
Simulink® Design Verifier™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Verifier™ User's Guide
© COPYRIGHT 2007–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
Prover, Prover Technology, Prover Plug-In and the Prover logo are trademarks or registered trademarks of
Prover Technology AB in Sweden, the United States and in other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
May 2007 Online only New for Version 1.0 (Release 2007a+)
September 2007 Online only Revised for Version 1.1 (Release 2007b)
March 2008 Online only Revised for Version 1.2 (Release 2008a)
October 2008 Online only Revised for Version 1.3 (Release 2008b)
March 2009 Online only Revised for Version 1.4 (Release 2009a)
September 2009 Online only Revised for Version 1.5 (Release 2009b)
March 2010 Online only Revised for Version 1.6 (Release 2010a)
September 2010 Online only Revised for Version 1.7 (Release 2010b)
April 2011 Online only Revised for Version 2.0 (Release 2011a)
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)
March 2013 Online only Revised for Version 2.4 (Release 2013a)
September 2013 Online only Revised for Version 2.5 (Release 2013b)
March 2014 Online only Revised for Version 2.6 (Release 2014a)
October 2014 Online only Revised for Version 2.7 (Release 2014b)
March 2015 Online only Revised for Version 2.8 (Release 2015a)
September 2015 Online only Revised for Version 3.0 (Release 2015b)
October 2015 Online only Rereleased for Version 2.8.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 3.1 (Release 2016a)
September 2016 Online only Revised for Version 3.2 (Release 2016b)
March 2017 Online only Revised for Version 3.3 (Release 2017a)
September 2017 Online only Revised for Version 3.4 (Release 2017b)
March 2018 Online only Revised for Version 3.5 (Release 2018a)
September 2018 Online only Revised for Version 4.0 (Release 2018b)
March 2019 Online only Revised for Version 4.1 (Release 2019a)
September 2019 Online only Revised for Version 4.2 (Release 2019b)
March 2020 Online only Revised for Version 4.3 (Release 2020a)
September 2020 Online only Revised for Version 4.4 (Release 2020b)
March 2021 Online only Revised for Version 4.5 (Release 2021a)
September 2021 Online only Revised for Version 4.6 (Release 2021b)
March 2022 Online only Revised for Version 4.7 (Release 2022a)
September 2022 Online only Revised for Version 4.8 (Release 2022b)
March 2023 Online only Revised for Version 4.9 (Release 2023a)

Acknowledgments

Getting Started
1

Simulink Design Verifier Product Description . 1-2

Simulink Design Verifier Block Library . 1-3

Analyze a Model . 1-4
About This Example . 1-4
Open the Model . 1-4
Generate Test Cases . 1-5
Combine Test Cases . 1-15

Analyze a Stateflow Atomic Subchart . 1-17
Analyze an Atomic Subchart by Using Simulink Design Verifier 1-17

Overview of the Simulink Design Verifier Workflow 1-19
Check Model Compatibility . 1-19
Apply Block Replacement Rules . 1-19
Set Simulink Design Verifier Options . 1-20
Perform Analysis on Model . 1-20
Generate Analysis Results . 1-20
Interpret Analysis Results . 1-20

How the Simulink Design Verifier Software Works
2

Analyze a Simple Model . 2-2

Model Blocks . 2-4

Block Reduction . 2-5

Large Models . 2-6

Handle Incompatibilities with Automatic Stubbing 2-7
What Is Automatic Stubbing? . 2-7

v

Contents

How Automatic Stubbing Works . 2-7
Analyze a Model Using Automatic Stubbing . 2-9

Analyze Export-Function Models . 2-12
Limitations . 2-12

Analyze Export-Function Model with Function-Call Subsystems 2-13

Analyze Export-Function Model with Global Simulink Function 2-16

Nonfinite Data . 2-19

Role of Approximations During Model Analysis . 2-20
Types of Approximations . 2-20
Floating-Point to Rational Number Conversion . 2-20
Linearization of Two-Dimensional Lookup Tables for Floating-Point Data

Types . 2-21
Approximation of One- and Two-Dimensional Lookup Tables for Integer and

Fixed-Point Data Types . 2-21
While Loops . 2-22

How Simulink Design Verifier Reports Approximations Through
Validation Results . 2-23

Impact of Approximations on Objectives Status . 2-23
Identify the Effect of Approximations Through Validation Results 2-24

Logic Operations Short-Circuiting . 2-26

Model Representation for Analysis . 2-28
Reuse Model Representation for Analysis . 2-28
Limitations . 2-30

Share Simulink Cache File for Faster Analysis . 2-31
Store the Simulink Cache File . 2-31
Reuse the Simulink Cache File . 2-31

