and Generate Tests for Model Components” on page 7-25
“Manually Select Components for Testing” on page 7-27

Test Generation Advisor

You can use the Test Generation Advisor to select model components (atomic subsystems and model
blocks) for test generation. The Test Generation Advisor summarizes test generation compatibility,
condition and decision objectives, and dead logic for the model and model components.

The Test Generation Advisor performs a high-level analysis and fast dead logic detection. You can use
the results to better understand your model before test generation, particularly for large models,
complex models, or models for which you are uncertain of the test generation compatibility. For
example, you can:

* Identify components that are incompatible with test case generation.

+ Identify complex components that may be time-consuming to analyze.

» Determine instances of dead logic.

* (et a snapshot of the component hierarchy.

* Get recommended test generation parameters.

g W [» Secnndspermmpnnent: O]
‘Companent Hierarchy E "E Component Name: sldv_testgen_advisor

v o sldv_testgen_advisor
v o Subsys_Analysable
0 PI Controller el
& Subsys_Complex
o Subsys_Incompatible

Components processed 5/5

0 Incompatible: 2 o Analyzable: 2 & Complex: 1

Summary of subcomponents in 'sidv_tesigen_advisor’
g G S el
advisor 43 11 NA

26 11

advisor/Subsys_Analysable 100%

Q

o
sldv advisor/Subsys_Analysable/P] [] 6 NA NA
Controller
sldv_t advisor/Subsys Complex & 15 0 40%
sldv_testgen_advisor/Subsys_Incompatible Q 2 NA NA

Model items that are incompatible:
Model item essag
estgen_advisor Translation failed: Algebraic loops are not supported in generated code. Use the 'ashow’ command in the
Simulink Debugger to see the algebraic loops

n_advisor Simulink Design Verifier failed to initialize: 'sldv_testgen_advisor/Subsys_Incompatible’ is incompatible for
design error detection with Simulink Design Verifier.

Help

Use Test Generation Advisor to Identify Analyzable Components

The Test Generation Advisor classifies components as analyzable, complex, or incompatible.

Analyzable components are compatible with Simulink Design Verifier. The preliminary analysis
indicates that Simulink Design Verifier might achieve high component coverage.

Complex components are also compatible with Simulink Design Verifier. However, the preliminary
analysis indicates that Simulink Design Verifier might require more time and resources to achieve
high component coverage due to component complexity or other factors. For more information,
see “Sources of Model Complexity” on page 14-2.

You cannot generate tests for incompatible components. For more information, see “Check Model
Compatibility” on page 3-2.

The results summary displays specific information about the model and each component:

Status: The compatibility or complexity
Objectives: The number of condition and decision objectives

Dead Logic Detected: The number of instances of dead logic decided during the analysis. This
might not include every instance of dead logic.

Objectives Decided: The percentage of condition and decision objectives determined by test
cases and dead logic.

Test Generation Advisor Requirements

For analysis, your model must compile. Also, if you change the model name, you must reload the
model and reopen the Test Generation Advisor.

Identify Analyzable Components

To analyze your model using the Test Generation Advisor, follow this high-level workflow:

Open your model.
On the Design Verifier tab, in the Mode section, select Test Generation, then click Advisor.

Your model compiles, and the Test Generation Advisor opens. It displays the model hierarchy and
summary table.

Enter a time value for Seconds per component, which limits the analysis time per component.
This value does not include time for other operations such as compilation.

Run the analysis by clicking the Start Analysis button [> Track the analysis using the progress
indicator.

Determine incompatibilities, complexities and characteristics from the component hierarchy tree
and the results summary.

Trace from the summary to the model using the component hyperlinks.

Analyze and Generate Tests for Model Components

This example demonstrates analysis and test generation using the Test Generation Advisor. The
example model has analyzable and incompatible subsystems.

1

At the command line, enter fuelsys docreq to open the fuelsys docreq model.

7-25

7 Generating Test Cases

2 Save a copy of the model in a writable location on the MATLAB path.
3 On the Design Verifier tab, in the Mode section, select Test Generation, then click Advisor.

L) @ D Seconds per component:| 20 @
Component Hierarcny "E »* Component Name: fuelsys_docreq
v fuelsys_docreq

=] control logic
[E] MAP Estimate

Overall progress

[=] Speed Estimate R Uz
=] Throttle Estimate
=] Low Mode
=] RiCH Mode
€ Incompatible: 0 & Analyzable: 0 A\ Complex: 0
Summary of subcomponents in fuelsys docreq’ -
‘Component Name

fuelsys_docreq
fuelsys_docreq/fiel rate
controller/control logic
fuelsys_docreq/fiel rate = 2 NA NA
controller/Sensor correction and Fault

IAP Estimate

fuelsvs_docraq/fuel rate = 2 NA NA
controller/Sensor correction and Fault
7/Speed Estimate

fuelsys_docreq/fel rate = 2 NA NA

controller/Sensor correction and Fault

Redundancy Throttle Estimate

fuelsys_docreq/fisel rate controllerFuel [2 NA NA
4

L4 >

In the Seconds per component text box, enter 25.

Click the Start Analysis button 1> to begin the model analysis.
6 After the analysis is complete, the component tree displays results for the overall model and each

component.
9 W > Smmdspermmpumnt: @
Component Hierarchy "E 'T Component Name: fueisys_docreq

~ @ fuelsys docreq

@ control logic

s |
° MAP Estimate
@ Sspeed Estimate Components processad s
@ Throttle Estimate
@ Low Mode
@ RicH Mode

€ Incompatible: 2 @ Analyzabie: 5 A complex: 0

Summary of subcomponents in fuelsys_docreq’

fuelsys_docreq Q 167 NA

1
fuy docreq/fuel rate controller/control logic] 109 1 $4.3%
fin docreq/fuel rate controller/Sensor correction and Fault Redundancy/MAP Estimate [/] 2 0 100%
fun docreq/fuel rate controller/Sensor correction and Fault Redundancy/Speed Estimate [/] 2 0 100%
fuelsys_docreq/fuel rate controller/Sensor correction and Fault R ¢/ Throttle Estimate & 2 0 100%
fuelsys_docreq/fuel rate controller/Fuel Cal ion/Switchable C: ionLOW Mede @ 2 0 100%
fuelsys_docreq/fuel rate controller/Fuel Calculation/Sw: C icn RICH Mode 2 NA NA

Model items that are incompatible:
Model ifem

Message
fuelsys_docreq

Simulink Design Verifier failed to initialize: 'fuelsys_docreq/fuel rate

controlles Fuel Caleulation/Switchable

Compensation RICH Mode' is incompatible for design error detection with Simulink Design Verifier

The parameter D' used by RICEMode RICH Mode Discrete Transfer Fen (with initial ovtputs) Discrete State
Space’ has a non finite value. Simulink Design Verifier does not support non finite valves.

fuelsys_docreq/fuel rate controllerFuel Cal i C ionRICH
Mode/Discrete Transfer Fen (with initial outputs) Discrete State Space

7-26

Use Test Generation Advisor to Identify Analyzable Components

7 Highlight the control logic subsystem in the component hierarchy. The analysis was partial,
in that it determined 87% of the objectives for control logic by test cases and dead logic. To
load the test generation summary, click the Show test generation results summary link.

At the bottom of the summary, the table lists recommended test generation parameters.

4 (W) [> Seconds per component; 25 @
Compenent Hierarchy "E "E | Component Name: control logic
v o fuelsys_docreq
() o] 25 Overall progress I
o MAP Estimate
© Specd Estimate Companents processe 7"
Q Throttle Estimate
@ Low Mode
Q ricH Mode
o Incompatible: 2 o Analyzable: 5 & Compiex: 0
Summeary of subcomponents in 'control logic’
fuelsys_docreq/fuel rate controller/control logic [] 109 1 94.5%
Preliminary Test Generation Results
Preliminary analysis result for control logic: 103 out of 109 objectives decided.
Show test generation results summary (Partial)
Preliminary Dead Logic Detection
'1" objectives are dead logic in 'control logic’.
Simulink Design Verifier proved that these decision and condition outcomes cannot oceor and are dead-logic in the model
Decision fuelsys_docreq/fuel rate controller/control logic Fueling_Mode/Fuel_Disabled transition(£784) trigger expression false
Recommendations
Maximum analysis 300
Auvtomatic stubbin supported atomic blocks o
Testzuite generation strategy Auto
Extract this component and generate tests
Help
< >

8 Click the Component name hyperlink. Simulink traces to the control logic Stateflow chart.

9 Generate the full set of tests for the subsystem. In the Test Generation Advisor summary for
control logic, click Extract this component and generate tests.

Manually Select Components for Testing

If you know which model components that you want to test, you can manually select these
components. Break down the model into components of 100-1000 objectives each. Use the
sldvextract function to extract components into a new model. You can then analyze the individual
components, starting with the lowest-level subsystems.

See Also

More About

. “Model Coverage Objectives for Test Generation” on page 7-30

. “Generate Test Cases for Model Decision Coverage” on page 7-6

7-27

7 Generating Test Cases

Generate Test Cases for Embedded Coder Generated Code

7-28

In this section...

“Generate Test Cases for Generated Code from the Simulink Model Toolstrip” on page 7-28
“Generate Test Cases for Generated Code by Using the Simulink Design Verifier API” on page 7-29
“Generate Test Cases for Generated Code from the Simulink Test Test Manager” on page 7-29

When you use Embedded Coder to generate code from a model set to software-in-the-loop (SIL)
mode, you can use Simulink Coverage to record coverage metrics on the generated code. However,
the same tests that enable you to achieve 100% model coverage might not produce 100% coverage
for the generated code. Some differences between the output code and the model can cause gaps in
the code coverage compared to the model coverage:

* Extra custom code files

* Shared utility files

¢ Code transformations, such as:

* Expression folding
* Simplified or expanded expressions
* New decision points due to lookup tables

You can use Simulink Design Verifier to generate test cases to increase coverage for generate code.
You generate test cases for generated code from the block diagram, by using the Simulink Design
Verifier API, or from the Simulink Test Test Manager. Before you generate test cases, you need to
record coverage results at least once.

Generate Test Cases for Generated Code from the Simulink Model
Toolstrip

After you Enable SIL Code Coverage for a Model (Simulink Coverage), simulate the model, and
record code coverage data, you use Simulink Design Verifier to generate additional test cases for the
generated code:

1 On the Design Verifier tab, in the Mode section, select Test Generation.

» To generate tests for code generated as top model, select Target > Code Generated as Top
Model, then click Generate Tests.

* To generate tests for code generated as model reference, select Target > Code Generated
as Model Reference, then click Generate Tests.

Simulink Design Verifier test generation proceeds according to the test generation mode that you
choose.

To learn more about the differences between code generated as top model and code generated as
model reference, see:

* “Configure and Run SIL Simulation” (Embedded Coder)
e “Code Interfaces for SIL and PIL” (Embedded Coder)

Generate Test Cases for Embedded Coder Generated Code

* “Choose a SIL or PIL Approach” (Embedded Coder)

Generate Test Cases for Generated Code by Using the Simulink Design
Verifier API

For an example of how to programmatically generate test cases for generated code, see “Code
Coverage Test Generation” on page 7-111.

Generate Test Cases for Generated Code from the Simulink Test Test
Manager

If you use the Simulink Test Test Manager to record code coverage for a model set to SIL mode, you
can incrementally increase coverage for the generated code directly from the Test Manager. For more
information, see “Incrementally Increase Test Coverage Using Test Case Generation” on page 16-9.

See Also

More About

. “Support Limitations and Considerations for S-Functions and C/C++ Code” on page 3-28

7-29

7 Generating Test Cases

Model Coverage Objectives for Test Generation

7-30

In this section...

“Decision” on page 7-30
“Condition” on page 7-30

“MCDC” on page 7-31

“Enhanced MCDC” on page 7-31
“Relational Boundary” on page 7-31

Test cases are generated to drive your model to satisfy condition, decision, modified condition/
decision (MCDC), and custom coverage objectives. But, if your model does not have any of these
objectives, then Simulink Design Verifier generates a test case that represents a basic simulation of
your model. The test inputs satisfy minimum or maximum constraints on input ports and intermediate
signal values satisfy constraints specified by the Test Condition blocks in the model.

Decision

Decision coverage in Simulink Design Verifier examines blocks and Stateflow states that represent
decision points in a model. For instance, the Switch block involves the decision about whether the
control input is greater than a threshold value. For more information, see “Model Objects That
Receive Coverage” (Simulink Coverage).

To enable decision coverage, under Design Verifier > Test Generation, for Model coverage
objectives, select one of the following:

* Decision

*+ Condition Decision

* MCDC

For each decision in your model, Simulink Design Verifier generates test cases that satisfy the
coverage objective. For more information, see “Decision Coverage (DC)” (Simulink Coverage).

Condition

Condition coverage examines blocks that output the logical combination of their inputs and Stateflow
transitions. For more information, see “Model Objects That Receive Coverage” (Simulink Coverage).

To enable condition coverage, under Design Verifier > Test Generation, for Model coverage
objectives, select one of the following:

* Condition Decision
*+ MCDC
For each input to a logical block and each condition in a transition, Simulink Design Verifier

generates test cases that satisfy the coverage objective. For more information, see “Condition
Coverage (CC)” (Simulink Coverage). .

Model Coverage Objectives for Test Generation

MCDC

Modified condition decision coverage examines blocks that output the logical combination of their
inputs and Stateflow transitions. For more information, see “Model Objects That Receive Coverage”
(Simulink Coverage).

To enable MCDC coverage, under Design Verifier > Test Generation, for Model coverage
objectives, select MCDC.

For each input to a logical block and each condition in a transition, Simulink Design Verifier
generates test cases that satisfy the coverage objective. For more information, see “MCDC Coverage
for Stateflow Charts” (Simulink Coverage).

For information on how MCDC test generation in Simulink Design Verifier can deviate from MCDC
coverage recorded by Simulink Coverage, see “Modified Condition and Decision Coverage in Simulink
Design Verifier” on page 9-21.

Enhanced MCDC

Enhanced MCDC is an extension of modified condition decision coverage. For a test block, enhanced
MCDC generates test cases that avoid masking effects from downstream blocks, so that the test block
has an effect on the output.

To enable enhanced MCDC coverage, under Design Verifier > Test Generation, for Model
coverage objectives, select Enhanced MCDC. For more information, see “Enhanced MCDC
Coverage in Simulink Design Verifier” on page 7-42.

Relational Boundary

Relational boundary coverage examines blocks that have an explicit or implicit relational operation
and Stateflow transitions. For more information, see “Model Objects That Receive Coverage”
(Simulink Coverage). Test generation for relational boundary coverage is not supported for If and Fcn
blocks.

To enable relational boundary coverage, under Design Verifier > Test Generation, select Include
relational boundary objectives.

For each relational operation in the model, Simulink Design Verifier generates test cases that satisfy
the coverage objective. For more information, see “Relational Boundary Coverage” (Simulink
Coverage).

Note In case your model does not have conditions, decisions, or custom test objectives, then
Simulink Design Verifier will generate a test case that represents a basic simulation of your model.
The test inputs will satisfy min/max constraints on input ports and intermediate signal values will
satisfy constraints specified by the Test Condition blocks in the model.

7-31

7 Generating Test Cases

Enhance Model Coverage of Older Release Models

To enhance the model coverage of a model that you created in an older release, use a test generation

workflow or a code generation workflow. You can leverage the latest release capabilities of Simulink
Design Verifier to generate the test cases for a Model-Based Design.

These workflows enhance model coverage.

“Enhance Model Coverage by Generating Test Cases for Older Release Model” on page 7-33

“ 22015b ‘\RQO]B%}
l '}ﬁ ‘ 1. Create a copy in R2018b bl ->a I

. / working folder
Design Maodel

Copy of design
model

4. Simulate tests and
produce a model
coverage report

2. Perform test

sldvData file generation analysis

v

Model Hierarchy/Complexity Testl

D1 Cl
1. sldvexSFunctionHandlingExample 8 100% 100% |
2....1sNotZero NA 100% eo—

Model coverage report sldvData file

“Enhance Model Coverage by Using Generated Code from Older Release” on page 7-37

7-32

Enhance Model Coverage of Older Release Models

‘\ R2015b

1. Build model
] g
| —

Genera"céd'(.: code

4\%%201 8b

2. Import generated
code as SIL block

Design Model
=) JF"
5 1-,-._.{:?
5. Simulate 4. Generate

harness model harness model
and generate

coverage report

Model Hierarchy/Complesity Teul
Dl a

Example § 100%: e (00%: e———

1. .. paNotZero NA 100%: —

Model coverage report

> CO—m ount —()

SIL
in2 ouz —(2)

sldvCrossRedeaseExample_15b_R2015b_sil

SIL Block

3. Generate test cases
for Embedded Coder
generated code

sldvData file

Enhance Model Coverage by Generating Test Cases for Older Release

Model

This example shows how to upgrade model coverage of a model created in R2015b. You use test
generation for supported S-functions available in the latest release.

The example model sldvexSFunctionHandlingExample contains the handwritten S-Function,
which implements a lookup table algorithm. The handwritten S-Function is in the file
sldvexSFunctionHandlingSFcn. c. The user source code for the lookup table is in the file

sldvexSFunctionHandlingSource.c.

1. In MATLAB R2015b, open the sldvexSFunctionHandlingExample model.

open_system('sldvexSFunctionHandlingExample');

7-33

7 Generating Test Cases

Simulink Design Verifier
S-Function Handling for Test Generation

double
1
double InterpolatedDats
sldvexSFuncticnHandlingSFcn 1,0, 1
InputCata [antE i boolean

=10 e 2)

. SatrationOcoured

s Mot ero

5-F uncticn

This model contains a handwritten S-Function which implements a lookup table algorithm. The S-Function
block returns the interpolated value at the first output port and returns the status of the interpolation at the
second output port.

The second output part returns the value -1 if a lower saturation occurs, 1if a upper saturation

occurs, and 0 otherwise.

Open ~
" Run View Options
S-Function sources
(double_click) (double-click) (double-click)
Open Source Files Run Simulink Design Verifier View Simulink Design Verifier Options

7-34

2. To simulate the model and generate the coverage report, in the Simulink Editor, click the Run
button. See “View Coverage Results in Simulink Canvas” (Simulink Coverage) .

After the simulation, the coverage report indicates that full coverage is not achieved for
sldvexSFunctionHandlingExample model.

Summary
Model Hierarchy/Complexity Testl
D1 C1 Execution
1. sldvexSFunctionHandlingExample § 13% = 0% 100% —
2 .. usNotZero MNA 0% —— 1009 —o—

3. In MATLAB R2018b or later releases, open the sldvexSFunctionHandlingExample model. The
example model sldvexSFunctionHandlingExample is available in R2015b and later releases, so
you can use the same model for test generation workflow.

open_system('sldvexSFunctionHandlingExample');

Enhance Model Coverage of Older Release Models

To avoid any potential changes in the model, create a copy of the older release model in the current
working folder, and then open the model in R2018b or later releases. To upgrade and improve models
that you use in the current release, you can use the upgradeadvisor function. See
“Programmatically Analyze and Upgrade Model”.