Analyze AUTOSAR Component Models . 2-33
Limitations . 2-33

Extend Existing Test Cases by Reusing Model Representation 2-35

Configure Model Representation Options . 2-39

Run Additional Analysis to Reduce Instances of Rational Approximation
. 2-42

Detect Design Errors in AUTOSAR Software Component Model 2-47

vi Contents

Checking Compatibility with the Simulink Design Verifier
Software

3
Check Model Compatibility . 3-2

Run Compatibility Check . 3-2
Compatibility Check Results . 3-3

Supported and Unsupported Simulink Blocks in Simulink Design Verifier
. 3-7

Support Limitations for Simulink Software Features 3-16

Support Limitations for Model Blocks . 3-19

Support Limitations for Stateflow Software Features 3-21
ml Namespace Operator, ml Function, ml Expressions 3-21
C or C++ Operators . 3-21
C Math Functions . 3-21
Atomic Subcharts That Call Exported Graphical Functions Outside a

Subchart . 3-22
Atomic Subchart Input and Output Mapping . 3-22
Recursion and Cyclic Behavior . 3-22
Custom C/C++ Code . 3-23
Textual Functions with Literal String Arguments 3-24

Support Limitations for MATLAB for Code Generation 3-25
Unsupported MATLAB for Code Generation Features 3-25
Support Limitations for MATLAB for Code Generation Library Functions

. 3-25

Support Limitations and Considerations for S-Functions and C/C++ Code
. 3-28

Enabling S-Functions in Simulink Design Verifier 3-28
Support Limitations for S-Functions and C/C++ Code 3-28
Handle Volatile Variables as Normal Variables . 3-29
Considerations for Enabling S-Functions and C/C++ Code in Simulink

Design Verifier . 3-29
Source Code Protection . 3-29

Working with Block Replacements
4

What Is Block Replacement? . 4-2
Block Replacement Effects on Test Generation . 4-2

Built-In Block Replacements . 4-4

Template for Block Replacement Rules . 4-6

Block Replacements for Unsupported Blocks . 4-7

vii

Specifying Parameter Configurations
5

Parameter Configuration for Analysis . 5-2
What is Parameter Configuration for Analysis? . 5-2
Specify Parameter Constraints for Models Using Referenced Configuration

Set . 5-3
Data Types in Parameter Configurations . 5-4
Parameters in Variant Blocks . 5-5

Use Parameter Table . 5-7
Find Parameters . 5-8
Edit Parameter Constraints . 5-10
Highlight Constrained Parameters in Model . 5-11

Specify Parameter Configuration for Structure or Bus Parameters 5-12
About This Example Model . 5-12
Preload Workspace Variable for Structure Parameter 5-12
Define Parameter Constraint Values . 5-13
Define Parameter Constraint Values using Parameter Table 5-13
Define Constraint Values using Parameter Configuration File 5-14
Analyze Example Model . 5-15

Specify Parameter Configuration for Full Coverage 5-17
About This Example . 5-17
Construct Example Model . 5-17
Parameterize Constant Block . 5-18
Preload Workspace Variable . 5-18
Autogenerate Parameter Constraint . 5-19
Analyze Example Model . 5-20
Simulate Test Cases . 5-22

Store Parameter Constraints in MATLAB Code Files 5-26
Export Parameter Constraints to File . 5-26
Import Parameter Constraints from File . 5-27

Use Parameter Configuration File . 5-29
Template Parameter Configuration File . 5-29
Syntax in Parameter Configuration Files . 5-29

Automatically Infer Parameter Specification . 5-32
Configuring Parameters by Using Automatically infer parameter
specification . 5-33

Determine from Generated Code . 5-36
Configuring Parameters by Using Determine from generated code 5-37

Using Command Line Functions to Support Changing Parameters 5-39

Generate Parameters Values . 5-45

Extend Existing Test Cases After Applying Parameter Configurations . . 5-46

viii Contents

Detecting Design Errors
6

What Is Design Error Detection? . 6-2

Derived Ranges in Design Error Detection . 6-3

Analyze Models for Design Errors . 6-4
Workflow for Detecting Design Errors . 6-4
Understand the Analysis Results . 6-4
Review the Latest Analysis Results in the Results Summary Window 6-5
Check For Design Errors using the Model Advisor 6-6

Dead Logic Detection . 6-7
Run a Partial Check for Dead Logic . 6-7
Run an Exhaustive Analysis for Dead Logic . 6-7
Run a Dead Logic Analysis and Review Results . 6-8

Detect Dead Logic Caused by an Incorrect Value 6-12
Analyze the Fuel System Model . 6-12
Review the Results and Trace to the Model . 6-13
Investigate the Cause of the Dead Logic . 6-13
Update the Input Constraint and Reanalyze the Model 6-14

Common Causes for Dead Logic . 6-15
Short-Circuiting of a Logical Operator Block During Analysis 6-15
Conditional Execution of a Block . 6-15
Parameter Values Treated as Constants . 6-16
Upstream Blocks . 6-17
Library-Linked Blocks . 6-17
Restrictions on Signal Ranges . 6-17

Detect Integer Overflow and Division-by-Zero Errors 6-19
About This Example . 6-19
Analyze the Model . 6-19
Review the Analysis Results . 6-19

Check for Specified Minimum and Maximum Value Violations 6-23
Limitations of Checking Specified Minimum and Maximum Value Violations

. 6-23
About This Example . 6-23
Create the Example Model . 6-24
Analyze the Model . 6-25
Review the Analysis Results . 6-25

Detect Out of Bound Array Access Errors . 6-28
Design Error Detection for Out of Bound Array Access 6-28
Detect Out of Bound Array Access Example Model 6-28
Limitations of Support for Out of Bound Array Access Design Error

Detection . 6-31

Detect Non-Finite, NaN, and Subnormal Floating-Point Values 6-33
Assumptions and Limitations . 6-33
Run Design Error Detection Analysis to Detect Floating-Point Errors . . . 6-33

ix

Detect Data Store Access Violations . 6-37
Detect Data Store Access Violations in a Model 6-37

Detect Violations of High-Integrity Systems Modeling Guidelines 6-41
Usage of rem and reciprocal operations - hisl_0002 6-41
Usage of square root operations - hisl_0003 . 6-41
Usage of log and log10 operations - hisl_0004 . 6-41
Usage of Reciprocal Square Root blocks - hisl_0028 6-41
Detect Violations of High-Integrity Systems Modeling Guidelines 6-41

Filter Objectives by Using Simulink Design Verifier Filter Explorer 6-46
Use the Simulink Design Verifier Filter Explorer to Edit Filter Files 6-46
Limitations . 6-49

Detect Integer Overflow Errors . 6-51

Detect Out of Bound Array Access Example Model 6-54

Detect Design Errors in C/C++ Custom Code . 6-57

Exclude and Justify Objectives for Design Error Detection 6-59

Detect Integer Overflow in a Model with Complex Inputs 6-65

Debug Integer Overflow Design Error Detection Using Model Slicer . . . 6-68

Analyzing the Results for a Dead Logic Analysis 6-73

Generating Test Cases
7

What Is Test Case Generation? . 7-3
Test Case Blocks . 7-3
Test Case Functions . 7-3

Workflow for Test Case Generation . 7-5

Generate Test Cases for Model Decision Coverage 7-6
Construct the Example Model . 7-6
Check Compatibility of the Example Model . 7-7
Configure Test Generation Options . 7-8
Analyze the Example Model . 7-8
Review Analysis Results . 7-8
Customize Test Generation . 7-14
Reanalyze the Example Model . 7-16
Analyze Contradictory Models . 7-16

Generate Test Cases for a Subsystem . 7-18
Generate Test Cases for Subsystems for Normal Mode 7-18
Generate Test Cases for Subsystems for Software-in-the-Loop Mode 7-19

x Contents

Generate Test Cases for a Reusable Library Subsystem 7-21
Generate Test Cases for RLS in Software-in-the-Loop Mode 7-21

Use Test Generation Advisor to Identify Analyzable Components 7-24
Test Generation Advisor . 7-24
Test Generation Advisor Requirements . 7-25
Identify Analyzable Components . 7-25
Analyze and Generate Tests for Model Components 7-25
Manually Select Components for Testing . 7-27

Generate Test Cases for Embedded Coder Generated Code 7-28
Generate Test Cases for Generated Code from the Simulink Model Toolstrip

. 7-28
Generate Test Cases for Generated Code by Using the Simulink Design
Verifier API . 7-29

Generate Test Cases for Generated Code from the Simulink Test Test
Manager . 7-29

Model Coverage Objectives for Test Generation . 7-30
Decision . 7-30
Condition . 7-30
MCDC . 7-31
Enhanced MCDC . 7-31
Relational Boundary . 7-31

Enhance Model Coverage of Older Release Models 7-32
Enhance Model Coverage by Generating Test Cases for Older Release

Model . 7-33
Enhance Model Coverage by Using Generated Code from Older Release

. 7-37

Enhanced MCDC Coverage in Simulink Design Verifier 7-42
Use Model Coverage Objectives for Enhanced MCDC Coverage 7-42
Author Custom Test Objectives for Enhanced MCDC Coverage 7-43

Analyze Model for Enhanced MCDC Analysis . 7-44

Basic Workflow for Enhanced MCDC Analysis . 7-47
Configure Detection Sites using Test-pointed Logged Signals 7-48
Configure Advanced Options for Enhanced MCDC Analysis 7-49
Inspect Enhanced MCDC Objectives using Model Slicer 7-50

Author Custom Test Objective Workflow . 7-52
Steps for Authoring Custom Test Objectives . 7-52
Analyze Custom Test Objectives in Model for Enhanced MCDC 7-53