4. Compile the S-function to be compatible with Simulink Design Verifier for test case generation by
using slcovmex (Simulink Coverage). For more information, see “Configuring S-Function for Test
Case Generation” on page 7-109.

slcovmex('-sldv',
'-output', 'sldvexSFunctionHandlingSFcn',...
'sldvexSFunctionHandlingSource.c', 'sldvexSFunctionHandlingSFcn.c');

mex C:\TEMP\Bdoc23a 2213998 3568\ib570499\0\tp5f4630b4 5f10 43a2 a702 c33a560effc4\tpd5aa63d5 e5
Building with 'Microsoft Visual C++ 2019 (C)'.

MEX completed successfully.

mex sldvexSFunctionHandlingSource.c C:\TEMP\Bdoc23a 2213998 3568\ib570499\0\tp5f4630b4 5f10 43a2
Building with 'Microsoft Visual C++ 2019 (C)'.

MEX completed successfully.

5. Create an opts option for the sldvexSFunctionHandlingExample model.
opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.ModelCoverageObjectives = 'Condition';

opts.SaveHarnessModel = 'off"';

opts.SaveReport = 'off';
opts.SFcnSupport = 'on';

6. To generate test cases by using the specified opts options, use sldvrun to analyze the model.
[status, fileNames] = sldvrun('sldvexSFunctionHandlingExample', opts);

03-Mar-2023 23:40:52

Checking compatibility for test generation: model 'sldvexSFunctionHandlingExample'
Compiling model...done

Building model representation...done

03-Mar-2023 23:41:24

"sldvexSFunctionHandlingExample' is compatible for test generation with Simulink Design Verifier

Generating tests using model representation from 03-Mar-2023 23:41:24...

Generating output files:

03-Mar-2023 23:41:47
Results generation completed.

Data file:
C:\TEMP\Bdoc23a 2213998 3568\1ib570499\0\tp65d2e03e\sldv-ex67693772\sldv_output\sldvexSFuncti

After analysis, the software generates a Simulink Design Verifier data file and stores it in the default
location <current folder>\sldv output
\sldvexSFunctionHandlingExample sldvdata.mat.

7. In R2015b, open the model.

7-35

7 Generating Test Cases

open_system('sldvexSFunctionHandlingExample');
8. Load the sldvData file created in R2018b or later releases.

a. On the Design Verifier tab, click Load Earlier Results and browse to the sldvData MAT-file
generated in R2018Db or later releases.

b. Click Open.

Pk Simulink Design Verifier Results Summany: sldvexSFunctionHan...

Test generation completed normally. ~
13/13 objectives are satisfied.

Results:

* Highlight analysis results on model

® View tests in Simulation Data Inspector
* Cenerate detailed analysis report

* Create harness model

® Eunort test cases to Simulink Test

... oo

Data saved in: sldvexSFunctionHandlingExample sldvdata.mat
in folder: H:\Documents\MATL AR\test\sldv output
\sldvexSFunctionHandlingExample o

9. In the Simulink Design Verifier Results Summary window, click Simulate tests and produce a
model coverage report. The report indicates that 100% coverage is achieved for
sldvexSFunctionHandlingExample model.

Summary

Model Hierarchy/Complexity Testl
D1 Cl Test Objective Execution

1. sldvexSPunctionHandlingFxample § 100% oo 100% s 100% s [(00%

2. ... 1aNotfero MA 100% = @ NA 100% ——

For more information, see “Manage Simulink Design Verifier Data Files” on page 13-7 and
“Simulate Tests and Produce Model Coverage Report” on page 1-15.

7-36

Enhance Model Coverage of Older Release Models

Enhance Model Coverage by Using Generated Code from Older
Release

This example shows how to upgrade the model coverage of a model created in R2015b by using code
generation workflow.

For this workflow, you must have Simulink Coder™ and Embedded Coder.

The example model sldvCrossReleaseExample contains the handwritten S-Function, which
implements a relational boundary algorithm. The handwritten S-Function is in the file rel sfcn.c. The
user source code is in the file rel comp.c.

To inline the S-function, use the rel sfcn. tlcfile. For more information, see “Inline S-Functions
with TLC” (Embedded Coder).

1

3

Copy the example model sldvCrossReleaseExample and S-Function files, rel sfcn.c,

rel comp.c, and rel sfen.tlc in the current working folder. Copy the header files rel comp.h into
the current working folder. You use the example model and supporting files in R2015b for a
“Cross-Release Code Integration” (Embedded Coder) workflow.

Note The example model sldvCrossReleaseExample is created for example purpose. To
perform code generation workflow by using the example model, export
sldvCrossReleaseExample model to 15b. Save the model as
sldvCrossReleaseExample 15b in the current working folder. For more information, see
“Export Model to Previous Version of Simulink”.

In MATLAB R2015b, open sldvCrossReleaseExample 15b model from the current working
folder.

open_system('sldvCrossReleaseExample 15b');

Simulink Design Verifier
Enhance Model Coverage by Using Code Generation Workflow

mt outtt f— (1)
2 ouzf—e(2)

The Subsystem block contains a handwritten S-Function which implements a
relational boundary algorithm. The S-function block returns an cutput value in
100-200 range.

Compile the S-function by using the function legacy code.

def = legacy code('initialize');
def.SFunctionName = 'rel sfcn';
def.OutputFcnSpec = 'uint8 yl = relational bound(uint8 ul)';
def.HeaderFiles = {'rel comp.h'};
def.SourceFiles = {'rel comp.c'};
def.IncPaths = {pwd};
def.SrcPaths = {pwd};
def.Options.supportCoverageAndDesignVerifier = true;

7-37

7 Generating Test Cases

7-38

legacy code('sfcn cmex generate', def);
legacy code('compile', def);

To simulate the model and generate the coverage report, in the Simulink Editor, click the Run
button. See “View Coverage Results in Simulink Canvas” (Simulink Coverage).

After the simulation, the coverage report indicates that 50% coverage is achieved for
sldvCrossReleaseExample 15b model.

Summary
Model Hierarchy/Complexity Testl
D1 Execution
1. zldvCrozsPeleazeExample 130 6 30% 100% —
2. ... Bubsvstem 5 30% o 100% —

To generate code using Embedded Coder, from the Apps tab, select Embedded Coder. For more
information, see “Generate Code Using Embedded Coder” (Embedded Coder).

In the C Code tab, click Generate Code.

The model is preconfigured with these code generation settings.

set param(sldvCrossReleaseExample 15b, 'SystemTargetFile', 'ert.tlc');
set param(sldvCrossReleaseExample 15b, 'PortableWordSizes', 'on');

set param(sldvCrossReleaseExample 15b, 'SupportNonFinite', 'off");

set param(sldvCrossReleaseExample 15b, 'GenCodeOnly','on');

set param(sldvCrossReleaseExample 15b, 'SolverMode', 'SingleTasking');
set param(sldvCrossReleaseExample 15b, 'ProdEqTarget', 'on');

The software generates C code for the model and saves the files in the default folder location
<current_folder>\sldvCrossReleaseExample 15b ert rtw.

Save the configuration set of the model sldvCrossReleaseExample_ 15b to a MAT-file. This
ConfigSet is used to set the configuration set of the model in R2018b and later releases.

config set = getActiveConfigSet('sldvCrossReleaseExample 15b');
copiedConfig = config set.copy;
save('copiedConfig.mat', 'copiedConfig');

In MATLAB R2018D or later releases, import the components exported from R2015b.

a Before you import components in current release, rename or delete rtwtypes.h file
available in the folder <current folder>\sldvCrossReleaseExample 15b ert rtw.
During cross-release import, MATLAB tries to regenerate a file with same name. If you do
not delete or rename the file rtwtypes.h, MATLAB displays an error.

b Import the generated component code from R2015b as software-in-the-loop (SIL) block.

crossReleaseImport('sldvCrossReleaseExample 15b ert rtw',...
'sldvCrossReleaseExample 15b', 'SimulationMode','SIL');

The crossReleaseImport function creates an untitled model that contains software-in-the-
loop (SIL) block sldvCrossReleaseExample 15b R2015b sil.

Enhance Model Coverage of Older Release Models

10

11

12

13

14

Add Inport and Outport ports to the sldvCrossReleaseExample 15b R2015b sil block and
save the model as sldvCrossReleaseExample sil 18b.

In1 outt ——»{ 1)

SIL

Inz outz ——»(_ 2)

sldvCrossReleaseExample_15b_R2015b_sil

(]

Apply the model configuration set similar to R2015b model.

load('copiedConfig.mat');
attachConfigSet('sldvCrossReleaseExample sil 18b', copiedConfig, true);
setActiveConfigSet('sldvCrossReleaseExample sil 18b', copiedConfig.Name);

Set the simulation mode to Software-in-the-Loop (SIL). To simulate the model, in the
Simulink Editor, click the Run button.

To generate test cases for Embedded Coder generated code, on the Design Verifier tab, select
Target > Code Generated as Top Model and click Generate Tests. For more information, see
“Generate Test Cases for Embedded Coder Generated Code” on page 7-28.

After Simulink Design Verifier analysis, the software generates the test cases and saves the
sldvData in folder at default location <current folder>\sldv output
\sldvCrossReleaseExample sil 18b.

In R2015b, open the model.

open_system('sldvCrossReleaseExample 15b');

Update the sldvData.ModelInfomation.Name field in sldvData same as the model name in
older release. For example, sldvCrossReleaseExample 15b.slx.

Create a harness model by using the sldvData created in R2018b or later releases. This data
consists of test cases generated from Embedded Coder generated code. In the dataFile, type
the location of the sldvData generated for sldvCrossReleaseExample sil 18b model.

sldvmakeharness('sldvCrossReleaseExample 15b.slx', 'dataFile")

7-39

7 Generating Test Cases

7-40

Size-Type
Test Case 1 ni n§ivCrossReleaseExample 180
""" Ot
1| In2 —p» InZ ouwzfb— {2
Out2
Inputs Test Unit
=
DoC
Tezct
Test Case Explanation
- Signal Builder (sldvCrossReleaseExample_13b_harness/Inputs) — O >
File Edit Group Signal Axes Help £
B H| BB oo | — T Jd (TR EE » nom | Pl B
Active Group: | | Test Case 1 v G (- |-
50
In1
494 0
45 1 I I I I I I I I I
a7 r
In2
46
4.5 1 I I I I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time (sec)
~
¥ In2
Name: |In1
Index: |1 e
W
Click to select, Shift+click to add In1 (@#1) [YMin ¥YMax]
15 all

To simulate the model by using all the test cases, click the Run all button]

The software simulates all the test cases and generates a coverage report. The report indicates

that 100% coverage is achieved for sldvCrossReleaseExample 15b model.

Enhance Model Coverage of Older Release Models

Summary

Model Hierarchy/Complexity Testl
D1 Execution

1. sldvCrozzEeleaseExample 150 6 100% o 100%

2. ... Subsvstem 5100% oo 100% SS—S

See Also

More About

“Generate Test Cases for Embedded Coder Generated Code” on page 7-28
“Cross-Release Code Integration” (Embedded Coder)

“Manage Simulink Design Verifier Data Files” on page 13-7

“Manage Simulink Design Verifier Harness Models” on page 13-13

7-41

7 Generating Test Cases

Enhanced MCDC Coverage in Simulink Design Verifier

7-42

Enhanced Modified Condition Decision Coverage (MCDC) is an extension of modified condition
decision coverage. For a test block, enhanced MCDC generates test cases that avoid masking effects
from downstream blocks, so that the test block has an effect on the output.

To detect the effect of a test block by using the enhanced MCDC coverage objective, you can consider
a standard model coverage objective of a test block or you can author your own custom test
objectives for analysis. For more information, see:

* Use Model Coverage Objectives for Enhanced MCDC Coverage on page 7-42

* Author Custom Test Objectives for Enhanced MCDC Coverage on page 7-43

To generate test cases by using enhanced MCDC model coverage objectives, and then analyzing the
results, see Basic Workflow for Enhanced MCDC Analysis on page 7-47.

Use Model Coverage Objectives for Enhanced MCDC Coverage

For a given test block, you can detect the effect on a model coverage objective from the downstream
blocks. When you generate test cases by using enhanced MCDC model coverage objectives, the
generated test cases avoid the masking effect from the downstream blocks. The model coverage
objective is detectable at a detection site.

Consider this model that consists of a cascade of Switch, Min, and Max blocks.

A
| 5=

@' {>=0

B min 5

CO— max Lo ()
€ T 5 -
D G)—
c Mininp e Out1

Switch Maxinp

The test cases generated for enhanced MCDC coverage ensure that the decision objective of the
“Switch” (Simulink Coverage) test block is not masked by the downstream Min and Max blocks. The
generated test cases ensure that these nonmasking conditions for Min and Max blocks are satisfied:

1 F <D, ensures that the Min block does not mask the Switch output.
2 G > E, ensures that the Max block does not mask the Min output.

The decision objective of the Switch block and the nonmasking conditions of the Min and Max blocks
are satisfied along the path and are detected at the detection site (Out1l). For example, the path
starts from the output signal of the Switch block, propagates along the Min block, and ends at the
output signal of the Max block (highlighted in the example model).

Enhanced MCDC criteria ensure better quality test cases because the test case detects the effect of a
model coverage objective of the test block at the detection site. To analyze a model for enhanced
MCDC analysis, see example “Analyze Model for Enhanced MCDC Analysis” on page 7-44.

Enhanced MCDC Coverage in Simulink Design Verifier

Author Custom Test Objectives for Enhanced MCDC Coverage

Enhanced MCDC considers the default coverage objectives of a test block that are detectable at the
detection site. To check the detectability status of a custom test objective, you can author the test
objective of a model object, and then perform enhanced MCDC analysis.

Consider this model that consists of a Product block and a Min block. The Product block does not
have a coverage objective.

;

In1

X p——
| min >

Min1 Outl

Produat]

5 5 pa

You can author a custom test objective for the Product block to render the output value less than 0
and detect the effect of the custom test ohjective at a detection site.

For more information, see Author Custom Test Objective Workflow on page 7-52.

See Also

More About

. “Model Coverage Objectives for Test Generation” on page 7-30
. “Design Verifier Pane: Test Generation” on page 15-30

7-43

7 Generating Test Cases

Analyze Model for Enhanced MCDC Analysis

This example shows how to generate test cases for enhanced Modified Condition Decision Coverage
(MCDC) objectives. You generate test cases for enhanced MCDC coverage objectives and review
analysis results. The sldvEnhancedMCDCExample model consists of Switch, Min, and Max blocks.

1. Open the model sldvEnhancedMCDCExample:
sldvEnhancedMCDCExample;

(O r—*
A
@O— 0+ >
B min - I
(4) —»
GO— 5* D D
C Mininp E_" Out1
Switch E

Maxlnp

2. To configure the model for Enhanced MCDC objectives, in the Configuration Parameters dialog
box, on the Design Verifier > Test generation pane, set Model coverage objectives to Enhanced
MCDC. Click OK.

3. To generate test cases, on the Design Verifier tab, click Generate Tests.

After the analysis is completed, the Results Summary window displays the processed objectives and
options to review the results.

4. To highlight the analysis results, click Highlight analysis results on model.

To analyze whether the model coverage objectives of the Switch test block are detectable, click the
Switch block.

i

Back to summary
sldvEnhancedMCDCExample [Switch

Decision Objectives

trigger == threshold false (output is Satisfied | Detectable | - View test case
from 3rd input port)

trigger == threshold true {output is Satisfied | Detectable | - View test case
from 1st input port)

The results show that the decision objectives of the Switch block are detectable.

7-44

Analyze Model for Enhanced MCDC Analysis

-1
27

-128

=129

128

127

126
127

-128

-129

5. Click View test case. The harness model opens and the Signal Builder block displays Test case

4.

002

0.04 0.06 0.08 01 012 014 016 018 02
Time (sec)

You can also view the test cases from the detailed analysis report.

Time|0
Step |1
A 0
B -128
C -1
D 127
E -128

7-45

7 Generating Test Cases

Test Block

trigger >= threshold false (output is from 3rd input port)

0

-128

GO— |©
G a—— =5

A

B

C

EO—H>0 > 1

min

Mininp

Switch Lid

max

Maxinp

-128

Detection
Site

The test case inputs A, B, and Cresultin F = -1and G = -1. The value of E = -128 resultsinH =
-1, so the impact of the test objective is detected at the detection site Outl. The impact of the model
coverage objective of the test block is not masked along the path and is detectable at Qut1.

6. To view the detailed analysis report, click HTML in the Results Summary. The Test Objectives
Status section lists the satisfied objectives. The coverage objective that is detectable at the detection
site is summarized in the table.

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

Tvpe Mudelgem Description Detection Status E:::‘}ITSB Time Test Case
1 Decision Switch E‘;grf_:;r == threshold false (output is from 3rd input Detectable PP 4
2 Decision Switch trigger == threshold true (output is from 1st input port) [Detectable 33 3
3 Decision Minlnp Logic to determuine output input 1 is the minimum Detectable 31 2
4 Decision Minlnp Logic to determuine output input 2 is the minimum Detectable 32 3
5 Decision MaxInp Logic to determine output input 1 is the maximum Detectable 31 2
6 Decision MaxInp Logic to determine output input 2 is the maximum Detectable 2 1

The Objectives field in the Simulink Design Verifier data files lists the detectability status and the
detection sites for the model coverage objectives. For more information, see “Manage Simulink
Design Verifier Data Files” on page 13-7.

See Also

* “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-42

7-46

Basic Workflow for Enhanced MCDC Analysis

Basic Workflow for Enhanced MCDC Analysis

To generate test cases for enhanced Modified Condition Decision Coverage (MCDC) coverage
objectives:

On the Design Verifier tab, in the Mode section, select Test Generation.
Click Test Generation Settings.

In the Configuration Parameters dialog box, on the Design Verifier > Test Generation pane, set
Model coverage objectives to Enhanced MCDC. Click OK.

4 Click Generate Tests.

Note Enhanced MCDC analysis is not supported when you “Generate Test Cases for Embedded

Coder Generated Code” on page 7-28. The software considers MCDC coverage objectives for test
generation analysis.

Simulink Design Verifier analyzes the model for Enhanced MCDC coverage objectives.
After the analysis is complete:

* The software highlights the model with the analysis results.

* The Results Inspector window displays the summary of the model coverage objectives including
the detectability status.

iIc

Back to summary
sldvEnhancedMCDCExample/ Switch

Decision Objectives

trigger == threshold false (output is Satisfied | Detectable | - View test case
from 3rd input port)

trigger == threshold true (output is Satisfied | Detectable | - View test case
from 1st input port)

The Results Inspector window displays these detectability statuses for a model coverage objective:

¢ Detectable
¢ Not Detectable
e Undecided

The table lists the possible combinations of the objective status and the detectability statuses.

7-47

7 Generating Test Cases

7-48

Objective Status

Detectability Status

Test Case Description

Satisfied

Detectable

The test case satisfies the
model coverage objective and
is detectable at the detection
site.

Satisfied - Needs Simulation

Detectable

The test case satisfies the
model coverage objective and
is detectable at the detection
site.

To confirm the satisfied
status, you must run
additional simulations of test
cases. For more information,
see “Objectives Satisfied -
Needs Simulation” on page
13-46.

Satisfied

Not detectable

The test case satisfies the
model coverage objective.
However, the test objective is
not detectable at any
detection site.

Satisfied

Undecided

The test case satisfies the
model coverage objective. The
software is unable to show the
effect of model coverage
objective on the downstream
blocks.

Unsatisfiable

Not Detectable

The test objective is
unsatisfiable and not
detectable at any detection
site.

Undecided

Undecided

The test objective is
undecided and the software is
unable to show its effect on
the downstream blocks.

* The Simulink Design Verifier data file stores the detectability status and detection site for model
coverage objectives. For more information see, “Manage Simulink Design Verifier Data Files” on
page 13-7.

Configure Detection Sites using Test-pointed Logged Signals

If you mark any signal as test-pointed logged signal, Enhanced MCDC analysis will prioritize such
signals as detection sites for test blocks wherever possible. For example, consider the model shown

below:

Basic Workflow for Enhanced MCDC Analysis

> (- Jmnfe ol @ (D
Switch Min fent
fonl
G)— "’
Al e L
N fon2
Saturation
fen2

If you make the output of Min block as the test-pointed logged signal, the detection site for the switch
block is min block's outport. Otherwise, it would be saturation block's outport.

portHandle MinBlk = get param('model/Min', 'PortHandles’);
set param(portHandle MinBlk.Outport, 'TestPoint', 'on');
set param(portHandle MinBlk.Outport, 'DatalLogging', ‘'on’);

For more information on test points, see “Configure Signals as Test Points”. For signal logging, refer
to “Configure Signals for Logging”.
Configure Advanced Options for Enhanced MCDC Analysis

To analyze a model with stricter nonmasking conditions, enable the “Use strict propagation
conditions” on page 15-37 option. This option is available in the Configuration Parameters dialog
box, on the Design Verifier > Test Generation pane, in Advanced parameters.

The software evaluates stricter nonmasking conditions to analyze the effect on the test block from the
downstream blocks. For example:

* If your model consists of Atomic Subsystem with the Function packaging option set to Auto or
Inline.

Consider a model that consists of Switch and Atomic Subsystem blocks. The Function packaging

option is set to Auto and you enable the “Use strict propagation conditions” on page 15-37
option. The effect of the Switch test block is detectable at the detection point Qut1.

7-49

7 Generating Test Cases

A
@O ol
B
CGO— G5 *° N —(1)
C 8] Out1
Switch G
E
~ Atomic Subsystem = T
—
— T
- T
F min G >
max | »(7)
e G r—
Minlnp H
Maxinp

When you analyze the model with the “Use strict propagation conditions” on page 15-37 option
set to Off, the software analyzes the model until the effect of the Switch test block reaches the
Atomic Subsystem. The Atomic Subsystem is the detection point.

» If your model consists of blocks such as Gain or Product with the Saturate on integer overflow
option set to On.

Inspect Enhanced MCDC Objectives using Model Slicer

Model Slicer supports the following objective statuses for test case generation:

» Satisfied

* Satisfied - needs simulation

* Satisfied by existing test cases

* Undecided with test case

* Undecided due to the runtime error

You can analyze enhanced MCDC objectives and their impact on the model by using Model Slicer. In
the Results window, use the Inspect link to the right of the satisfied and detectable objectives.

ic)

Back to summary

sldvdemo_cruise_control/Controller /Switch2

Decision Objectives
logical trigger input false Satisfied Detectable - View test case Inspect
{output is from 3rd
input port)
Ingical trigger input true Satisfled Detectable - View test case Inspect
{output is from 1st input
port)

Alternatively, you can click on the Inspect Using Slicer button in the Design Verifier tab.

After launching Model Slicer, the tool sets the input based on the test case values that are relevant to
the objective generated by Simulink Design Verifier and steps to the time of observation logged in

7-50

Basic Workflow for Enhanced MCDC Analysis

sldvData. Model Slicer then adds the model object being observed as the starting point and shows
its impact on the detection point by highlighting the slice.

When you set the model coverage objective to enhanced MCDC in the Configuration parameter
window, you can analyze its detectability along with inspecting the objective. In this case, the Slicer
Configuration window allows you to switch to different modes using the slicer Configuration list.

_ —
Model Slicer X

& @
w Slice configuration list l‘—)

Mame

Configuration to inspect Enhanced MCDC objective detectabilrty

Configuration to inspect test generation objective

See Also

More About

. “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-42
. “Debug Enhanced Modified Condition Decision Coverage Using Model Slicer” on page 7-121
. “Create and Run Back-to-Back Tests Using Enhanced MCDC” on page 8-18

7-51

7 Generating Test Cases

Author Custom Test Objective Workflow

Enhanced Modified Condition Decision Coverage (MCDC) considers the default coverage objectives
of a test block that are detectable at the detection site. To check the detectability status of a custom
test objective, you can author the test objective of a model object, and perform Enhanced MCDC
analysis.

Consider this model that consists of a Product block and a Min block. You can author a custom test
objective for the Product block to render the output value less than 0 and detect the effect of the
custom test objective at a detection site.

In1
X —

| mi >
Producti Outl
Min

In2

D,

In3

Steps for Authoring Custom Test Objectives
This workflow describes the steps for authoring custom test objectives for a block.

Step 1: Create a library of atomic masked subsystem to author the custom test objectives. The
masked subsystem consists of these blocks:

* Block under consideration, for example, a Product block.

* Logic to encode the custom test objective, for example, a MATLAB Function block.

* Simulink Design Verifier Test Objective blocks.

Yin1 Masked ot b
bsystem@ut!
> su
v
Ci1) >
In Block under
’) —»(1
consideration D
(2) > Out1
In2
Test
Objective
_ Block
| Logic to
»| encode o
custom test | ®
L, objectives

7-52

Author Custom Test Objective Workflow

Step 2: In the masked subsystem:

* Add isEnabledForDetectability parameter and set the parameter to On.
* Add the detectBlock parameter with the name of the block under consideration.
* Set the Evaluate attribute of the detectBlock parameter to Off.

Step 3: Define the block replacement rule to replace the block under consideration with a masked
subsystem.

To author custom test objectives, use blkrep rule product customTestObjective.m block
replacement rule example file. In the block replacement file, you update the rule.BlockType and
rule.ReplacementPath based on your model blocks. For more information, see “Block
Replacements for Unsupported Blocks” on page 4-7.

Step 4: Configure your model with the block replacement rule. In the Configuration Parameters
dialog box, in Design Verifier > Block Replacements pane, enter the List of block replacement
rules.

Step 5: Select Enhanced MCDC for Model coverage objectives and perform test generation
analysis.

Analyze Custom Test Objectives in Model for Enhanced MCDC

This example shows how to author custom test objectives for the Product block in the
sldvCustomTestObjectiveExample model. Then, it shows how you can detect the effect of the
test objective at a detection site.

1. Open the sldvCustomTestObjectiveExample model:

open_system('sldvCustomTestObjectiveExample');

In1
X o

—mn D)
Produat] Outl
Min

In2

G

In3

Library of atomic masked subsystem: The blkReplacementlib customTestObjective library
consists of the custProduct masked subsystem. The logic to encode the custom test objective is
defined in the MATLAB Function block. The getCustomTestObjectives MATLAB Function block
consists of two custom conditions for the Test Objective blocks.

7-53

7 Generating Test Cases

Aint

N in2
custProduct

Out1 P

- (1)
Product_target Eaut

L1

P int
P in2
outt getCustomTestObjealitemTest2

customTest1

true
getCustomTestObjectives o @

The custProduct masked subsystem is preconfigured with these parameters. For more information,
see “Mask Editor Overview”.

7-54

Author Custom Test Objective Workflow

| Mask Editor : custProduct - O x

lcon & Ports Parameters & Dialog |njtialization Documentation

Controls # | Dialog box Property editor
= Parameter Type Prompt Mame = Properties
Edit =3 Yo« MaskTypes DescGroupVar Name detectBlock
[Check box A %< MaskDescription> DescTextVar Vsl Product target |
Popup =171 Parameters ParameterGroupVar Prompt
— - - Type edit v
Combo box @ #1 isEnabledForDetectability
! Lt I |
@ Radic button I Evaluate . L I
“ Slider Tunable on w
ik Dial Read only 1
(B Spinbox Hidden |
I Unit Mever save |
=T Text Area Censtraint MNone w
FH Custom Table Sl
| Tree Enable
TR
[5?\',] DataTypeStr Visible O
. Callback Z
Max Tooltip
@ Promote B Layout
Item location Mew row ~
S Prompt location | Left w
1 Group box Harizontal Stretch
(3 Tab
£ Table Drag or Click items in left palette to add to dialog.
CollapsiblePane Use Delete key to remove items from dialog.
Panel Tutorial:- Creating a Mask: Parameters and Dialog Pane
W
Unrnask Preview Constraint Manager Cancel Help Apply

Block replacement rule to replace the block under consideration with a masked subsystem:
The sldvCustomTestObjectiveExample model is preconfigured with the block replacement
options. The block replacement rule is defined in the

blkrep rule product customTestObjective file that replaces the Product block with the
custProduct masked subsystem.

7-55

7 Generating Test Cases

w

Solver
Data Import/Export
Math and Data Types
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage
HDL Code Generation
Design Verifier
Block Replacements
FParameters
Test Generation
Design Error Detection
Property Proving
Results
Report

& Configuration Parameters: sldvCustomTestObjectiveExample/Configuration (Active) — O x

Q

Block Replacements

Apply block replacements

List of block replacement rules (in order of priority):
blkrep_rule_product_customTestObjective

Output model

File path of the output medel: | MeodelName? replacement

OK Cancel Help Apply

7-56

2. To configure the model for enhanced MCDC objectives, on the Design Verifier tab, click Test
Generation Settings. In the Configuration Parameters dialog box, in Design Verifier > Test
Generation pane, for Model coverage objectives, select Enhanced MCDC. Click OK.

3. To generate test cases, click Generate Tests.

The software analyzes the replacement model for test generation.

Author Custom Test Objective Workflow

[¥}
3
]
3

[}

m

i
3

m
i

m
A

m

I

i

el
3
k]
3
k]

o

i

r

1

Q
3
k]

{

m

I

[}

=)

m

m

m
L
3
k]

]

m

)

I

]
al

m
3
k]

m
3

Progress |

Objectives processed 2/4
Satisfied 1
Unsatisfiable

Elapsed time 0:10

10-]Jan-2019 14:17:16
Preprocessing model...done

'sldvCustomTestObjectiveExample_replacement’
mpiing moader...done
Building model representation...done

10-]Jan-2019 14:18:00
'sldvCustomTestObjectiveExample_replacement’ is compatible for test generation
with Simulink Design Verifier.

Generating tests using model representation from 10-Jan-2019 14:18:00...

Product/ Test Objective
Objective: T
Analysis Time = 00:00:09

SATISFIED
Min =

Disable Highlighting Stop

4. Click Highlight analysis results on model. To analyze the detectability of the Product block,
click the Product block.

7-57

7 Generating Test Cases

I:ll k L
o) SN E
ol ir Back to summa

" Cutl sldvCustomTestObjectiveExample/Product

In2

Test objective Objectives

- Objective: T Detectable | - View test case
.I 33 Objective: T Detectable | - View ftest case

n

The results show that the test objectives of the Product block are detectable. The test case is
generated.

Note: The software is unable to confirm the objectives status through validation results for the
objectives introduced by block replacement. Therefore, the test objective status is reported as
satisfied - needs simulation. For more information on validation, see “How Simulink Design Verifier
Reports Approximations Through Validation Results” on page 2-23.

5. Click View test case. The harness model opens and the Signal Builder block displays the test case.

6. To view the detailed analysis report, click HTML in the Results Summary. The Block Replacement
Summary provides details about the replaced blocks.

Block Replacements Summary

Table 2.1. Block Replacements

& Replacement Rule / Block Type |Rule Description Replaced Blocks
1 b;ﬁ;ﬁz?k—p roduct_customTestObj blikrep_rule_product_customTestOb) Product]

7-58

The Test Objectives Status section lists the objectives. The test objective that is detectable at the
detection site is summarized in the table.

Author Custom Test Objective Workflow

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

.. Detection | Analysis Time
Type Model Item Description Statas (sec) Test Case
. . L to det 1 tput i t1listh
3 Decision Min ogic fo cetermine auipul mput £1s the Detectable 13 3
minimum
. . L to det 1 tput i t2isth
4 Decision Min ©Ofic lo determine auiput input 215 the Detectable 12 1
minimum

Objectives Satisfied - Needs Simulation

Simulink Design Verifier found test cases that exercise these test objectives. However. further simulation is needed to confirm the Satisfied status.

. Detection | Analysis Time
Tvpe Model Item Description Status (sec) Test Case

Product/ Test Objective. Defined by block
1 Test objective [replacement rule Objective: T Detectable 12 4
‘blirep_rule_product_customTestObjective’.
Product/ Test Objectivel. Defined by block

Test objective [replacement rule Objective: T Detectable 14 3
‘bllrep_rule_product_customTestObjective'.

=]

See Also

More About

. “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-42
. “Block Replacements for Unsupported Blocks” on page 4-7

7-59

7 Generating Test Cases

What Is a Specification Model?

7-60

When you systematically verify a model against requirements, you generate test cases for each
requirement. These tests validate the model, which you can use to generate production code and
build confidence that your model satisfies requirements. To create tests that satisfy your
requirements, you can construct a specification model. A specification model is an executable entity
that you can use to perform requirements-based testing by using Simulink Design Verifier and
Requirements Toolbox.

If you have a set of requirements written in natural language text, you can express them as formal
requirements by using a Requirements Table block. After defining the requirements in one or more
blocks, the blocks and the signals become the specification model. Unlike the model that you want to
test, known as the design model, the specification model only specifies what to do, not how to do it.

You can use a specification model to:

* Validate the set of requirements in a systematic and quantitative manner.
* Automate requirements-based testing.
* Identify issues with your design model and requirements.

Use Specification Models in Requirements-Based Testing

To create and deploy a specification model, follow these steps:

1 Author the requirements — Write your requirements in natural language text that describes the
behavior of the system under design. Author them directly in the Requirements Editor or
import them. For more information on importing requirements, see “Import Requirements from
Third-Party Applications” (Requirements Toolbox).

2 Construct the specification model — Design the specification model as an formal representation
of the requirements by using at least one Requirements Table block.

3 Link the requirements — Each requirement that you create in the Requirements Table block
creates an equivalent requirement in the Requirements Editor. See “Configure Properties of
Formal Requirements” (Requirements Toolbox). Link the high-level requirements to the formal
requirements from the specification model.

4 Analyze the formal requirements for completeness and consistency — Identifying incomplete and
inconsistent requirement sets can be difficult to do manually. The Requirements Table block
allows you to automatically analyze the requirements for these issues. See “Identify Inconsistent
and Incomplete Formal Requirement Sets” (Requirements Toolbox).

5 Generate tests for the specification model — Generate at least one test per requirement that
demonstrates its conformance to that requirement. For more information on generating tests, see
“Generate Test Cases for a Subsystem” on page 7-18. Simulink Design Verifier automatically
creates test objectives from the requirements defined in Requirements Table blocks.

6 Interface the specification model with the design model — The specification and design models
often do not use identical input and output signals. Convert the test cases that you generate in
step 5 by developing an interface between both models.

7 Develop the design model — Develop the design model by using the requirements. Link the
requirements to the design model.

8 Verify the design and analyze the coverage — Run the tests generated in step 5 on the design
model and verify whether the results agree with the specification model and requirements.

What Is a Specification Model?

Generate a coverage report to identify the missing coverage and refine the requirements, if
required.

This flow chart illustrates this process.

Specification Modeling

Refine

|

4. Analyze
Requirements for
Completeness and
Consistency

[

"
6. Develop Design s

Model 5. Generate Tests

Construct a Specification Model

Consider the autopilot controller model described in “Use Specification Models for Requirements-
Based Testing” on page 7-69. In this example, you develop requirements that contain logical and
temporal conditions that define outputs.

Identify the Specification Model Interface

List the input and output signals for the specification model that are related to the requirements that
you want to test. Ignore the signals that the requirements do not specify and that do not affect the
tested outputs. In this example, the requirements specify five inputs and two outputs. The
specification model input signals are:

Autopilot Engage Switch — A switch that enables or disables the autopilot controller

2 Heading Engage Switch — A switch that specifies the mode of the autopilot controller when the
autopilot switch is engaged

3 Roll Reference Target Turn Knob — A knob that feeds the desired roll angle value to the autopilot
controller

Heading Reference Turn Knob — A knob that gives the set-point value for heading mode
5 Aircraft Roll Angle — The current roll angle of the aircraft

The output signals are:

1 Aileron Command — The output to the aileron actuator

2 Roll Reference Command — The output on the display window that indicates the set-point value
for the aileron actuator

7-61

7 Generating Test Cases

7-62

Identify Preconditions, Postconditions, and Actions for Each Requirement

For the requirements that you want to verify, transform the textual requirements into logical
expressions that can be represented as preconditions, postconditions, and actions. You define formal
requirements as a combination of Preconditions, Postconditions, and Actions:

* Precondition — A condition that must be true for a specified duration before evaluating the rest of
the requirement

* Postcondition — A condition that must be true if the associated precondition is true for the
specified duration

* Action — A behavior that must be performed if the associated precondition is true for the specified
duration

You may find that some requirements can use a postcondition or an action interchangeably, or both
postconditions and actions. Specify which you want to use based on the configuration of your design
model.

For example consider this high level requirement that specifies the modes of the autopilot controller:

The autopilot controller mode is determined by the following:
* The autopilot controller is OFF when the autopilot engage switch is not
engaged.

* The autopilot controller is ROLL HOLD MODE when the autopilot engage switch
is engaged and the heading engage switch is not engaged.

* The autopilot controller is HDG HOLD MODE when the autopilot engage switch
and the heading engage switch are both engaged.