What Is a Specification Model? . 7-60
Use Specification Models in Requirements-Based Testing 7-60
Construct a Specification Model . 7-61
Iterate Through the Steps . 7-65

Test Generation Examples . 7-66

Test Generation for Custom Code in MATLAB Function Block 7-67
Generating Tests for Custom code in MATLAB function block 7-67

xi

Use Specification Models for Requirements-Based Testing 7-69

Flip Flop Test Generation . 7-80

Model Coverage Test Generation . 7-81

Test Objective Block . 7-82

Test Condition Block . 7-83

Cruise Control Test Generation . 7-84

Fuel Rate Controller Logic . 7-85

Extend an Existing Test Suite . 7-86

Defining and Extending Existing Tests Cases . 7-91

Using Existing Coverage Data During Subsystem Analysis 7-97

Creating and Executing Test Cases . 7-100

Using Specified Input Minimum and Maximum Values as Constraints 7-107

Configuring S-Function for Test Case Generation 7-109

Code Coverage Test Generation . 7-111

Test Generation on Model with C Caller Block . 7-119

Debug Enhanced Modified Condition Decision Coverage Using Model
Slicer . 7-121

Test Generation for Custom Code in a Stateflow Chart 7-124

Generate Test Cases for Model Blocks . 7-126

Use Observer Reference Block for Test Case Generation 7-130

Inspect Test Generation Objectives by Using Model Slicer 7-135

Generate Tests for Model Block Component by Using Default Simulation
. 7-138

Add Test Cases Using Excel File . 7-142

Achieve Missing Coverage in Custom Code . 7-146

Achieve Missing Coverage in Generated Code of RLS 7-149

xii Contents

Extending Existing Test Cases
8

When to Extend Existing Test Cases . 8-2
Common Workflow for Extending Existing Test Cases 8-2
Considerations for Starting Test Cases . 8-3

Extend Test Cases for Model with Temporal Logic 8-4
Create Starting Test Case . 8-4
Log Starting Test Case . 8-6
Extend Existing Test Cases . 8-7
Verify Analysis Results . 8-8

Extend Test Cases for Closed-Loop System . 8-10
Log Starting Test Case . 8-10
Extend Existing Test Cases . 8-12

Extend Test Cases for Modified Model . 8-15
Create Starting Test Cases . 8-15
Extend Existing Test Cases . 8-15

Create and Run Back-to-Back Tests Using Enhanced MCDC 8-18

Achieving Test Cases for Missing Model Coverage
9

Generate Test Cases for Missing Coverage Data . 9-2

Achieve Missing Coverage in Referenced Model . 9-3
Programmatically Achieve Missing Coverage in Referenced Model 9-3
Increase Coverage for Referenced Models in a Test Harness 9-5

Achieve Missing Coverage in Subsystems and Model Blocks 9-10

Achieve Missing Coverage in Closed-Loop Simulation Model 9-11
Record Coverage Data for the Model . 9-11
Find Test Cases for Missing Coverage . 9-12

Analyze Coverage for Lookup Table Boundary Values 9-14
Generate Tests for Lookup Table Boundary Values 9-16

Modified Condition and Decision Coverage in Simulink Design Verifier
. 9-21

MCDC Definitions for Simulink Coverage and Simulink Design Verifier . . 9-21

Achieve Coverage in Models with Variable-Size Inputs 9-24

xiii

Verifying Model Components
10

What Is Component Verification? . 10-2
Component Verification Approaches . 10-2
Simulink Design Verifier Tools for Component Verification 10-2

Functions for Component Verification . 10-3

Verify a Component for Code Generation . 10-4
About the Example Model . 10-4
Prepare the Component for Verification . 10-6
Record Coverage for the Component . 10-7
Use Simulink Design Verifier Software to Record Additional Coverage . . 10-7
Combine the Harness Models . 10-8
Execute the Component in Simulation Mode . 10-9
Execute the Component in Software-in-the-Loop (SIL) Mode 10-10

Considering Specified Minimum and Maximum Values for
Inputs During Analysis

11
Minimum and Maximum Input Constraints . 11-2

Simulink Design Verifier Support for Specified Input Minimum and
Maximum Values . 11-2

Limitations of Simulink Design Verifier Support for Specified Minimum and
Maximum Values . 11-2

Specify Input Ranges on Simulink and Stateflow Elements 11-4
Specify Input Ranges for Inport Blocks . 11-4
Specify Input Ranges for Simulink.Signal Objects 11-5
Specify Input Ranges for Stateflow Data Objects 11-5
Specify Input Ranges for Subsystems . 11-6
Specify Input Ranges for Global Data Stores . 11-7
Specify Input Ranges for Bus Elements . 11-8

Specification of Input Ranges in sldvData Fields 11-10

Proving Properties of a Model
12

What Is Property Proving? . 12-2
Proof Blocks . 12-2
Proof Functions . 12-2

Workflow for Proving Model Properties . 12-4

xiv Contents

Prove Properties in a Model . 12-5
About This Example . 12-5
Construct Example Model . 12-5
Check Compatibility of Example Model . 12-6
Instrument Example Model . 12-7
Configure Property-Proving Options . 12-8
Analyze Example Model . 12-8
Review Analysis Results . 12-8
Customize Example Proof . 12-15
Reanalyze Example Model . 12-16
Review Results of Second Analysis . 12-16
Analyze Contradictory Models . 12-18
Prove Properties in a Large Model . 12-19

Prove System-Level Properties Using Verification Model 12-20
When to Use a Verification Model for Property Proving 12-20
About This Example . 12-20
Understand the Verification Model . 12-20
Prove the Properties of the Design Model . 12-21
Fix the Verification Model . 12-22

Prove Properties in a Subsystem . 12-23

Model Requirements . 12-24
Basic Properties . 12-24
Temporal Properties . 12-26

Isolate Verification Logic with Observers . 12-29
Replace a Verification Subsystem with an Observer Reference Block . . 12-29
Report on Observer Reference Blocks . 12-31
Limitations . 12-31

Property Proving with an Invalid Property . 12-32

Property Proving with Multiple Properties . 12-33

Property Proving with an Assumption Block . 12-34

Property Proving Workflow for Cruise Control . 12-35

Property Proving Workflow for Fixed-Point Cruise Control with Block
Replacements . 12-39

Property Proving Using MATLAB Function Block 12-40

Property Proving Using MATLAB Truth Table Block 12-41

Property Proving Workflow for Thrust Reverser 12-42

Debounce Temporal Properties . 12-43

Power Window Controller Temporal Properties 12-46

Debug Property Proving Violations by Using Model Slicer 12-55

xv

Design and Verify Properties in a Model . 12-60

Validate Requirements by Analyzing Model Properties 12-63

Use Observer Reference Blocks for Property Proving Analysis 12-70

Prove Properties with Requirements Table Blocks 12-73

Reviewing the Results
13

Highlight Results on the Model . 13-2
Results Review with Model Highlighting . 13-2
Simulink Design Verifier Results Inspector . 13-2
Highlight Results on Model Automatically . 13-2
Green Highlighting on Model . 13-4
Red Highlighting on Model . 13-4
Orange Highlighting on Model . 13-4
Gray Highlighting on Model . 13-6

Manage Simulink Design Verifier Data Files . 13-7
Generate sldvData Structure . 13-7
Model Information Fields in sldvData . 13-7
Simulate Models Using Data Files . 13-11
Load Results from Data Files . 13-11

Manage Simulink Design Verifier Harness Models 13-13
Harness Model Generation . 13-13
Create a Harness Model . 13-13
Contents of a Harness Model . 13-13
Configuration of the Harness Model . 13-19
Simulate the Harness Model . 13-19

Simulate Harness Model with Signal Editor Inputs Block 13-22

Export Test Cases to Simulink Test . 13-27
Generate and Export Test Cases to Simulink Test 13-27

Export Tests from Models That Contain Requirements Table Blocks with
Simulink Design Verifier . 13-30

Construct the Model and Generate Tests . 13-30
Export the Tests to the Test Manager . 13-31
Run the Tests . 13-33
Inspect Test Failures . 13-33

Review Results . 13-35
Simulink Design Verifier Report Generation . 13-35
Create Analysis Reports . 13-35
Front Matter . 13-35
Summary Chapter . 13-36
Analysis Information Chapter . 13-36
Derived Ranges Chapter . 13-40

xvi Contents

Objectives Status Chapters . 13-42
Model Items Chapter . 13-50
Design Errors Chapter . 13-51
Test Cases Chapter . 13-52
Properties Chapter . 13-54

View Log Files . 13-56

Review Analysis Results . 13-57
View Active Results . 13-57
Load Previous Results . 13-57
Explore Results . 13-57

Analyzing Large Models and Improving Performance
14

Sources of Model Complexity . 14-2

Analyze a Large Model . 14-3
Types of Large Model Problems . 14-3
Summarize Model Hierarchy and Compatibility 14-3
Use the Default Parameter Values . 14-4
Modify the Analysis Parameters . 14-5
Stop the Analysis Before Completion . 14-5

Increase Allocated Memory for Analysis Report Generation 14-7

Manage Model Data to Simplify the Analysis . 14-8
Simplify Data Types . 14-8
Constrain Data . 14-8

Partition Model Inputs for Incremental Test Generation 14-11

Bottom-Up Approach to Model Analysis . 14-13
Reuse of Analysis Results from Subsystems at the System level 14-13
Limitations . 14-14