You can write these requirements as these logical expressions:

Requirement Precondition Action

1 AP Engage Switch == Mode = Off
false

2 AP _Engage Switch == true |Mode
&& HDG_Engage Switch ==
false

3 AP _Eng Switch == true && |Mode
HDG_Engage Switch ==
true

ROLL HOLD MODE

HDG_Hold Mode

Repeat this process for the remaining requirements.
Identify Design Values Representations in Requirements

Your requirements may specify ranges of values that your design model must satisfy, or you may want
to parameterize the values that you evaluate in each requirement. These values cannot always be
described easily with literal values. You can use the Requirements Table block to represent values in
the expressions as constant or parameter data. See “Define Data in Requirements Table Blocks”
(Requirements Toolbox). You can change data throughout simulation. In addition to assigning
numerical values to data, the block supports other data types, such as strings, enumerations, or
ranges. Use the representation of values that fits your needs.

What Is a Specification Model?

In the autopilot controller model, the requirements specify threshold values for the aircraft roll angle.
This graphic illustrates the numerical and verbal equivalents of the thresholds.

Negative Positive
Normal Normal
Negative 6 6 Positive
Extreme r Extreme
-30 30

-180 180

Create the Requirements Table Blocks

After identifying the signal representations, values, and the expressions that you want to use in the
formal requirements, write the logical expression of the precondition, postconditions, and actions in
the Precondition Postcondition, and Action columns for each requirement respectively. If your
requirements have children or dependencies, you can include those relationships in the block. See
“Establish Hierarchy in Requirements Table Blocks” (Requirements Toolbox).

Each requirement that you create in the Requirements Table block creates an equivalent requirement
in the Requirements Editor. Update additional textual properties of the requirements, such as the
description, in the editor. See “Configure Properties of Formal Requirements” (Requirements
Toolbox).

In the autopilot controller model, the specification model includes two Requirements Table blocks.
AP Mode Determination defines the formal requirements for the autopilot controller mode.

7-63

7 Generating Test Cases

Requirements | Assumptions

Ind Precondition Action
ndex Summary AP_Engage_Switch HDG_Engage_Switch Mode
1 AP_Engage_Switch and true true HDG_HOLD_ MODE
HDG_Engage_Switch both engaged
2 AP_Engage_Switch is engaged and true false ROLL_HOLD_MODE
HDG_Engage_Switch is not engaged
3 AP_Engage_Switch is not engaged false OFF

The other Requirements Table block, Cmd Determination, describes the desired output of the
aileron command and the roll reference command.

Requirements | Assumptions
Precondition Action

Index Summary Mode Roll_Ref TK prev(Roll_Angle_Phi) Roll_Ref Cmd Ail_Cmd
1 Autopilot mode is OFF OFF 0 Zero
a2 ROLL_HOLD_MODE becomes hasChangedTo(X,ROLL_HOLD MODE) Al
active mode
21 Roll_Ref_TK between [-30, -3] or [TK_neg_extreme, TK_neg_norm] || [TK_pos_norm, TK_pes_extreme] Roll_Ref_TK
[+3, +30] degrees
422 Roll_Ref_TK greater than -3 and (TK_neg_norm, TK_pos_norm)
less than +3
221 Roll_Angle_Phi greater than [phi_neg_norm, phi_pos_norm] 0
neg_norm and less than pos_norm
222 Roll_Angle_Phigreater than +30 = phi_pos_extreme TK_pos_extreme
223 Roll_Angle_Phi less than -30 < phi_neg_extreme TK_neg_extreme
224 Otherwise, Roll_Ref_Cmd default Else Roll_Angle_Phi
p Setting
3 HDG_HOLD_MODE becomes hasChangedTo(X,HDG_HOLD_MODE) HDG_Ref TK Al
active mode
4 Otherwise, Roll_Ref_Cmd shall hold = Else prev(Roll_Ref_Cmd) All

the previous value of Roll_Ref_Cmd

Final Specification Model

After connecting the Requirements Table blocks to the inputs, outputs, and each other, the final
specification model is:

7-64

What Is a Specification Model?

AF_Engaga_Swiitch
AP_Engage_Switch l
A ; B Maode | Mode
1 Foll_Ref_ Crnd [———»(_ 1)
HDG_Engaga_Switch Ruoll Reference Command
HDG_Engage_Switch (3)——»{roll Reif
Roll Reference Target
Knoh
AFP_Mode_Detarmination i
HOG_Re TK
Heading Reference Target I
Knab 23_cmd ———»(2)
Aileron Command
(5 _)——{Roll_Angle_Phi
Aircraft Roll Angle

Cmd_Determination

Prepare the Specification Model for Test Generation

Simulink Design Verifier automatically creates test objectives from the requirements defined in
Requirements Table blocks. If you need to constrain the values of the test objectives, you can specify
them either in the signal source, or by including them in the Assumptions table of the block. See
“Add Assumptions to Requirements” (Requirements Toolbox). To prepare the specification model for
test generation, set the model coverage objectives. In the Design Verifier tab, in the Prepare
section, click Test Generation Settings. In the Configuration Parameters window, expand the
Design Verifier list and click Test Generation. Set Model coverage objectives to the option that
best captures the desired coverage.

Iterate Through the Steps
As you develop the specification model and test your design model, you typically need to update the

requirements, specification model, and design model. This process is iterative. Continue iterating
until you reach the desired test outcomes, such desired model outputs and test coverage.

See Also
Requirements Table

Related Examples

. “Use a Requirements Table Block to Create Formal Requirements” (Requirements Toolbox)
. “Use Specification Models for Requirements-Based Testing” on page 7-69
. “Export Tests from Models That Contain Requirements Table Blocks with Simulink Design

Verifier” on page 13-30

7-65

7 Generating Test Cases

Test Generation Examples

7-66

These test generation examples help you understand and use the test generation capabilities.

Test Generation Capabilities

Related Examples

Generate tests for model coverage analysis

“Cruise Control Test Generation” on page 7-84

“Fuel Rate Controller Logic” on page 7-85

“Flip Flop Test Generation” on page 7-80

“Model Coverage Test Generation” on page 7-81

Functional Requirements Testing

“Test Condition Block” on page 7-83

“Test Objective Block” on page 7-82

Generate tests for code coverage analysis

“Configuring S-Function for Test Case
Generation” on page 7-109

“Code Coverage Test Generation” on page 7-111

“Test Generation on Model with C Caller Block”
on page 7-119

“Test Generation for Custom Code in a Stateflow
Chart” on page 7-124

Extend existing test cases

“Defining and Extending Existing Tests Cases” on
page 7-91

“Extend an Existing Test Suite” on page 7-86

“Creating and Executing Test Cases” on page 7-
100

“Extend Existing Test Cases After Applying
Parameter Configurations” on page 5-46

Achieve missing coverage

“Achieve Missing Coverage in Referenced Model”
on page 9-3

“Achieve Missing Coverage in Closed-Loop
Simulation Model” on page 9-11

“Using Existing Coverage Data During Subsystem
Analysis” on page 7-97

Integrate with other products

“Export Test Cases to Simulink Test” on page 13-
27

Test Generation for Custom Code in MATLAB Function Block

Test Generation for Custom Code in MATLAB Function Block

Simulink Design Verifier analysis supports models that call custom code from MATLAB function
blocks by using coder. ceval. For such design models, you can generate test cases for model
coverage or perform design error detection to find dead logic or detect design errors.

The table summarizes various coder.ceval use-cases that Simulink Design Verifier supports:

Supported coder.ceval use-cases:

coder.ceval usage Custom code sources Analysis
Basic calls - with or without Source files mentioned in Supported
arguments Simulink target in

Layout - rowMajor, columnMajor Configuration Parameters.

Passing references using
coder.ref, coder.wref,
coder.rref

Any layout -global - Unsupported

- Source file mentioned by using |Unsupported
coder.updateBuildInfo

Generating Tests for Custom code in MATLAB function block

This example demonstrates test generation workflow for model by using coder. ceval.
Consider a model with MATLAB function block calling the custom code by using coder. ceval.
1 Create the required source files as mentioned in coder. ceval.

The C-function checkIfSignalsInRange, represents custom code. The function returns 1 if
both the signals are in acceptable range else, the function returns 0. The MATLAB function block
checkIfSignalsINRangeWrapper, receives sensor inputs and invokes the C-function.

C file:
#include <stdio.h>
#include <stdlib.h>
#include "checkIfSignalsInRange.h"
int checkIfSignalsInRange(double sigl, double sig2) {
double acceptableMin = 15;
double acceptableMax = 150;
if (((sigl > acceptableMin) && (sigl < acceptableMax)) && ((sig2 > acceptableMin) && (si
return 1;
}

return 0;
}
Header file:
int checkIfSignalsInRange(double sigl, double sig2);

MATLAB function Block:

function result = checkIfSignalsINRangeWrapper(sigl,sig2)
result = 0;

% Check if both the signals are within acceptable range
result = coder.ceval('checkIfSignalsInRange',sigl,sig2);

7-67

7 Generating Test Cases

2 Navigate to Simulation Target in Configuration Parameters. In the Code information tab
add the required files.

3 Set the Enable custom code analysis option in the Import settings tab.
Set the model coverage objectives to Decision and invoke test generation analysis in
Configuration Parameters.

Results

The model has three decision objectives, one for MATLAB function block execution and two for

custom code. The two decision objectives correspond in making the outcome of if condition once
true and once false. The generated test and report is as follows:

4.2. CoderCevalExample

View

li] Type Description Status Test Case
decision ((sigl > acceptableMin) && (sigl < acceptableMax)) && ((sig2 >

2 Decision acceptableMin) && (sig2 < acceptableMax)) T (file checkIfSignalsInRange.c, (Satisfied 1
function checklIfSignalsInRange, line 9)
decision ((sigl > acceptableMin) && (sigl < acceptableMax)) && ((sig2 >

3 Decision acceptableMin) && (sig2 < acceptableMax)) F (file checkIfSignalsInRange.c, (Satisfied 1
function checkIfSignalsInRange, line 9)

Generated Input Data
Time |0 0.2

Step |1

u 16

ul |16 |0

From the report it is inferred that in Step 1 both signals are in acceptable range and in Step 2 the
signals are out of range.

7-68

Use Specification Models for Requirements-Based Testing

Use Specification Models for Requirements-Based Testing

This example shows how to use a specification model to model and test formal requirements on a
model of an aircraft autopilot controller. The specification model uses two Requirements Table blocks
to model the required inputs and outputs of the aircraft autopilot controller model. You generate tests
from the specification model, and then run those tests on the aircraft autopilot controller model. The
model that you test is the design model.

For more information on how to define and configure Requirements Table blocks, see “Use a
Requirements Table Block to Create Formal Requirements” (Requirements Toolbox) and “Configure
Properties of Formal Requirements” (Requirements Toolbox).

View the High-Level Requirements

Open the requirements set, AP Controller Regs, in the Requirements Editor.

slreq.open("AP Controller Regs");

The high-level requirements specify the outputs of the model and the autopilot controller mode. Each
requirement description uses high-level language that you can use to explicitly define the logic
needed in the formal requirements.

|5 Requirements Editor

— [m} X
REQUIREMENTS
(! IR &l save ~ ‘ é = =) 5}
= I = E @ v-a- Q B il | 2
Mew Open =l i Profile Editor Add Add Show Show @ [[§ ~ | Search | Traceability Traceability Model Testing | Export
Requirement Set Requirement « Link = & Requirements | Links Matrix Diagram Dashboard ~
FILE PROFILE REQUIREMENTS LINKS VIEW EDIT ANALYSIS SHARE
® Reguirement: 1
= ~ Properties
~ [&) AP_Controller_Regs Type: o >
B 1 1 High Level: Autopilot Controlle Index: 1
E 2 2 High Level: Off Reference Custom ID: |1 |
B3 3 Figh Level: Roll Hold Reference Summary: |High Level: Autopilot Controller Modes |
E 4 4 High Level: Heading hold mode
Descriptien Raticnale
= 5 5 High Level: Default Behavior
[N |T\ms|‘lewRuman v”ll le 7 u | == EE ~ ||]
The autopilot controller has the following high level system modes:
® OFF: The autopilot controller is off.
* ROLL_HOLD_MODE: The autopilot controller 15 in roll hold mode.
* HDG_HOLD_MODE: The autopilot controller 15 mn headmng hold mode.
The autopilot controller mode is determined by the following:
¢ The autopilot controller is OFF when the autopilot engage switch 1s not engaged.
* The autopilot controller 1s ROLL_HOLD_MODE when the autopilot engage switch 1s engaged and the
heading engage switch 15 not engaged.
 The autopilot controller s HDG_HOLD_MODE when the autopilot engage switch and the heading engage
switch are both engaged.
Keywords: |
¥ Revision information:
b Links
< 3| » Comments

7-69

7 Generating Test Cases

View the First Iteration of the Specification Model

Open the specification model, spec_model partial.

spec_model = "spec model partial";
open_system(spec_model);

The model contains two Requirements Table blocks that define the formal requirements that translate
the high-level requirements into testable logical expressions. The block AP_Mode Determination
specifies the formal requirements for the autopilot controller mode, and the block

Cmd Determination specifies the outputs of the controller.

AP_Engage_Switch
AP_Engage_Switch l
A ; B Mode #{Mode
1 Rot Ref Cmd ———»(_1)
HOG_Engage_Swilch Roll Reference Command
HDG_Engage_Switch Roll_Ref i
Roll Referance Target
Knob
AP_Mode_Determination j
HDG_Refl TK
Heading Reference Targat I
Knab Al_Cmd —P‘
Aileron Command
(5 3——#|Roll_ngie_Phi
Aircraft Roll Angle

Cmd_Dwetermination

To view the formal requirements, inspect each Requirements Table block.

Requirements Table Block for Controller Mode

Open AP_Mode Determination. The block specifies the formal requirements for the autopilot
controller mode. To determine the output data Mode, AP_Mode Determination specifies three
requirements by using two input data:

* AP Engage Switch — The autopilot engage switch
* HDG Engage Switch — The heading engage switch

Each requirement uses a combination of the inputs to specify a unique output value for Mode.

7-70

Use Specification Models for Requirements-Based Testing

Requirements == Assumptions

Index

Requirements

1

2

422

3

F

Index

Precondition Action
AP_Engage_Switch HDG_Engage_Switch Mode

AP_Engage_Switch and true frue HDG_HOLD MODE
HDG_Engage_Switch both engaged

Summary

AP_Engage_ Switch is engaged and true false ROLL_HOLD_MODE
HDG_Engage Switch is not engaged

AP_Engage_Switch is not engaged false OFF

Requirements Table Block for Controller Commands

Open Cmd_Determination. Cmd Determination specifies the requirements for the aileron
command and roll reference command. Cmd Determination uses four input data:

* Mode — The AP_Mode Determination output, Mode

* Roll Ref TK — The setting of the roll reference target knob

* Roll _Angle Phi — The actual aircraft roll angle

* HDG Ref TK — The setting of the heading reference target knob

The block uses these input data to determine the controller output data:

* Roll Ref Cmd — Roll reference command
* Ail Cmd — Aileron command

Assumptions

Precondition Action

Summary Mode Roll_Ref_TK prev(Roll_Angle_Phi) Roll_Ref_Cmd Ail_Cmd

Autopilot mode is OFF OFF o Zero

ROLL_HOLD_MODE becomes hasChangedTo(X ROLL_HOLD_MODE) Al
active mode

21

Roll_Ref_TK between [-30, -3] or [TK_neg_extreme, TK_neg_norm] || [TK_pos_norm, TK_pos_exireme] Roll_Ref_TK

[+3, +30] degrees

Roll_Ref_TK greater than -2 and (TK_meg_norm, TK_pos_norm)

less than +3:

221 Roll_Angle_Phi greater than [phi_neg_nomm, phi_pos_norm] |0
neg_norm and less than pos_norm

222 Roll_Angle_Phigreater than +30 = phi_pos_extreme TK_pos_exireme

223 Roll_Angle_Philess than -30 < phi_neg_extreme TK_neg_extreme

HDG_HOLD_MODE becomes hasChangedTo(¥ . HDG_HOLD_MODE) HDG_Ref TK All
active mode

Otherwise, Roll_Ref Cmd shall hold Else prev(Roll_Ref Cmd) All
the previous value of Roll_Ref_Cmd

In this example, the expressions use constant data to define the ranges of values for Roll Ref TK
and Roll Angle Phi. You can also parameterize the values or use literal values. See “Define Data
in Requirements Table Blocks” (Requirements Toolbox). To view these values, open the Symbols
pane. In the Modeling tab, in the Design Data section, click Symbols Pane.

In addition to requirements, Cmd Determination also defines the assumptions for the design. See
“Add Assumptions to Requirements” (Requirements Toolbox). In this example, the assumptions
constrain the values for the roll angle and the roll reference target knob based on their physical
limitations. The roll angle cannot exceed 180 or fall below -180 degrees, and the roll reference
target knob cannot exceed 30 or fall below -30. In the table, click the Assumptions tab.

7-71

7 Generating Test Cases

Requirements = Assumptions

7-72

Index Summary Postcondition
Roll angle geometric Roll_Angle_Phi >==-180 && Roll_Angle_Phi <= 180
limitations
Reference knob minimum Roll_ Ref TK == 30 && Roll Ref TK ==-30

and maximum settings

You can also specify data range limitations in the Minimum and Maximum properties of the data or
explicitly specify the range from the signal with blocks.

Generate Tests

Simulink® Design Verifier™ automatically creates test objectives from the requirements defined in
Requirements Table blocks. To generate tests, use the Configuration Parameter window or specify the
tests programmatically. See “Model Coverage Objectives for Test Generation” on page 7-30. Select
different coverage objectives to determine if you want to minimize the number of tests generated, or
if you want to improve test granularity and traceability.

In this example, generate tests with decision coverage and save the output to a MAT-file.

opts = sldvoptions;

opts.Mode = "TestGeneration";
opts.ModelCoverageObjectives = "Decision";
[~,files] = sldvrun(spec_model,opts,true);

Simulink Design Verifier generates the test objectives and the tests from the requirements, however
the requirements satisfy only seven of the test objectives.

Use Specification Models for Requirements-Based Testing

Progress |
Objectives processed 2424

Satisfied 7

Unsatisfiable 1]

Elapsed time 0:26

Test generation completed normally.
7/24 objectives satisfied.
17/24 objectives undecided due to runtime error

Results:

* Open filker viewer

Highlight analysis results on model

* View tests in Simulation Data Inspector
* Detailed analysis report: (HTML) (PDE)
* Create harness model

* Save test cases/counterexamples to spreadsheet

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

To satisfy the test objectives, you must revise the specification model. In general, avoid generating
tests from a specification model without confirming that the formal requirements are complete,
consistent, and correspond to the high-level requirements. Otherwise, the tests that you generate are

less likely to satisfy the test objectives.

clear("files")

Investigate and Update the Specification Model

Investigate the specification model and update the formal requirements. In this example, the
requirement set in Cmd_Determination is missing the formal requirement that corresponds to the

third bullet of requirement 3.