Extract Subsystems for Analysis . 14-15
Overview of Subsystem Extraction . 14-15
sldvextract Function . 14-15
Structure of the Extracted Model . 14-15
Analyze Subsystems That Read from Global Data Storage 14-16
Analyze Function-Call Subsystems . 14-17
Analyze Global Simulink Function . 14-19

Logical Operations . 14-21

Analyzing Models with Large Verification State Space 14-22

Counters and Timers . 14-23

xvii

Prove Properties in Large Models . 14-24
Find Property Violations While Designing Your Model 14-24
Combine Proving Properties and Finding Proof Violations 14-24

Simulink Design Verifier Configuration Parameters
15

Simulink Design Verifier Options . 15-2
Options in Configuration Parameters Dialog Box 15-2
Design Verification Options Objects . 15-2
Command-Line Parameters for Design Verification Options 15-2

Design Verifier Pane . 15-9
Design Verifier Pane Overview . 15-10
Mode . 15-10
Maximum analysis time . 15-11
Output folder . 15-11
Make output file names unique by adding a suffix 15-12
Check Model Compatibility . 15-13
Generate Tests/Detect Errors/Prove Properties 15-13
Rebuild model representation . 15-13
Automatic stubbing of unsupported blocks and functions 15-13
Support S-Functions in the analysis . 15-14
Use specified input minimum and maximum values 15-15
Run additional analysis to reduce instances of rational approximation . 15-15
Validate test cases or counterexamples with parallel computing 15-16
Additional options for code analysis . 15-17
Ignore objectives based on filter . 15-17
Filter file(s) . 15-18
Browse... 15-18

Design Verifier Pane: Block Replacements . 15-19
Block Replacements Pane Overview . 15-19
Apply block replacements . 15-19
List of block replacement rules . 15-20
File path of the output model . 15-20

Design Verifier Pane: Parameters and Variants 15-22
Parameters Pane Overview . 15-23
Parameter configuration . 15-23
Enable . 15-23
Disable . 15-23
Clear . 15-23
Highlight in Model . 15-24
Use . 15-24
Name . 15-24
Constraint . 15-25
Value . 15-25
Min . 15-26
Max . 15-26
Model Element . 15-26
Find parameters . 15-27

xviii Contents

Import . 15-27
Export . 15-27
Parameter configuration file . 15-27
Browse... 15-28
Edit... 15-28
Analyze all Startup Variants . 15-28
Launch Variant Manager... 15-29

Design Verifier Pane: Test Generation . 15-30
Test Generation Pane Overview . 15-31
Test generation target . 15-31
Model coverage objectives . 15-31
Test conditions . 15-32
Test objectives . 15-33
Maximum test case steps . 15-33
Test suite optimization . 15-34
Include relational boundary objectives . 15-35
Floating point absolute tolerance . 15-36
Floating point relative tolerance . 15-36
Use strict propagation conditions . 15-37
Extend using existing coverage data . 15-38
Coverage data . 15-38
Browse . 15-39
Extend using existing test data . 15-39
Test data . 15-39
Browse . 15-40
Separate objectives satisfied with the existing tests/coverage data in the

report . 15-40

Design Verifier Pane: Design Error Detection . 15-42
Design Error Detection Pane Overview . 15-43
Dead logic (partial) . 15-43
Run exhaustive analysis . 15-43
Coverage objectives to be analyzed . 15-44
Out of bound array access . 15-45
Data store access violations . 15-45
Division by zero . 15-46
Integer overflow . 15-46
Non-finite and NaN floating-point values . 15-47
Subnormal floating-point values . 15-47
Specified minimum and maximum value violations 15-48
Specified block input range violations . 15-48
Usage of rem and reciprocal operations - hisl_0002 15-49
Usage of Square Root operations - hisl_0003 . 15-50
Usage of log and log10 operations - hisl_0004 . 15-50
Usage of Reciprocal Square Roots blocks - hisl_0028 15-51

Design Verifier Pane: Property Proving . 15-52
Property Proving Pane Overview . 15-52
Assertion blocks . 15-52
Proof assumptions . 15-53
Strategy . 15-53
Maximum violation steps . 15-54

Design Verifier Pane: Results . 15-56
Results Pane Overview . 15-56

xix

Data file name . 15-57
Include expected output values . 15-57
Randomize data that do not affect the outcome 15-58
Generate separate harness model after analysis 15-59
Harness model file name . 15-59
Reference input model in generated harness . 15-60
Harness source . 15-61
Test File Name . 15-61
Test Harness Name . 15-62

Design Verifier Pane: Report . 15-63
Report Pane Overview . 15-63
Generate report of the results . 15-63
Generate additional report in PDF format . 15-64
Report file name . 15-64
Include screen shots of properties . 15-65
Display report . 15-66

Verification and Validation
16

Test Model Against Requirements and Report Results 16-2
Requirements – Test Traceability Overview . 16-2
Display the Requirements . 16-2
Link Requirements to Tests . 16-3
Run the Test . 16-4
Report the Results . 16-5

Analyze Models for Standards Compliance and Design Errors 16-7
Standards and Analysis Overview . 16-7
Check Model for Style Guideline Violations and Design Errors 16-7

Perform Functional Testing and Analyze Test Coverage 16-9
Incrementally Increase Test Coverage Using Test Case Generation 16-9

Analyze Code and Test Software-in-the-Loop . 16-12
Code Analysis and Testing Software-in-the-Loop Overview 16-12
Analyze Code for Defects, Metrics, and MISRA C:2012 16-12
Test Code Against Model Using Software-in-the-Loop Testing 16-17

Create Back-to-Back Tests Using Enhanced MCDC 16-20
Set Up Test Inputs and Verification Strategy . 16-20

Glossary

xx Contents

Acknowledgments
The Simulink Design Verifier software uses Prover Plug-In® product Prover® PSL from Prover
Technology to generate test cases and prove model properties.

xxi

Getting Started

• “Simulink Design Verifier Product Description” on page 1-2
• “Simulink Design Verifier Block Library” on page 1-3
• “Analyze a Model” on page 1-4
• “Analyze a Stateflow Atomic Subchart” on page 1-17
• “Overview of the Simulink Design Verifier Workflow” on page 1-19

1

Simulink Design Verifier Product Description
Identify design errors, prove requirements compliance, and generate tests

Simulink Design Verifier uses formal methods to identify hidden design errors in models. It detects
blocks in the model that result in integer overflow, dead logic, array access violations, and division by
zero. It can formally verify that the design meets functional requirements. For each design error or
requirements violation, it generates a simulation test case for debugging.

Simulink Design Verifier generates test cases for model coverage and custom objectives to extend
existing requirements-based test cases. These test cases drive your model to satisfy condition,
decision, modified condition/decision (MCDC), and custom coverage objectives. In addition to
coverage objectives, you can specify custom test objectives to automatically generate requirements-
based test cases.

Support for industry standards is available through IEC Certification Kit (for IEC 61508 and ISO
26262) and DO Qualification Kit (for DO-178).

1 Getting Started

1-2

https://www.mathworks.com/discovery/formal-verification.html
https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/products/do-178.html

Simulink Design Verifier Block Library
To open the Simulink Design Verifier block library, at the MATLAB® command prompt, type sldvlib.

The Simulink Design Verifier block library has three categories of blocks:

• Objectives and Constraints — Blocks that define custom objectives and constraints
• Temporal Operators — Blocks that define temporal properties on Boolean signals
• Verification Utilities — Miscellaneous verification utilities

The block library also has a sublibrary, Example Properties, that includes examples of how to specify
common properties in your model. You can easily adapt these examples for use in your models.

 Simulink Design Verifier Block Library

1-3

Analyze a Model
In this section...
“About This Example” on page 1-4
“Open the Model” on page 1-4
“Generate Test Cases” on page 1-5
“Combine Test Cases” on page 1-15

About This Example
The following sections describe an example model, Cruise Control Test Generation. This example
illustrates how to use Simulink Design Verifier to generate test cases that achieve complete model
coverage. Through this example, you learn how to analyze models with Simulink Design Verifier and
interpret the results.

Open the Model
To open the Cruise Control Test Generation model, at the MATLAB prompt, enter:

sldvdemo_cruise_control

1 Getting Started

1-4

matlab:sldvdemo_cruise_control

Generate Test Cases
• “Run Analysis” on page 1-5
• “Generate Analysis Results” on page 1-6
• “Highlight Analysis Results on Model” on page 1-7
• “Detailed analysis report: (HTML) (PDF)” on page 1-8
• “Create Harness Model” on page 1-12
• “Simulate Tests and Produce Model Coverage Report” on page 1-15

Run Analysis

To generate test cases for the Cruise Control Test Generation model, click on Generate Tests.

Simulink Design Verifier begins analyzing the model to generate test cases, and the Simulink Design
Verifier Results Summary window opens. The Results Summary window displays a running log
showing the progress of the analysis.

 Analyze a Model

1-5

If you need to terminate an analysis while it is running, click Stop. The software asks if you want to
produce results. If you click Yes, the software creates a data file based on the results achieved so far.
The path name of the data file appears in the Results Summary window.

The data file is a MAT-file that contains a structure named sldvData. This structure stores the data
that the software gathers and produces during the analysis.

For more information, see “Manage Simulink Design Verifier Data Files” on page 13-7.

Generate Analysis Results

When Simulink Design Verifier completes its analysis of the sldvdemo_cruise_control model, the
Results Summary window displays several options. Some of them are:

• Highlight analysis results on model
• Detailed analysis report: (HTML) (PDF)
• Create harness model
• Simulate tests and produce a model coverage report
• Save test cases/counterexamples to spreadsheet

Note When you analyze other models, depending on the results of the analysis, you may see a subset
of options.