7-73

7 Generating Test Cases

Requirement: 3

* Properties

Type: Functional w
Index: 3
Custom ID: |3

Summary: |High Level: Roll Hold Reference

Description Rationale

Eﬂ,

|TIITIESNEWRDITIE|I‘I v"l] v|B I 0 .

v (ad

When roll hold mode becomes the active mode of the autopilot controller, the roll reference command
shall be set to the cockpit turn knob command, up to a 30 degree limat, 1f the turn knob 15 commanding
3 degrees or more i either direction.

If the turn knob 15 commanding between -3 and 3 degrees in either direction:

* The roll reference command shall be set to zero if the actual roll angle 1s less than 6 degrees, in
etther direction, just before the roll hold mode 1s recerved.

¢ The roll reference command shall be set to 30 degrees in the same direction as the actual roll
angle if the actual roll angle 15 greater than 30 degrees just before the roll hold mode 15 recerved.

* The roll reference command shall be set to the actual roll angle when the actual roll angle equals
other angles.

223

Open Cmd_Determination in the model spec_model final to view the updated requirement set.
The additional requirement has the index 2.2.4.

spec_model = "spec model final";
load_system(spec_model);
open_system(spec_model + "/Cmd Determination");

Roll_Angle_Phi less than -30

224

Ctherwise, Roll_Ref_Cmd default Elze Roll_Angle_Phi
D setfing

7-74

HDG_HOLD_MODE becomes hasChangedTo(X HDG_HOLD_MODE) HOG_Ref_TK
active mode

Finding issues in your requirement set can be challenging to do manually. You can use Simulink

Design Verifier to analyze the requirement set and identify inconsistencies and incompletenesses. For

more information, see “Analyze the Block” (Requirements Toolbox).

Link High-Level and Formal Requirements

Loading the specification model loads the formal requirements in the Requirements Editor. Closing

the specification model also closes the associated requirement set. When developing your formal
requirements, link formal requirements to the corresponding high-level requirement to track the

< phi_neg_sxireme TK_neg_exireme

Use Specification Models for Requirements-Based Testing

requirements in the specification model. In this example, linking the requirements does not affect test
generation or test results.

To link the first formal requirement to the corresponding high-level requirement:

In spec_model final, expand the requirement set named Tablel.

2 Right-click the formal requirement with the Index of 1 and select Select for Linking with
Requirement.

Expand the AP_Controller Reqs requirement set.
Right-click the requirement with an ID of 1 and click Create a link from "1: Autopilot mode is
OFF" to "1: High Level: Autopilot Con...".

The link type defaults to Related to. For more information on link types, see “Link Types”
(Requirements Toolbox).

Generate Tests from the Updated Model

Generate the tests from the updated specification model by using the options defined previously.
opts = sldvoptions;

opts.Mode = "TestGeneration";

opts.ModelCoverageObjectives = "Decision";

[~,files] = sldvrun(spec_model,opts,true);

In this version of the specification model, the test objectives are satisfied.

Simulink Design Verifier Results Summary: spec_model_final ot

Progress I —

Objectives processed 26/26
Satisfied 26
Unsatisfiable 1]
Elapsed time 0:28

Test generation completed normally.
26/26 objectives satisfied.

Results:

* Open filker viewer

Highlight analysis results on model

* View tests in Simulation Data Inspector

= Detailed analysis report: (HTML) (POF)

* Cregte harness model

* Save test cases/counterexamples to spreadsheet

* Bxport test cases to Simulink Test

* Simulate tests and produce a model coverage report

7-75

7 Generating Test Cases

7-76

Run the Tests on the Design Model

After you create tests that satisfy the test objectives, you can run the tests on the design model. In
this example, the design model is the model for the aircraft autopilot controller,
sldvexRollApController.

Before you run tests on the design model, you must interface the specification model with the design
model. Typically, the specification model does not produce or use the same signals as the design
model. These differences can be simple or abstract. For example, the design model might use
different input and output signal types than the specification model, or you may want to compare a
scalar output from the design model against a range in the specification model. As a result, you need
to construct an interface between the design model and the specification model.

Interface the Design Model with the Specification Model

In this example, the specification model spec_model final and design model
sldvexRollApController inputs can interface directly, but one of the outputs is different.

spec _model final represents the aileron command as a range of values, but the aileron command
value produced by sldvexRollApController is a scalar double. The interface uses a MATLAB
Function block to compare the aileron command values. The interface then verifies both outputs with
Assertion blocks. Open the model, spec_model test interface, to view the interface.

test interface = "spec model test interface";
open_system(test interface);

Use Specification Models for Requirements-Based Testing

(3)] design_val

Design Aileron Command
Y Q)
fen

[4 } P =pec_val

Spec Alleron Command

D >

Design Roll Reference Command [j

@ .

Spec Roll Reference Command

Il
Il
Yy

The MATLAB Function block compares the two signals by using this code:

function y = fcn(design val, spec val)
switch spec val
case Ail Cmd.All
y = true;
case Ail Cmd.Zero
y = (design val == 0);
otherwise
y = false;
end

Run the Updated Tests on the Design Model

To test and verify the design model, create a harness model that contains the:

1 Specification model
2 Design model

7-77

7 Generating Test Cases

(3 [Ral_Rei_TK]
Rl Reference Target

3 Test interface and verification model

In the harness model, attach the models together. Then run the tests on the design model and verify
the outputs correspond to the requirements in the harness model.

To view the harness model, open the model, sldvexDesignHarnessFinal.

harness model = "sldvexDesignHarnessFinal";
open_system(harness model);

Like with the interface model, not all design model inputs may directly correspond to specification
model inputs. In this example, the harness model prepares the design model for testing with the five
inputs specified by the specification model.

spec_model_test_intarface

spec_model_final Ra_Ref_Crd] Design Rall Reference Command
[AP_Engage_Switch
aan

Feol Riferancs Command
OG_Engage_Switch 1] Spac Rol Refarence Command
Rl Refersnce Target Knch [Ail_Cenel) Design Afisran Cammand
Hesading Rference Target Knob
Aileron 4 Spac Alleron Cammand

A4_Cmd

NMPR Roll Angle Test Interface and Verification

Specification Model

Tum Knok tqm_nngg_ Fhi > cetroller
double
e [HOG_Ref_Tk])
Heading Reference Turn Knab L soutie
Ail Cmd [il_Crnd)
P
(5) [Ral_angle_Phi] o
Adrcrafl Rell Angle - Unused [il_Cend] @
ThS Aderan Comeman
double

7-78

Rol Reference Command

[AP_Eng_Switch
ot st

- HDG Mode -
Disp_Cend_Out [Rdl_Raf_Crnd]

HDG Ref
o

Rol_Rai_TK] —|Jur Knch

Design Madel

Run the updated tests on the design model from within the harness model. Use the sldvruntest
function to run the tests and save the results. If you have Simulink Coverage™, you can view the
results of the tests from the output of sldvruntest in a coverage report. View the coverage report
by using the cvhtml (Simulink Coverage) function.

cvopts = sldvruntestopts;
cvopts.coverageEnabled = true;
[finalData, finalCov] = sldvruntest(...
harness model, files.DataFile, cvopts);
cvhtml("finalCov",finalCov);

The coverage report shows that full coverage is achieved on the design model,
sldvexRollApController.

Use Specification Models for Requirements-Based Testing

Summary

Model Hierarchy/Complexity Test 1

Decision Execution

1. sldvexBollApController § 10020 mssss 100% —

2. ... Eoll Reference 5 10090 oo 100%

Lad

.. Latch Pla 1 10020 s 100%

bdclose("all");
slreq.clear;

See Also
Requirements Table

Related Examples
. “What Is a Specification Model?” on page 7-60
. “Add Assumptions to Requirements” (Requirements Toolbox)

. “Export Tests from Models That Contain Requirements Table Blocks with Simulink Design
Verifier” on page 13-30

7-79

7 Generating Test Cases

Flip Flop Test Generation

This example shows how to generate test cases that achieve complete model coverage for a flip-flop.
The outcome of each model coverage point in this example model is a test objective. If you configure
Simulink Design Verifier to generate the fewest test cases, it will satisfy as many objectives as
possible in each test case.

open_system('sldvdemo flipflop');

o Simulink Design Verifier
Flip Flop Test Generation
; > o 2 &D
@ boolean P 0
oL »icir O (2)
L]
boolean
G
ICLR

Copyright 2006-2023 The MathWaorks, Inc.

7-80

Model Coverage Test Generation

Model Coverage Test Generation

This example shows how to generate test cases that achieve complete model coverage for a
debouncer. The outcome of each model coverage point in this example model is a test objective. If you
configure Simulink Design Verifier to generate the fewest test cases, it will satisfy as many objectives
as possible in each test case.

open_system('sldvdemo debounce modelcov');

Simulink Design Verifier
Model Coverage Test Generation

2 -
'\ o

debounced

raw

debounce

Copyright 2006-2023 The MathWorks, Inc.

7-81

7 Generating Test Cases

Test Objective Block

This example shows the use of two custom Test Objective blocks. The block "True" forces the output
signal to be 2. The block "Edge" inside "Masked Objective" specifies that the output signal transition
from 2 to 1.

open_system('sldvdemo debounce testobjblks');

R Simulink Design Verifier
' Test Objective Block

N 2
2 v 4\ True
i — (1)
1 n debounced
debounce T
™ in
Masked Objective

Copyright 2006-2023 The MathWaorks, Inc.

7-82

Test Condition Block

Test Condition Block

This example shows how to constrain input values. The Test Condition block forces the input value to
be either 0 or 1.

open_system('sldvdemo debounce testconblk');

. Simulink Design Verifier
' Test Condition Block

| 2
{0,1} 2 K True
D N 1 ——(D
raw debounced
i L,
debounce
™ in
Masked Objective

Copyright 2006-2023 The MathWoaorks, Inc.

7-83

7 Generating Test Cases

Cruise Control Test Generation

7-84

This example shows how to generate test cases that achieve complete model coverage. By default,
Simulink® Design Verifier™ generates test cases that satisfy objectives in the fewest steps. One of
the test objectives forces the discrete integrator in the PI controller to exceed its upper limit. When
you run Simulink Design Verifier without constraints, the limit is exceeded in a single step by forcing
speed to be 500. The constraint on speed limits the values in test cases between 0 and 100. This
forces the test cases to take several samples to exceed the integrator limit.

open_system('sldvdemo cruise control');

Simulink Design Verifier
? | Cruise Control Test Generation

L1} B enable
enable
L2 } | brake throt 1)
brake throt
L3 P sat
set [0 100]
: Actual ed .
speed ual spe
4} *inc target —F@
inc target
L5 } | dec
dec
Controller
Toggle Speed
Constraint
{double-click)

Toggle Constraint

Copyright 2006-2023 The MathWarks, Inc.

Fuel Rate Controller Logic

Fuel Rate Controller Logic

This example shows how to generate test cases that satisfy Decision, Condition, and MCDC coverage.
Simulink® Design Verifier™ automatically generates test data and proves properties of models. It
produces sequences of input values that satisfy a testing criteria or demonstrate a counterexample of
a proof. The configuration options associated with the model specify the objectives of the analysis.
When you analyze the model, Simulink Design Verifier uses exhaustive searching techniques to
generate input data. When successful, it generates test data and creates a new harness model
containing a Signal Builder block with the data values that satisfy the analysis objectives. NOTE: The
complexity of this model might prevent test generation from completing in the allotted time. You can
stop test generation and generate partial results, or you can extend the time limit by editing the
Simulink Design Verifier options.

open_system('sldvdemo fuelsys logic');

? I Fuel Rate Controller Logic

This example is derived from the orginal Simulink fuel system modeal.

Y
L1) ¥ throt
throttle fail_state @
@ » spaadDw fail_state

angine speed

= = 0
EGD _maode 2)
(4) *| prase fusl_mode
MAP N S

conirol logic

Copyright 2006-2023 The MathWarks, Inc.

7-85

7 Generating Test Cases

Extend an Existing Test Suite

7-86

This example shows how to use Simulink® Design Verifier™ to extend an existing test suite to obtain
missing model coverage.

You analyze an example model and generate test suite to achieve full coverage. Then, modify the
model such that test cases no longer achieve full coverage. Finally, you analyze the modified model to
obtain missing coverage by using Simulink® Design Verifier™.

Generate an Initial Test Suite

Analyze the sldvdemo cruise control model and generate a test suite that achieves full model
coverage. To analyze the model to generate test cases that provide model coverage, use the sldvrun
function. Set the design verification parameters with sldvoptions.

open_system 'sldvdemo cruise control';

opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.ModelCoverageObjectives = 'MCDC';

opts.SaveHarnessModel = 'off';

opts.SaveReport = 'off';

[status, files] = sldvrun('sldvdemo cruise control', opts, true);

Extend an Existing Test Suite

Simulink Design Verifier
? I Cruise Control Test Generation

L1 3} enable
enable
L2 } B hrake throt —F
brake throt
L3 } P cot
set [O 100]
GO () —>opeea
speed Actual speed
<> > inc target————»(2)
inc target
|: 5 : P dec
dec
Controller
Toggle Speed
Constraint
(double-click)

Toggle Constraint

Caopyright 2006-2023 The MathWarks, Inc.

The test generation analysis result appears in the Simulink Design Verifier Results Summary window.
close system('sldvdemo cruise control',0);

Verify Complete Coverage

The sldvruntest function simulates the model with the existing test suite. The cvhtml function
produces a coverage report that indicates the initial coverage of the sldvdemo cruise control
model.

open_system 'sldvdemo cruise control';

[outbata, initialCov] = sldvruntest('sldvdemo cruise control', files.DataFile, [], true);
cvhtml('Initial coverage',initialCov);

close system('sldvdemo cruise control',0);

7-87

7 Generating Test Cases

enable

Summary

Model Hierarchy/Complexity Test1
Decision Condition MCDC Execution

1. sldvdemo cruize control & 100% s 100% (00% S (00% ——

2. .. Controller T100% s 100% o 100% e]00% ———

oo FI Controller 4 100% m—— A MA 100% —

Modify the Model

Load the modified sldvdemo cruise control mod model. The controller target speed value is
limited to 70, by using a Saturation block.

load_system 'sldvdemo cruise control mod';
load_system 'sldvdemo cruise control mod/Controller';

Y

D

(2 }—» noT »| AND

brake

Active Control

Determineg if the

m control is active
I
Active last step

[]

speed] Target speed l r
" n
@ > \ - /_ .":-@—b arror throt —P'
set

: throt
1
Saturation Pl Controller

Ly Compute the
target speed
O b pe

7-88

¥

By b=
a
b
@

previous target

Extend an Existing Test Suite

Measure the Coverage Achieved by the Existing Test Suite

The sldvruntest function simulates the modified sldvdemo cruise control mod model with an
existing test suite and inputs identical to sldvdemo cruise control model. The cvhtml function

produces a coverage report that indicates the modified sldvdemo cruise control mod model no
longer achieves full coverage.

[outData, startCov] = sldvruntest('sldvdemo cruise control mod', files.DataFile, [], true);
cvhtml('Coverage with the original testsuite',startCov);

Summary
Model Hierarchy/Complexity Testl

Decision Condition MCDC Execution
1. zldvdemo_cruise _control _mod 10 28% s 10029 s 100% 10070 —————
2. ... Controller O 28% s (100% o 00% — 007 ———
E PI Controller 4 67% m—— NA NA 100% ——

Extend an Existing Test Suite

To achieve full model coverage, the sldvgencov function analyzes the model and extends the
existing test suite.

[status, covData, files] = sldvgencov('sldvdemo cruise control mod', opts, true, startCov);

Verify Complete Coverage

Verify that the new test suite achieves full coverage for the sldvdemo cruise control mod
modified model. The sldvruntest function simulates the modified model with the extended test
suite. The cvhtml report shows the total coverage achieved by the

sldvdemo cruise control mod model.

[additionalOut, additionalCov] = sldvruntest('sldvdemo cruise control mod', files.DataFile, []
totalCov = startCov + additionalCov;

cvhtml('With additional coverage',totalCov);

Summary
Model Hierarchy/Complexity Testl

Decision Condition MCDC Execution
l. sldvdemo_crnize control_mod 10 100% s 1007 s 1009 1000 ——
2. ... Controller O 100% s 100% ——— 00% ——— (0% —
E PI Controller 4 100% m—— N4 NA 100% ——

To complete the example, close the model.

7-89

7 Generating Test Cases

close system('sldvdemo cruise control mod');

7-90

Defining and Extending Existing Tests Cases

Defining and Extending Existing Tests Cases

This example shows how Simulink® Design Verifier™ can extend test cases with additional time steps
to efficiently generate complete test suites.

The example starts with a model containing time-delay characteristics that make test generation
challenging. By creating a default test harness model and manually authoring one test, the critical
obstacle to efficient test generation is removed. Simulink Design Verifier takes as input the logged
values from the harness model and efficiently extends this test to create a complete test suite.

Model Characteristics That Motivate Test Case Extension

The sldvdemo sbr extend design model includes the Stateflow® Chart SBR that uses temporal
logic so that very long test cases are required to make a transition from the KEY OFF state to the
KEY ON state. This type of time-delay characteristic is common in designs where a delay is used to
reject spurious behavior or to wait for a physical system or user to respond. In this design, satisfying
the temporal logic in this transition is a common obstacle to testing any of the states and transitions
within the KEY ON state.

Fortunately, this type of time-delay characteristic is usually easy to identify and satisfy with a
manually authored test case.

open_system('sldvdemo sbr extend design');
sf('Open',sldvdemo ssid to sfid('sldvdemo sbr extend design/SBR',11));

7-91

7 Generating Test Cases

(KEY_OFF KEY_CRANK
entry: SeatBeltlcon=0; +— entry: SeatBeltlcon=1;
[after(500, tick)] J} 1 [KEY =0] [KEY==2] | [KEY==1]
(KEY_ON)
fSB_UNFASTEM ™ °
®
¥
LOW_SPEED A
entry: SeatBeltlcon = 1; I 4{:*
1
I - B [SeatBeltFasten == 1]
[Speed > SPEED_LIMIT] W [Speed <= SPEED_LIMIT] g
y (GB_FASTEN ™\
IrﬁIG H_SPEED N en: SeatBeltlcon=0;
OFF
[= entry: SeatBeltlcon=0,
SeatBeltFasten == 1]
n
1=
[after[EHLINK_TIT-.-1E.'.i|:k}]j [[after(BLINK_TIME tick)]
[SeatBeltFasten == 0]
ON =
entry: SeatBeltlcon=1;
Y, L v
A A
p A

7-92

Creating a Harness Model and Defining Starting Tests

The Simulink Design Verifier function sldvmakeharness creates a harness model with a block that
generates input values to the test model included by way of a Model block.

You can modify the test data in a harness model by manually editing the data values using the Signal
Builder user interface. You can also add more test cases by creating new signal groups in the block.
Alternatively, you can use the signalbuilder command to programmatically accomplish the same
thing.

In this example, you specify a test case that keeps the system in the KEY OFF state for 5 seconds:

[~, harnessModelFilePath] = sldvmakeharness('sldvdemo sbr extend design',[],[],true);
[~, harnessModel] = fileparts(harnessModelFilePath);

startingTestTime = 0:0.5:5;
startingTestData cell(3, 1);
lengthStartingTest = length(startingTestTime);

startingTestData{l} = zeros(1l,lengthStartingTest);
startingTestData{2} = zeros(1l,lengthStartingTest);
startingTestData{3} = ones(1,lengthStartingTest);

signalBuilderBlock = sldvdemo signalbuilder block(harnessModel);
signalbuilder(signalBuilderBlock, 'Append’, ...
startingTestTime, startingTestData,...

Defining and Extending Existing Tests Cases

{'Inputs.Speed', 'Inputs.SeatBeltFasten', 'Inputs.KEY'}, 'Starting Test Case');

signalbuilder(signalBuilderBlock,

open_system(signalBuilderBlock);

Starting Test Case
Inputs.Speed
L= Inputs.SeatssltFasten
- INputs.KEY

Inputs
=
DOC
Text

"ActiveGroup', 2);

— (1)

SeatBeltlcon

Test Case Explanation

Size-Type
- sldvdemo_sbr_extend_design
SE—— Inputs SeatBeitlcan
————» A
Test Unit

7-93

7 Generating Test Cases

P

4 = |[= =]
File Edit Group Signal Axes Help N
FE SRR oo | =T RG] o nom) g a
Active Group: | Stading Test Case v Gy & =
1~
Inputs.Speed
0 o o o o o o o o o L+

Inputs.SeatBeltFasten

0
q I I I I I I I I I i
2 —
Inputs.KEY
1
0 1 1 1 1 1 1 1 1 1 i
1] 05 1 Ui 2 25 3 35 - 45 5
Time (sec)
B Inputz SestBeltFasten
Hame: Inputs Speed B Input= KEY
Index: 1 e
W
ak Inputs . Speed (2171 [%Min ¥haax]

Logging Starting Tests

In order to leverage the starting test case defined above, you use the sldvlogsignals function to
capture the input values in the necessary logged data format.

The first input to sldvlogsignals is the path to a Model block, and the second input is the index of
signal group(s) within the harness model. When you invoke sldvlogsignals, the parent model that
contains the Model block is simulated.

The parent model is not restricted to Simulink Design Verifier harness models. Alternatively, you
might log data from a closed-loop simulation model that uses a Model block to include the controller
so that controller test cases more realistically reflect the continuous time behavior expected in the
closed-loop system.

7-94

Defining and Extending Existing Tests Cases

[~, modelBlock] = find mdlrefs(harnessModel, false);

loggeddata = sldvlogsignals(modelBlock{1},2);
£y =][=]
File Edit Group Signal Axes Help u
BHEH| fBE oo |~ Td RG]y o om | g [a]| B
Active Group: | | sStarting Test Case s || | | | |
1~
Inputs.Speed
O & & & & & & & & & M
-1 1 1 1 1 1 1 1 1 |
1~
Inputs.SeatBeltFasten
0
1 1 1 1 1 1 1 1 1 |
-
Inputs.KEY
1
0 1 1 1 1 1 1 1 1 |
0 05 1 15 2 25 3 35 4 45 5
Time (sec)

Hame: Inputs Speed

Index: 1 ~

Click to select signal

B Inputs SeatEeltFasten
B Input s KEY

Inputs . Speed (2171 [%Min ¥haax]

Extending Existing Tests During Test Generation

Before you can use existing test data during test generation, the data must be saved to a MAT-file.
You enable test case extension in the Test Generation pane of the Simulink Design Verifier
configuration parameters. Select Extend existing test cases, and specify the MAT file in the Data

file field.

Generated tests either extend one of the starting test cases with one or more new time steps or will
specify one or more time steps starting from the initial, or default, configuration.

save('existingtestcase.mat',

'loggeddata');

7-95

7 Generating Test Cases

opts = sldvoptions;

opts.ExtendExistingTests = 'on';
opts.ExistingTestFile = 'existingtestcase.mat';
opts.SaveHarnessModel = 'off';

opts.SaveReport = 'off"';
[~, fileNames] = sldvrun('sldvdemo sbr extend design', opts, true);

Verifying Complete Coverage

The sldvruntest function verifies that the new test suite achieves complete model coverage. The
cvhtml function produces a coverage report that indicates 100% Decision coverage is achieved with
the generated test vectors.

[~, finalCov] = sldvruntest('sldvdemo sbr extend design', fileNames.DataFile, [], true);
cvhtml('Final Coverage', finalCov);

Summary
Model Hierarchy/Complexity Testl
Decision
1. sldvdemo_sbr extend design 21 100%; eo—
2. ... EBE 20 100% eo—
D SE: SBE 19 100% eo—
4. SE-EEY ON 13 100% eo—
i T SE: SB_UNFASTEN 2 100% m—
B SE: HIGH SPEED 4 100% —
Clean Up

To complete the demo, close all models and remove the saved logged data file.
close system(harnessModel,0);

close system('sldvdemo sbr extend design');
delete('existingtestcase.mat');

7-96

Using Existing Coverage Data During Subsystem Analysis

Using Existing Coverage Data During Subsystem Analysis

This example shows how Simulink® Design Verifier™ can target its analysis to a single subsystem
within a continuous-time closed-loop simulation and generate test cases for missing coverage in that
subsystem.

The example starts by measuring the coverage of a subsystem in a closed-loop simulation model.
Simulink Design Verifier finds new test cases that achieve the missing coverage of the subsystem.

Measure Coverage of the Subsystem

The sldvdemo autotrans model is a closed-loop simulation model. The subsystem ShiftlLogic is
a Stateflow® chart and represents the controller part of this model. Test cases designed in the Signal
Editor block ManeuversGUI drive the closed-loop simulation. You can use the cvtest and cvsim
functions to measure the model coverage achieved for this subsystem inside the closed-loop
simulation model. In this example, specifying the input to cvtest as a path to the subsystem rather
than to the model name results in measuring the coverage for the subsystem only. Also, the second
input to cvsim specifies the time interval to simulate the model and it is derived from the time range
of the current pane in the block ManeuversGUI.

The cvhtml function produces a report that indicates that 87% Decision, 67% Condition, and 33%
MCDC coverage is achieved by simulating the test case authored in the block ManeuversGUI.

open_system('sldvdemo autotrans');
open_system('sldvdemo _autotrans/ManeuversGUI');

test = cvtest('sldvdemo autotrans/ShiftLogic');
test.settings.decision = 1;
test.settings.condition = 1;

test.settings.mcdc = 1;

signalEditorBlock = sldvdemo_signaleditor block('sldvdemo autotrans');
signalEditorTime = sldvdemo _signaleditor DataTime(signalEditorBlock);
simulationStopTime = signalEditorTime{1l,1}(end);

existingCovData = cvsim(test,[0 simulationStopTime]);
cvhtml('Existing Coverage', existingCovData);

7-97

7 Generating Test Cases

7-98

Simulink Design Verifer
I Modeling an Automatic Transmission Controller

ImprellerTorgue
i Throttle C]
e i

B Thraottle EnginaRPM EngineRPM
Engine b he VehicleSpeed =
T lotResults
-
P spead
D-w' P gear Vehicle
1O ,
down_th CALG —= Mout CutputTorque
ShiftLogic : >
e
k4
TransmissionFPM
hrotile Passing_Manauvear
Throttle

ThresholdCalculation

BrakgTorque |
Z) Brake]
Throttle | g

BansuversGl|

VehicleSpead

Double-click on ManeuversGUI and select a maneuver

= Copyright 1980-2019 The MathWarks, Inc.

Find Test Cases for Missing Coverage

To use existing coverage data during test generation, save existing coverage data to a .cvt coverage
data file. You can use existing coverage data by specifying the coverage data path in the Coverage
data file parameter and setting Ignore objectives satisfied in existing coverage data parameter
to on in the Test Generation pane of Simulink Design Verifier configuration parameters.

In this example, the first input to sldvrun specifies the subsystem to analyze. Instructing Simulink
Design Verifier to analyze a subsystem is beneficial when the controller part of a model needs to be
tested separately or when you want to divide the analysis of a large model into smaller, manageable
parts.

As you can see in the report, Simulink Design Verifier only finds test cases for the coverage objectives
that are not covered in the existing coverage file. Notice that 4 coverage objectives in the subsystem
ShiftLogic are proven to be unsatisfiable. This is expected because the logic inside the Stateflow
chart ShiftLogic uses temporal events and since this chart updates at every sample time, usage of
temporal conditions should be satisfactory. Also note that, dead code within a subsystem will always
be a dead code in the model containing that subsystem.

Using Existing Coverage Data During Subsystem Analysis

To generate the harness model, Simulink Design Verifier extracts the contents of the subsystem
ShiftLogic into a Test Unit component fed by a Signal Editor block containing the generated test

cases.
cvsave('existingcov',existingCovData);

opts = sldvoptions;

opts.IgnoreCovSatisfied = 'on';
opts.CoverageDataFile = 'existingcov.cvt';
opts.ModelCoverageObjectives = 'MCDC';
opts.SaveHarnessModel = 'on';
opts.SaveReport = 'on';

[status, fileNames] = sldvrun('sldvdemo autotrans/ShiftLogic',opts,true);
[~, harnessModel] = fileparts(fileNames.HarnessModel);
open_system(harnessModel) ;

Size-Type

TastCasea_1
aEtEEa_ spaed F— M speed
—— up_th ———® up_th] . gear —F-
g ear
=L down_th f——— Eon_th 4

Inputs Test_Unit {copied from ShifiLogic)

=
OoC
Text

Test Case Explanation

Clean Up

To complete the demo, close all models and remove the saved coverage data file.

close system('sldvdemo autotrans');

close system(fileNames.ExtractedModel,0);
close system(fileNames.HarnessModel,0);
delete('existingcov.cvt');

7-99

7 Generating Test Cases

Creating and Executing Test Cases

This example shows how to use Simulink® Design Verifier™ functions to log input signals, create a
harness model, generate test cases for missing coverage, merge harness models, and execute test
cases.

The example starts by logging input signals to the component that implements the controller in its
parent model and creating harness model for the controller from that logged data. You use Simulink
Design Verifier to find a new test case that achieves the missing coverage. Then you merge the first
harness model with the harness model generated after the Simulink Design Verifier analysis. Finally,
you capture all test cases and execute the controller with those test cases in simulation mode and
Software-In-the-Loop (SIL) mode, and compare the results using CGV API.

Check Product Availability

This example requires a valid Stateflow® license. To demonstrate test execution in Software-In-the-
Loop (SIL) mode it also requires valid Simulink® Coder™ and Embedded Coder™ licenses.

if ~license('test', 'Stateflow')
return;
end

canUseSIL = license('test','Real-Time Workshop') && ...
license('test', 'RTW _Embedded Coder');

Logging Input Signals to the Component and Creating the Harness Model

The slvnvdemo powerwindow model contains a power window controller and a low-order plant
model. The component slvnvdemo powerwindow/power window control system/controlis
a Model block that references the model slvnvdemo powerwindow_controller, which
implements the controller with a Stateflow® chart.

To create a harness model for the controller with the signals that simulate the controller in the plant
model, first log the input signals and then invoke harness generation with that logged data.

open_system('slvnvdemo powerwindow');
load system('slvnvdemo powerwindow controller');

loggedSignalsPlant = ...
sldvlogsignals('slvnvdemo powerwindow/power window control system/control');

harnessModelFilePath = ...
sldvmakeharness('slvnvdemo powerwindow controller',loggedSignalsPlant);
[~,harnessModel] = fileparts(harnessModelFilePath);

Starting serial model reference simulation build.
Successfully updated the model reference simulation target for: slvnvdemo powerwindow contro’

Build Summary
Simulation targets built:

Model Action Rebuild Reason

slvnvdemo powerwindow controller Code generated and compiled. slvnvdemo powerwindow controller

7-100

Creating and Executing Test Cases

1 of 1 models built (0 models already up to date)

Build duration: Oh Om 20.931s

Starting serial model reference simulation build.

Model reference simulation target for slvnvdemo powerwindow controller is up to date.

Build Summary

0 of 1 models built (1 models already up to date)

Build duration: ©0h Om 0.55583s

Starting serial model reference simulation build.

Successfully updated the model reference simulation target for: slvnvdemo powerwindow contro’
Build Summary

Simulation targets built:

Model Action Rebuild Reason

slvnvdemo powerwindow controller Code generated and compiled.

1 of 1 models built (0 models already up to date)
Build duration: Oh Om 13.322s

position 1
reset
obstacle pusitinn
(:) | neutral andstop mave_up (4
driver_neutral detect_obstacle_endstop

up

driver u neutral_up_down
- IED_"dwn I ..'endsmp sivnvdemo_powerwindow_controller b |
driver_down movellp 1)
L

4Il- reset J—b obstacle move_up

driver_reset
__J——hdﬁva
moveDown
(@D TN J—' B g 4 movedown

validate_driver

passenger_neutral contol
up

passenger_up neutral_up_down
down

passenger_down

passenger_reset
|E| validate_passenger

7-101

7 Generating Test Cases

Group 1

Simulink Coverage

Power Window Controller Hybrid System Model

position

nauiral

Drriver Up W Up

7-102

up

[——® driver_neutral

—I—D' driver_up

move_up —up

Test Case Explanation

Dowm
down
Driver Down
driver_switch \—V driver_down position - C]
position
Passenger Up | Up neutral L paszenger_neutral
up
move_down —* down
J_> Down down passanger_up
Passangear Down
passenger_switch
passangear_down
Copyright 1990-2017 The MathWorks, Inc.
Size-Type
TastCase_1 5hrnvdem_pn’wenuindnw_cuntrc:ll
endstop f———® endstop
mavellp —h‘
obsiacle b——W obstacle movelp
maoweDown
driver ' driver
moveDown
a
o passenger ———® passanger
ﬂ A
Inputs Test_Unit
lb.
DoC
Teot

Creating and Executing Test Cases

Measuring the Coverage with Logged Signals

Use the cvtest and cvsim functions to measure the model coverage achieved for the controller
model slvnvdemo powerwindow controller with the logged signals that are captured in the
harness model.

The cvhtml function produces a report that indicates that 40% Decision, 35% Condition, and 10%
MCDC coverage is achieved by simulating the test cases captured from the closed-loop model.

test = cvtest(harnessModel);
test.modelRefSettings.enable = 'On';
test.modelRefSettings.excludeTopModel = 1;

covDataFromLoggedSignals = cvsim(test);
cvhtml('Coverage with Logged Test Cases',covDataFromLoggedSignals);

Finding Test Cases for Missing Coverage

Before you can use existing coverage data during test generation, the data must be saved to a
coverage data file(.cvt). You can use the existing coverage data by specifying the coverage data path
in the Coverage data file parameter and setting the Ignore objectives satisfied in existing
coverage data parameter to on in the Test Generation pane of Simulink Design Verifier
configuration parameters.

As you can see in the report, Simulink Design Verifier restricts test generation to the coverage
objectives that are not covered in the existing coverage file. Notice that 8 coverage objectives in the
Stateflow chart control are proven to be unsatisfiable. This indicates unnecessary redundant logic
that cannot be tested.

cvsave('existingCovFromLoggedSignals', covDataFromLoggedSignals);

opts = sldvoptions;

opts.IgnoreCovSatisfied = 'on';

opts.CoverageDataFile = 'existingCovFromLoggedSignals.cvt';
opts.ModelCoverageObjectives = 'MCDC';
opts.TestSuiteOptimization = 'LongTestcases';
opts.SaveHarnessModel = 'on';

opts.ModelReferenceHarness = 'on';

opts.MaxProcessTime = 500;
[status, fileNames] = sldvrun('slvnvdemo powerwindow controller',opts,true);

[~, newHarnessModel] = fileparts(fileNames.HarnessModel);
open_system(newHarnessModel) ;

7-103

7 Generating Test Cases

7-104

Size-Type
TestCasea_1 5hrnvdem_pmuenuindow_cuntrc}l
endstop p———— endstop
maovellp —h'
obstacle f————® obstacle movelp
]
moveDown
driver ————# driver
miowveDown
=]
a passangar = 4l rger
Ll A

Inputs Tast_Unit

[
DoC

Teoxt

Test Case Explanation

Merging Test Cases from Harness Models

Now use sldvmergeharness to combine generated test cases with logged test case. The command
takes a list of harness models as arguments.

sldvmergeharness (harnessModel, newHarnessModel);

Logging Test Cases of the Harness Model

In order to programmatically execute the model slvnvdemo powerwindow controller with the
test cases captured in the merged harness model, first use the sldvlogsignals function to obtain
the input values of all test cases in the necessary data format.

loggedSignalsMergedHarness = sldvlogsignals(harnessModel);
disp(loggedSignalsMergedHarness);

LoggedTestUnitInfo: [1x1 struct]
TestCases: [1x2 struct]

Execute the Model in Simulation Mode with CGV API

Use the sldvruncgvtest function to execute the model slvnvdemo powerwindow controller
in simulation mode, with test cases captured from the harness model.

runopts = sldvruntestopts('cgv');
disp(runopts);

runopts.cgvConn = 'sim';
cgvSim = sldvruncgvtest('slvnvdemo powerwindow controller',...
loggedSignalsMergedHarness, runopts);

testIdx: []
allowCopyModel: 0
cgvCompType: 'topmodel’
cgvConn: 'sim'

Creating and Executing Test Cases

Starting execution:

ComponentType: topmodel

Connectivity: sim

InputData:

C:\TEMP\Bdoc23a 2213998 3568\1ib570499\28\tp27ale6fc\sldv-ex67947267\cgv_runtest\slvnvdemo powe
End CGV execution: status completed.
Starting execution:

ComponentType: topmodel

Connectivity: sim

InputData:

C:\TEMP\Bdoc23a 2213998 3568\1ib570499\28\tp27ale6fc\sldv-ex67947267\cgv_runtest\slvnvdemo powe
End CGV execution: status completed.

Execute the Model in Software-In-the-Loop (SIL) Mode with CGV API

Now use the sldvruncgvtest function to execute the model
slvnvdemo_powerwindow controller in SIL mode, with the same test cases.

if canUseSIL

runopts.cgvConn = 'sil’';

else
% When SIL is not possible, the example runs another simulation.
runopts.cgvConn = 'sim';

end
cgvSil = sldvruncgvtest('slvnvdemo powerwindow controller',...
loggedSignalsMergedHarness, runopts);

Starting execution:

ComponentType: topmodel

Connectivity: sil

InputData:

C:\TEMP\Bdoc23a 2213998 3568\1ib570499\28\tp27ale6fc\sldv-ex67947267\cgv_runtest\slvnvdemo powe
Starting build procedure for: slvnvdemo powerwindow controller
Successful completion of build procedure for: slvnvdemo powerwindow controller

Build Summary
Top model targets built:

Model Action Rebuild Reason

slvnvdemo powerwindow controller Code generated and compiled. Code generation information file

1 of 1 models built (0 models already up to date)
Build duration: Oh Om 10.463s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)"'.
MEX completed successfully.
Starting SIL simulation for component: slvnvdemo powerwindow controller
Application stopped
Stopping SIL simulation for component: slvnvdemo powerwindow controller
End CGV execution: status completed.
Starting execution:
ComponentType: topmodel
Connectivity: sil
InputData:
C:\TEMP\Bdoc23a 2213998 3568\1ib570499\28\tp27ale6fc\sldv-ex67947267\cgv_runtest\slvnvdemo powe

7-105

7 Generating Test Cases

Starting build procedure for: slvnvdemo powerwindow controller
Successful completion of build procedure for: slvnvdemo powerwindow controller

Build Summary
Top model targets built:

Model Action Rebuild Reason

slvnvdemo powerwindow controller Code generated and compiled. Generated code was out of date.

1 of 1 models built (0 models already up to date)

Build duration: Oh Om 10.192s

Preparing to start SIL simulation ...

Building with 'Microsoft Visual C++ 2019 (C)'.

MEX completed successfully.

Starting SIL simulation for component: slvnvdemo powerwindow controller
Application stopped

Stopping SIL simulation for component: slvnvdemo powerwindow controller
End CGV execution: status completed.

Compare Results of Simulation and SIL Modes

The sldvruncgvtest returns a cgv.CGV object after running tests. Use the CGV API to compare
the results of executions in simulation and SIL modes for each test case designed in the harness
model and show that they are equal.

for i=1:1length(loggedSignalsMergedHarness.TestCases)

simout = cgvSim.getOutputData(i);
silout = cgvSil.getOutputData(i);
[matchNames, ~, mismatchNames, ~] = ...

cgv.CGV.compare(simout, silout);

fprintf('\nTest Case(%d): %d Signals match, %d Signals mismatch',
i, length(matchNames), length(mismatchNames));
end

Test Case(l): 4 Signals match, 0 Signals mismatch
Test Case(2): 4 Signals match, 0 Signals mismatch
Clean Up

To complete the example, close all models.

close system(harnessModel,0);

close system(newHarnessModel,0);

close system('slvnvdemo powerwindow',0);

close system('slvnvdemo powerwindow controller',0);

7-106

Using Specified Input Minimum and Maximum Values as Constraints

Using Specified Input Minimum and Maximum Values as
Constraints

This example shows how to use input port minimum and maximum values as analysis constraints by
Simulink® Design Verifier™ during both test generation and property proving.

This model is preconfigured to generate tests for MCDC. The specified minimum and maximum values
are displayed in square brackets. The constraints in this example prevent some of the coverage
objectives from being satisfied. When you generate tests without considering these constraints, all of
the coverage objectives are satisfied.

1. The Inputl and Input2 minimum and maximum values are captured directly on their respective
inport signal attributes.

2. The minimum and maximum values are specified on the Simulink.Signal objects associated with
signals a and b. Simulink Design Verifier uses the signal object's values as constraints. When multiple
minimum and maximum values are specified, e.g., on the inport and on the signal object, Simulink
Design Verifier considers their tightest range.

3. Simulink Design Verifier considers the minimum and maximum limit ranges specified on
Stateflow® data that is directly connected to the root-level input ports

4. For subsystem analysis, the subsystem root-level specified input minimum and maximum values are
considered. Observe that generating tests for the Subsystem uses the constraints specified on SSIn,
but ignores them for the system-level analysis.

open_system('sldvdemo minmaxconstraints');

7-107

7 Generating Test Cases

Simulink Design Verifier

7
.5
OR ()
F1.1]
Input1_sig
0. m J. ORI —»(5)
Out1_sig
=0
Input2_=sig
0.
1. m
/- p]ssn ssoutp—»(Z)
[0,
20 t0 20

7-108

Using Specified Input Minimum and Maximum Values as Constraints

1.The Input1 and Input2 minimum and maximum values are
captured directly on their respective inport signal attributes.

2. The minimum and maximum values are specified on the
Simulink.Signal objects associated with signals a and b.
Simulink Design Verifier uses the signal object's values as
constraints. When multiple minimum and maximum values are
specified, e.g., on the inport and on the signal object, Simulink
Design Verifier considers their tightest range.

3. Simulink Design Verifier considers the minimum and maximum
limit ranges specified on Stateflow data that is directly connected
to the root-level input ports.

4. For subsystem analysis, the subsystem root-level specified
input minimum and maximum values are considered. Observe
that generating tests for the Subsystem uses the constraints
specified on SSIn, but ignores them for the system-level analysis.

Copyright 2010-201%9 The MathWaorks, Inc.

Configuring S-Function for Test Case Generation

Configuring S-Function for Test Case Generation

This example shows how to compile an S-Function to be compatible with Simulink® Design Verifier™
for test case generation. Simulink Design Verifier supports S-Functions that are:

* Generated with the Legacy Code Tool, with
def.Options.supportCoverageAndDesignVerifier setto true,

* Generated with the SFunctionBuilder, with Enable support for Design Verifier selected on the
Build Info tab of the SFunctionBuilder dialog box, or

* Compiled with the function slcovmex, with the option -sldv passed.
Compile S-Function to be Compatible with Simulink Design Verifier

The handwritten S-Function is found in the file sldvexSFunctionHandlingSFcn.c, and the user source
code for the lookup table is found in the file sldvexSFunctionHandlingSource.c. Call the function
slcovmex to compile the C-MEX S-Function and make it compatible with Simulink Design Verifier.

slcovmex('-sldv',

"-output', 'sldvexSFunctionHandlingSFcn',...

["-I', fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src')], ...
fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src', 'sldvexSFunctionHandlingSourt
fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src', 'sldvexSFunctionHandlingSFcn

);

mex -IB:\matlab\toolbox\sldv\sldvdemos\src C:\TEMP\Bdoc23a 2213998 3568\1b570499\28\tpaclaObb4 6.
Building with 'Microsoft Visual C++ 2019 (C)'.

MEX completed successfully.

mex -IB:\matlab\toolbox\sldv\sldvdemos\src B:\matlab\toolbox\sldv\sldvdemos\src\sldvexSFunctionH
Building with 'Microsoft Visual C++ 2019 (C)"'.

MEX completed successfully.

Create Test Suite

The example model sldvexSFunctionHandlingExample example contains the handwritten S-Function,
which implements a lookup table algorithm. The S-Function block returns the interpolated value at
the first output port and returns the status of the interpolation at the second output port. The second
output port returns the value -1 if a lower saturation occurs, 1 if a upper saturation occurs, and 0
otherwise. Open the sldvexSFunctionHandlingExample model and configure the analysis options by
turning on S-Function support for test generation. On running the analysis, Simulink Design Verifier
returns a test suite that satisfies all coverage objectives.

open_system('sldvexSFunctionHandlingExample');

7-109

matlab:sldvexSFunctionHandlingExample

7 Generating Test Cases

B Simulink Design Verifier
) S-Function Handling for Test Generation

Y1)
InterpolatedData
sldvexSFunctionHandlingSFen {-1, 0,1}
InputData
) —— {0

SaturationCceurad

isMotZero

Open
S-Function sources
(double-click)

Open Source Files

Copyright 2015-2019 The MathWaorks, Inc.

opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.ModelCoverageObjectives = 'ConditionDecision';

opts.SaveHarnessModel = 'off"';

opts.SaveReport = 'off"';

opts.SFcnSupport = 'on';

[status, fileNames] = sldvrun('sldvexSFunctionHandlingExample', opts, true);
Verifying Complete Coverage

The sldvruntest function verifies that the test suite achieves complete model coverage. The
cvhtml function produces a coverage report that indicates 100% Condition and Decision coverage is
achieved with the generated test vectors.

[~, finalCov] = sldvruntest('sldvexSFunctionHandlingExample', fileNames.DataFile, [], true);
cvhtml('Final Coverage', finalCov);

Clean Up

To complete the demo, close all models.

close system('sldvexSFunctionHandlingExample', 0);

7-110

Code Coverage Test Generation

Code Coverage Test Generation

This example shows how to use Simulink® Design Verifier™ to generate test cases to obtain complete
code coverage.

You first collect code coverage for an example model configured for software-in-the-loop (SIL)
simulation mode. Then you use Simulink® Design Verifier™ to create a test suite that generates tests
cases. Finally, you execute the generated test cases in SIL simulation mode to verify the complete
coverage.

Check Product Availability

Make sure that you have Simulink® Coder™ and Embedded Coder™ software installed on your
machine.

if ~(license('test', 'Real-Time Workshop') && ...
license('test', 'RTW Embedded Coder'))
return

end

Initial Setup

Make sure that an unedited version of the model is open.

model = 'sldvdemo cruise control';
close system(model, 0)
open_system(model)

7-111

7 Generating Test Cases

7-112

Simulink Design Verifier
? | Cruise Control Test Generation

L1 3} enable
enable
L2 } b brake throt e 1]
brake throt
L3} P cot
set [0 100]
: Actual ed .
speed ual spe
4 | inc target —F@
inc target
L5 } | dec
dec
Controller
Toggle Speed
Constraint
(double-click)

Toggle Constraint

Caopyright 2006-2023 The MathWarks, Inc.

Configure the Model for SIL based test generation

1. In the Configuration Parameters window, click Code Generation and set System Target File
to ert.tlc. Alternatively, enter:

set param(model, 'SystemTargetFile', 'ert.tlc');

2. Click Hardware Implementation, then set Device vendor and Device type to the vendor and
type of your SIL system. For example, for a 64-bit Linux machine, set Device vendor to Intel and
Device type to x-86-64 (Windows). Alternatively, enter:

if ismac

1ProdHWDeviceType = 'Intel->x86-64 (Mac 0S X)';
elseif isunix

1ProdHWDeviceType = 'Intel->x86-64 (Linux 64)"';
else

1ProdHWDeviceType = 'Intel->x86-64 (Windows64)';
end

set param(model, 'ProdHWDeviceType', 1ProdHWDeviceType);

Code Coverage Test Generation

Find Test Cases for Coverage Computation

Analyze the sldvdemo cruise control model by using Simulink® Design Verifier™ to generate a
test suite that achieves increased code coverage. Set the Simulink® Design Verifier™ options to
generate test cases to achieve MCDC coverage for the top model.

opts = sldvoptions;

opts.TestgenTarget = 'GenCodeTopModel"';
opts.Mode = 'TestGeneration';

[~, files] = sldvrun(model, opts, true);

Starting build procedure for: sldvdemo cruise control
Loading TLC function libraries

Initial pass through model to cache user defined code

Caching model source code

Writing header file sldvdemo cruise control types.h
Writing header file sldvdemo cruise control.h
Writing header file rtwtypes.h

Writing source file sldvdemo cruise control.c

Writing header file sldvdemo cruise control private.h

Writing source file ert main.c

TLC code generation complete (took 3.551s).

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT_SECURE_NO WARNINGS /0d /Oy- -DCLASSIC INTER
sldvdemo cruise control.c
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
Successful completion of build procedure for: sldvdemo cruise control

Preparing to start SIL simulation ...

Building with 'Microsoft Visual C++ 2019 (C)'.

MEX completed successfully.

Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)

Creating 'C:\TEMP\Bdoc23a 2213998 3568\1ib570499\28\tp27ale6fc\sldv-ex15502968\IntelWin64\sld
Building 'sldvdemo cruise control ca': nmake -f sldvdemo cruise control ca.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502

7-113

7 Generating Test Cases

7-114

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT_SECURE_NO WARNINGS /0d /Oy- -DINTEGER CODE=(
coder_assumptions hwimpl.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT_SECURE_NO WARNINGS /0d /Oy- -DINTEGER CODE=(
coder_assumptions flt.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT_SECURE_NO WARNINGS /0d /Oy- -DINTEGER CODE=(
sldvdemo cruise control ca.c
Creating static library ".\sldvdemo cruise control ca.lib"

lib /nologo -out:.\sldvdemo cruise control ca.lib @sldvdemo cruise control ca.rsp
Created: .\sldvdemo cruise control ca.lib
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)

Creating 'C:\TEMP\Bdoc23a 2213998 3568\1ib570499\28\tp27ale6fc\sldv-ex15502968\IntelWin64\sld
Building 'sldvdemo cruise control': nmake -f sldvdemo cruise control.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
xil interface lib.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
xil data stream.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
xil services.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
xil interface.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
xilcomms rtiostream.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
xil rtiostream.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
rtiostream utils.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
coder_assumptions app.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
coder _assumptions data stream.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
coder assumptions rtiostream.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
sil main.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
target io.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER
rtiostream tcpip.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT SECURE NO WARNINGS /0d /Oy- -DCLASSIC INTER

Code Coverage Test Generation

xil instrumentation.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT_SECURE_NO WARNINGS /0d /Oy- -DCLASSIC INTER
codeinstr data stream.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT_SECURE_NO WARNINGS /0d /Oy- -DCLASSIC INTER
codeinstr rtiostream.c
Creating standalone executable ".\sldvdemo cruise control.exe" ...

link /RELEASE /INCREMENTAL:NO /NOLOGO kernel32.1lib ws2 32.1ib mswsock.lib advapi32.lib -out
Created: .\sldvdemo cruise control.exe
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
Starting SIL simulation for component: sldvdemo cruise control

Stopping SIL simulation for component: sldvdemo cruise control

Starting build procedure for: sldvdemo cruise control

Generating code and artifacts to 'Target environment subfolder' folder structure

Generating code into build folder: C:\TEMP\Bdoc23a 2213998 3568\1b570499\28\tp27aleb6fc\sldv-¢
Generated code for 'sldvdemo cruise control' is up to date because no structural, parameter ¢
Saving binary information cache.

Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)

'C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502968\IntelWin64\sldvdemo cru:
Building 'sldvdemo cruise control': nmake -f sldvdemo cruise control.mk buildobj

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
Successful completion of build procedure for: sldvdemo cruise control

Build Summary
Top model targets built:

Model Action Rebuild Reason

sldvdemo cruise control Code compiled. Compilation artifacts were out of date.

1 of 1 models built (0 models already up to date)

Build duration: ©0h Om 3.6671s

Preparing to start SIL simulation ...

Skipping makefile generation and compilation because C:\TEMP\Bdoc23a 2213998 3568\ib570499\2
Starting SIL simulation for component: sldvdemo cruise control

rtw.connectivity.HostLauncher: started executable with host process identifier <a href="matlab: -
rtw.connectivity.HostLauncher: stopped executable with host process identifier <a href="matlab: -
Stopping SIL simulation for component: sldvdemo cruise control

Completed code coverage analysis

Starting SIL simulation for component: sldvdemo cruise control

rtw.connectivity.HostLauncher: started executable with host process identifier <a href="matlab: -
rtw.connectivity.HostLauncher: stopped executable with host process identifier <a href="matlab: -

7-115

7 Generating Test Cases

i
i
i

rtw.
rtw.

i
i
i

rtw.
rtw.

i
i

E Simulink Design Verifier Results Summary: sldvdemo_cruise_con « [5

Progress .
Objectives processed 30/30

Satisfied 30

Unsatisfiable 0

Elapsed time 0:55

Test generation (for code generated from top model) completed normally.
30/30 objectives satisfied.

Results:

* Open filter viewer

Stopping SIL simulation for component: sldvdemo cruise control

Completed code coverage analysis

Starting SIL simulation for component: sldvdemo cruise control

connectivity.HostLauncher: started executable with host process
connectivity.HostLauncher: stopped executable with host process
Stopping SIL simulation for component: sldvdemo cruise control

Completed code coverage analysis

Starting SIL simulation for component: sldvdemo cruise control

connectivity.HostLauncher: started executable with host process
connectivity.HostLauncher: stopped executable with host process
Stopping SIL simulation for component: sldvdemo cruise control

Completed code coverage analysis

R

* Highlight analysis results on model

* View tests in Simulation Data Inspector

¢ Detailed analysis report: (HTML) (PDF)
* Create harness model

e Export test cases to Simulink Test

* Simulate tests and produce a code coverage report

Data saved in: sldvdemo cruise control sldvdata.mat
in folder: /timp/tpdbd343dd_bgl-antaraa-l/sldv_output/
sldvdemo_cruise_control

identifier
identifier

identifier
identifier

Note: When you run the script, the SIL test generation regenerates and recompiles the code.

7-116

<a
<a

<a
<a

href="matlab: -
href="matlab: -

href="matlab: -
href="matlab: -

Code Coverage Test Generation

Verify Complete Coverage

The sldvruntest function simulates the model by using the generated test suite. The cvhtml
function produces a coverage report that indicates the final coverage of the
sldvdemo cruise control model.

[~, finalCov] = sldvruntest(model, files.DataFile, [], true);

cvhtml('sil final coverage', finalCov);

close system(model, 0);

Starting build procedure for: sldvdemo cruise control

Generating code and artifacts to 'Target environment subfolder' folder structure

Generating code into build folder: C:\TEMP\Bdoc23a 2213998 3568\1b570499\28\tp27aleb6fc\sldv-¢
Generated code for 'sldvdemo cruise control' is up to date because no structural, parameter ¢
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)

'C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502968\IntelWin64\sldvdemo cru:
Building 'sldvdemo cruise control': nmake -f sldvdemo cruise control.mk buildobj
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
Successful completion of build procedure for: sldvdemo cruise control

Build Summary
Top model targets built:

Model Action Rebuild Reason

sldvdemo cruise control Code compiled. Compilation artifacts were out of date.

1 of 1 models built (0 models already up to date)

Build duration: Oh Om 2.7723s

Preparing to start SIL simulation ...

Building with 'Microsoft Visual C++ 2019 (C)"'.

MEX completed successfully.

Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)

'C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502968\IntelWin64\sldvdemo cru:
Building 'sldvdemo cruise control': nmake -f sldvdemo cruise control.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502

7-117

7 Generating Test Cases

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT_SECURE_NO WARNINGS /0d /Oy- -DCLASSIC INTER
xil interface.c

cl -c -nologo -GS -W4 -DWIN32 -D MT -MT -D CRT_SECURE_NO WARNINGS /0d /Oy- -DCLASSIC INTER
xil instrumentation.c
Creating standalone executable ".\sldvdemo cruise control.exe"

link /RELEASE /INCREMENTAL:NO /NOLOGO kernel32.1lib ws2 32.1ib mswsock.lib advapi32.lib -out
Created: .\sldvdemo cruise control.exe
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a 2213998 3568\ib570499\28\tp27ale6fc\sldv-ex15502
Starting SIL simulation for component: sldvdemo cruise control

rtw.connectivity.HostLauncher: started executable with host process identifier <a href="matlab: -
rtw.connectivity.HostLauncher: stopped executable with host process identifier <a href="matlab: -
Stopping SIL simulation for component: sldvdemo cruise control

Completed code coverage analysis

Starting SIL simulation for component: sldvdemo cruise control

rtw.connectivity.HostLauncher: started executable with host process identifier <a href="matlab: -
rtw.connectivity.HostLauncher: stopped executable with host process identifier <a href="matlab: -
Stopping SIL simulation for component: sldvdemo cruise control

Completed code coverage analysis

Starting SIL simulation for component: sldvdemo cruise control

rtw.connectivity.HostLauncher: started executable with host process identifier <a href="matlab: -
rtw.connectivity.HostLauncher: stopped executable with host process identifier <a href="matlab: -
Stopping SIL simulation for component: sldvdemo cruise control

Completed code coverage analysis

Starting SIL simulation for component: sldvdemo cruise control

rtw.connectivity.HostLauncher: started executable with host process identifier <a href="matlab: -
rtw.connectivity.HostLauncher: stopped executable with host process identifier <a href="matlab: -
Stopping SIL simulation for component: sldvdemo cruise control

Completed code coverage analysis

Summary
File Contents/Complexity Test 1
Decision Condition MCDC Statement Function
1. sldvdemo_cruise control.e 9100% o 100% s 100% s 100% s 100% -
2 .. sldvdemo_cruise_control_step 7100% sosssss 100% s (0029 s 1002 s 1009 ——
3 ... sldvdemo_cruise_control initialize 1 -- -- -- 100% s 100% —————
4 .. sldvdemo_cruise_control terminate 1 - -- -- 100% e 100% ———

Note: When you run the script, the SIL test generation regenerates and recompiles the code.

7-118

Test Generation on Model with C Caller Block

Test Generation on Model with C Caller Block

This example shows how to use test generation on a model with a C Caller block and custom C code
Open the model containing the C Caller block and custom code

open_system('sldvexCCallerBlockExample');

Simulink Design Verifier
Test Case Generation with C Caller Block

inpast !5IGNALEIU5 o I:l
- —pe—— — >
|nb3.2i nputsignal =
2
SIGNALBUSCreafiFMNALEYS
COUNTEREUS
ul vl - -— g I:l
a0 i””&-‘. COUNTERBUS counterbusFen <upper_saturation_limats
upper_saturation_limit " uZ y2 I—D
o I
+ - »
<lower_saturaton_Emit=

»
ower_saturation_limit

LIMITBUSCreator

Copyright 2018 The MathWorks, Inc.

Generate tests to ensure coverage of the model

Use the sldvrun function to run Simulink ® Design Verifier ™ analysis.
opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.ModelCoverageObjectives = 'ConditionDecision';

opts.SaveHarnessModel = 'off"';
opts.SaveReport = 'off"';

[status, fileNames] = sldvrun('sldvexCCallerBlockExample', opts);

27-Feb-2023 10:36:01

Checking compatibility for test generation: model 'sldvexCCallerBlockExample'

Compiling model...done

Building model representation...done

27-Feb-2023 10:36:27

'sldvexCCallerBlockExample' is compatible for test generation with Simulink Design Verifier.

Generating tests using model representation from 27-Feb-2023 10:36:27...

7-119

7 Generating Test Cases

27-Feb-2023 10:36:44
Completed normally.
Generating output files:

27-Feb-2023 10:36:46
Results generation completed.

Data file:
/home/lucyzeng/Documents/MATLAB/ExampleManager/lucyzeng.BR2023ad.j2194193.1/sldv-ex07804984/

Verify the coverage
Use the sldvruntest function to verify that the test suite achieves complete model coverage.

[~, finalCov] = sldvruntest('sldvexCCallerBlockExample', fileNames.DataFile, [], true);
cvhtml('Final Coverage', finalCov);

Clean Up

To complete the example, close all models.

close system('sldvexCCallerBlockExample', 0);

7-120

Debug Enhanced Modified Condition Decision Coverage Using Model Slicer

Debug Enhanced Modified Condition Decision Coverage Using
Model Slicer

This example shows how to find the Simulink® Design Verifier™ generated objectives related to a
specific model object using Model Slicer. Once the ohjectives are identified, Model Slicer highlights
the slice at the step when the objective is observable.

This example uses the following products to demonstrate debugging enhanced Modified Condition
Decision Coverage (MCDC):

* Simulink Design Verifier
* Model Slicer

Enhanced MCDC analyzes the detectability of each objective in the model and generates non-masking
test cases for each objective. It coordinates the effect of downstream blocks to avoid masking effects.
It also calculates detection sites for each detectable objective where the effect of the objective can be
observed. This data is available in the sldvdemo cruise control sldvdata.mat file generated
by the analysis. These detection sites can be added to the equivalence criteria of back-to-back testing.

This example uses the following slicer configuration:

+ Starting point is set as the model object to be observed.

* Exclusion point is set as the detection point relevant to the objective generated by Simulink
Design Verifier.

* Signal propagation is set to downstream (forward slice).
Step 1: Prepare the Model
1. Open the model.

model = 'sldvdemo cruise control';
open_system(model);

2. Load the data file generated by Simulink Design Verifier (sldvData) for test generation using
Enhanced MCDC.

load('sldvdemo cruise control sldvdata.mat');
3. Choose the model object for which the objective must be highlighted and find its SID.

modelObjIdentifier = 'sldvdemo cruise control/Controller/Switch3';
modelobjSID = Simulink.ID.getSID(modelObjIdentifier);

Step 2: Setting Up Model Slicer

1. Enable FastRestart for the model.

set param(model, 'FastRestart',6'on');

Enabling FastRestart will simulate the model and collect the simulation data at various time stamps.
This will allow us to use Step Back and Step Forward options.

2. Create and activate Model Slicer object.

7-121

https://www.mathworks.com/help/slcheck/functional-dependency-isolation.html

7 Generating Test Cases

7-122

slicerObject = slslicer(model);
activate(slicerObject);

3. Set the signal propogation to downstream.
slicerObject.Configuration.SignalPropagation = 'downstream';

Step 3: Find Objectives Related to the Model Object

1. Access sldvData with an object of SldvDataExplorer class.

sldvObj = SldvDataExplorer(sldvData);

Note: The class SldvDataExplorer is a helper class. You can edit it as per your requirements.
2. Find all objectives related to the model object and the details of the objectives.

[objectives, tableOfObjectives] = sldvObj.getObjectivesForModelObj(modelobjSID);
disp(tableOfObjectives);

ObjectiveNum Type Description
1 "Decision” "logical trigger input false (output is from 3rd input port)"
2 "Decision" "logical trigger input true (output is from 1lst input port)"

The follwing details of the objectives are saved in tableOfObjectives table:

* ObjectiveNum - Objective number.

* Type - MCDC/Decision/Condition.

» Description - Description of the objective as generated by Simulink Design Verifier.

» Detectability - The detectability status of an objective.

» Status - The status of an objective.

+ TestCaseld - Integer that represents the index of a test case or counterexample that addresses an
objective.

Step 4: Highlighting the Objectives

For this example, we will highlight the first objective from the table.

1. Obtain the simulation input object with the input values set according to the test case that
corresponds to the objective.

[simIn, atStep, ~] = sldvObj.getSimInObjForObjective(objectives(1l));

2. Allow rollback in the model so it is possible to step backwards in the model and set the number of
simulation rollback steps to 1.

simIn.setModelParameter('EnableRollBack', 'on');
simIn.setModelParameter('NumberOfSteps', 1);

simIn
simIn

3. Apply Simulink input object to model.

slicerObject.applySimInToModel(simIn);

4. Find all the detection sites for the selected objective.

Debug Enhanced Modified Condition Decision Coverage Using Model Slicer

objectDetectionSites = sldvObj.getObjectDetectionSites(objectives(1));

5. Add all detection sites as exclusion points.
for n = 1l:length(objectDetectionSites)
detectionSite = objectDetectionSites(n).modelObj;
slicerObject.addExclusionPoint(detectionSite);
end
6. Add the model object as an starting point.
slicerObject.addStartingPoint(modelobjSID);
7. Step to the point in the testcase where the objective is observable.
for q = l:atStep
slicerObject.stepForward();
end
Now you can observe that the slice is highlighted.
Cleanup
Perform the following actions to cleanup the model:
1. Clear the slicer object.
2. Clear the Simulink input object.
clear slicerObject simln
3. Reset the FastRestart parameter of the model.
set param(model, 'FastRestart', 'off');

See Also

* “Use Model Coverage Objectives for Enhanced MCDC Coverage” on page 7-42

7-123

7 Generating Test Cases

Test Generation for Custom Code in a Stateflow Chart

This example shows how to use test generation on a model with custom code in a Stateflow® chart.
Open the Model Containing Custom Code in a Stateflow Chart
open_system('sldvexSFCustomCodeExample");

Simulink Design Verifier
Test Case Generation with C/C++ Custom Code

inpast !5IGNALEIU5 o I:l
@ : it " "
inr,azi nputsignal e
14 2
SIGNALBUSCreafiF™ALEYS
COUMTEREUS
catbus - - » I:l
intzz COUNTERBUS ‘\' <UppEr_samration_limit
40 >
upper_saturation_limit {_Q
[T ¥2
i]
e S <lower_saturation_Emit=
9 intx2 COUMTERBUSCreator
ower_saturation_limit "

LIMITBUSCreator

Copyright 2018 The MathWorks, Inc.

Generate Tests to Ensure Coverage of the Model

Use the sldvrun function to run the Simulink® Design Verifier™ analysis.
opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.ModelCoverageObjectives = 'ConditionDecision';
opts.SaveHarnessModel = 'off"';

opts.SaveReport = 'off';

[status, fileNames] = sldvrun('sldvexSFCustomCodeExample', opts);
27-Feb-2023 10:49:57

Checking compatibility for test generation: model 'sldvexSFCustomCodeExample'
Compiling model...done

Building model representation...done

27-Feb-2023 10:50:13

'sldvexSFCustomCodeExample' is compatible for test generation with Simulink Design Verifier.

Generating tests using model representation from 27-Feb-2023 10:50:13...

7-124

Test Generation for Custom Code in a Stateflow Chart

27-Feb-2023 10:50:29
Completed normally.
Generating output files:

27-Feb-2023 10:50:30
Results generation completed.

Data file:
/home/lucyzeng/Documents/MATLAB/ExampleManager/lucyzeng.BR2023ad.j2194193.1/sldv-ex18712703/

Verify the Coverage
Use the sldvruntest function to verify that the test suite achieves complete model coverage.

[~, finalCov] = sldvruntest('sldvexSFCustomCodeExample', fileNames.DataFile, [], true);
cvhtml('Final Coverage', finalCov);

Clean Up

To complete the example, close all models.

close system('sldvexSFCustomCodeExample', 0);

7-125

7 Generating Test Cases

Generate Test Cases for Model Blocks

This example shows how to generate a test case for Model block that models a power window
controller in Simulink® Design Verifier™.

Step 1: Open the Model

The top-level model represents a power window verification system. The model contains a model
reference that represents a power window controller model and that specifies the controller behavior
and the modeled requirements.

To open the model of the top-level verification system, enter:

open_system('sldvdemo powerwindow vs');

7-126

Generate Test Cases for Model Blocks

Power Window Controller Temporal Property Specification

(Dhnnlaan y Dsldvdem_pnwenvindnwﬂnmmllar
= boolean "
YUY hoolean Ui
P
2 ™ downD | + 1
D — dm »(1)
downD boolean UpCmd
L3 3 ™ upF —
boolean [|
(%bnolaan -
4 #| down P
) n boolaan .
oW ‘
boolean down
5 M obstacle down -+ e 2
D boaolean down LD
obsial::lebmlaan DiownCmd
L& J ™ endstop
boolean
endstop
DO _dowm
DO _up
P EndSiop
DO At DownCmd
boolean
Verification Subsystem
. ohstacle
hnnlaar EndSiop
oo IEIEI.-- Act_DownCmi
boolean
Verification Subsystema2
I O_down
™D _up
. ohstacle
bnnlear EndSiop
bmlaar Act_DownCmd
DoeaR Act UpCmd
boolean
Verification Subsystem3
p— I chstacle
oo Ea.- EndSiop
boolean

Global Assumptions

Copyright 1980-2010 The MathWarks, Inc.

The model reference points to the model sldvdemo powerwindowController, which responds to
the driver and passenger commands by giving the commands for moving the window up or down. The
model also responds if the window encounters an obstacle or if it reaches the end of the window

frame in either direction.

7-127

7 Generating Test Cases

7-128

l:El:lccllean

endstop
baalean 4 N
& I endstop
obstacle hoolagg
movellp

up
I cbstach
baalean
G)—>
upD hoolean — |boclean) t
b ¥ P diriver

baalean boolean
moveDown P27

donwnD | passanger down

p. A

cantral

: baalean

upP

boolean boolean
4 ,

u [¥

n baalean

downP

Step 2: Specify Analysis Options

Specify the analysis options for test case generation:

1. On the Design Verifier tab, change the mode to Test Generation.
2. Click Test Generation Settings.

3. From Test Generation pane in the Configuration Parameters dialog box, set Model coverage
objectives to MCDC.

4. Click OK.
Step 3: Perform Analysis and Review Results
Perform test case generation on the Model block:

1. Right-click the Model block and select Design Verifier > Generate Tests for Referenced
Model. Alternatively, in the Design Verifier pane, in the Analyze section, click the unpin button,
then select the Model block. Then click Generate Tests.

2. Simulink Design Verifier generates test cases for the Model block. The Results window shows that
the test generation completed normally.

Generate Test Cases for Model Blocks

Simulink Design Verifier Results Summary: Modell_replacement x
)
Progress -
Objectives processed 178/178
Satisfied 170
Unsatisfiable a
Elapsed time 0:38

Test generation completed normally.
170/178 objectives satisfied.
8/178 objectives unsatisfiable

Results:

* Open filter viewer

* Highlight analysis results on model

* View tests in Simulation Data Inspector

* Detailed analysis report: (HTML) (FDF)

* Create harness model

» Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: Modeld sldvdatal.mat
in folder: i ; il SMATLAB sldv_output
\Modeld

3. To access the deatiled analysis report, click HTML in the Results window. The analysis report
shows that 170 objectives are satisfied and eight objectives are unsatifiable out of the 178 objectives
processed.

Step 4: Clean Up

To complete the example, close the opened model.
close system('sldvdemo powerwindow vs',0);
Related Topics

* “What Is Test Case Generation?” on page 7-3

7-129

7 Generating Test Cases

Use Observer Reference Block for Test Case Generation

7-130

This example shows how to generate test cases for two custom Test Objective blocks using Observer
Reference block and use model representation to reanalyze the design model. For more information,
see “Isolate Verification Logic with Observers” on page 12-29. To reanalyze the model, you update
the verification logic and set the Rebuild model representation option to If change is
detected. For more information, see “Model Representation for Analysis” on page 2-28.

Step 1: Open the Model and Replace Verification Subsystem

In the Test Objective block, the block "True" forces the output signal to be 2. The block "Edge" inside
"Masked Objective" specifies that the output signal transitions from 2 to 1. To open the model, enter:

open_system('sldvdemo debounce testobjblks');

R Simulink Design Verifier
' Test Objective Block
N 2
z v 4\ True
i — (1D
1 n debounced
debounce i
M in
Masked Objective

Copyright 2006-2023 The MathWaorks, Inc.
To replace the Verification Subsystem Masked Objective in the model by the Observer Reference
block, follow these steps:

(a) Right-click on the Masked Objective in the sldvdemo debounce testobjblks model. In the
context menu, click Observers > Move selected block to Observer > New Observer.

(b) Click Yes on move 'Verify Output' to Observer dialog box that appears after step (a).

(c) An Observer Reference block is added to your system model, and an Observer model
sldvdemo debounce testobjblks Observerl is created and opened.

Use Observer Reference Block for Test Case Generation

| sldvdemo_debounce testobjblks k

t'lIﬁldvdemc-_ debounce_testobjblks_Observer1 P

Simulink Design Verifier
Test Objective Block

2
True
® =
debounced . M in g}
x &
debounce

Masked Objective

Mamiced Obpectnee
Copyrghi 2006-2010 Tha Maihiorks, inc

(d) Save the file sldvdemo debounce validprop Observerl in a writable folder on the MATLAB
path.

(e) Double-click on the Observer port to open the Manage Observer configuration window. The signal
Switch 1 is automatically mapped to the Observer Port block in the
sldvdemo debounce testobjblks Observerl.

Chbservable ?;Filter Observable Area = Observer: F|Iter3b5 erver
¥ |Pa|sldvdemo_debounce_testobjblks ¥ [#a|sldvdemo_debounce_testobjblks_Observert
> [hraw » [Py|Masked Objective
» [Constant + Observer Port {Switch:1)

» :F Constantd
[Ba|More Info1

k[Switch

> By True

» [Jdebounce
I debounced

(f) Select the input signal to the Masked Objective subsystem in the

sldvdemo debounce testobjblks and click on Test Point in the Signal pane to make sure that
Simulink Design Verifier successfully build the model representation for analysis.

Step 2: Perform Test Generation Analysis
To perform the test generation analysis, follow these steps:

On the Design Verifier tab, click Generate Test.

After the analysis completes, the Results Summary window displays that both objectives are satisfied
with the test case.

7-131

7 Generating Test Cases

To view the detailed analysis report, in the Results Summary window, click HTML. In the report, the
Test Objectives Status chapter lists the status of the objectives for Design Model and Observers
Model(s) in separate subsections.

3.1.1. Design Model
312 Observer Model(s)

Simulink Design Verifier generated test cases that exercise these test objectives.
3.1.1. Design Model

This section contains information about 'Objectives Satisfied' in the design model

Type Model Item Description Analysis Time (sec)|Test Case

2

Test objective True Objectve: 2 12 1

3.1.2. Observer Model(s)

This section contains information about 'Objectives Satisfied' in the observer model(s).

4

Type Meodel Item Description Analysis Time (sec) Test Case

1

Test objective Masked Objective/Edge |Objective: 1 12 2

7-132

Step 3: Modify Observer model and reanalyze without rebuilding design model
representation

To generate the test case for the functional requirement, the debounced signal transitions from 1 to
2 without rebuilding the model representation for design model. To enable the reuse of design model
represe