1 Getting Started

1-6

The sections that follow describe these options in detail.

Highlight Analysis Results on Model

In the Simulink Design Verifier Results Summary window, if you click Highlight analysis results on
model, the software highlights objects in the model in three different colors, depending on the
analysis results:

• “Green: Objectives Satisfied” on page 1-8
• “Orange: Objectives Undecided” on page 1-8
• “Red: Objectives Unsatisfiable” on page 1-8

When you highlight the analysis results on a model, the Simulink Design Verifier Results Inspector
opens. When you click an object in the model that has analysis results, the Results Inspector displays
the results summary for that object.

 Analyze a Model

1-7

Green: Objectives Satisfied

Green outline indicates that the analysis generated test cases for all the objectives for that block. If
the block is a subsystem or Stateflow® atomic subchart, the green outline indicates that the analysis
generated test cases for all objectives associated with the child objects.

For example, in the sldvdemo_cruise_control model, the green outline shows that the PI
controller subsystem satisfied all test objectives. The Results Inspector lists the two satisfied test
objectives for the PI controller subsystem.

Orange: Objectives Undecided

Orange outline indicates that the analysis was not able to determine if an objective was satisfiable or
not. This situation might occur when:

• The analysis times out
• The software satisfies test objectives without generating test cases due to:

• Automatic stubbing errors
• Limitations of the analysis engine

Red: Objectives Unsatisfiable

Red outline indicates that the analysis found some objectives for which it could not generate test
cases, most likely due to unreachable design elements in your model.

In the following example, input 2 always satisfies the criterion for the Switch block, so the Switch
block never passes through the value of input 3.

Detailed analysis report: (HTML) (PDF)

In the Simulink Design Verifier Results Summary window, if you click HTMLon Detailed analysis
report: (HTML) (PDF), the software saves and then opens a detailed report of the analysis. The
path to the report is:

1 Getting Started

1-8

<current_folder>/sldv_output/...
 sldvdemo_cruise_control/sldvdemo_cruise_control_report.html

The HTML report includes the following chapters.

For a description of each report chapter, see:

• “Summary” on page 1-9
• “Analysis Information” on page 1-10
• “Test Objectives Status” on page 1-10
• “Model Items” on page 1-11
• “Test Cases” on page 1-11

Summary

In the Table of Contents, click Summary to display the Summary chapter, which includes the
following information under Analysis Information subsection:

• Name of the model
• Release and Checksum information
• Mode of the analysis (test generation, property proving, design error detection)
• Status of the analysis
• Length of the analysis in seconds

The Objective Status sub-section under Summary shows number of objectives satisfied.

 Analyze a Model

1-9

Analysis Information

In the Table of Contents, click Analysis Information to display information about the analyzed
model and the analysis options. You can click on any of these options to know more about the model
analysis.

Test Objectives Status

In the Table of Contents, click Test Objectives Status to display a table of satisfied objectives. The
following figure shows a partial list of the objectives satisfied in the Cruise Control Test Generation
model.

Objectives Status

The Objectives Satisfied table lists the following information for the model:

• # — Objective number
• Type — Objective type
• Model Item — Element in the model for which the objective was tested. Click this link to display

the model with this element highlighted.
• Description — Description of the objective
• Test Case — Test case that achieves the objective. Click this link for more information about that

test case.

In the row for objective 32, click the test case number (5) to display more information about Test
Case 5 in the report's Test Cases chapter.

1 Getting Started

1-10

Test Case 5

In this example, Test Case 5 satisfies one objective, that the integration result be greater than or
equal to the upper limit T in the Discrete-Time Integrator block. The table lists the values of the six
signals from time 0 through time 0.06.

Model Items

In the Table of Contents, click Model Items to see detailed information about each item in the
model that defines coverage objectives. This table includes the status of the objective at the end of
the analysis. Click the links in the table for detailed information about the satisfied objectives.

Model Items - Controller/Switch3

Model Items - Controller/Switch2
Test Cases

In the Table of Contents, click Test Cases to display detailed information about each generated test
case, including:

• Length of time to execute the test case
• Number of objectives satisfied
• Detailed information about the satisfied objectives

 Analyze a Model

1-11

• Input data

For an example, see the section for Test Case 5 in “Test Objectives Status” on page 1-10.

Create Harness Model

In the Simulink Design Verifier Results Summary window, if you click Create harness model, the
software creates and opens a harness model named sldvdemo_cruise_control_harness.

The harness model contains the following blocks:

• The Test Case Explanation block is a DocBlock block that documents the generated test cases.
Double-click the Test Case Explanation block to view a description of each test case for the
objectives that the test case satisfies.

1 Getting Started

1-12

• The Test Unit block is a Subsystem block that contains a copy of the original model that the
software analyzed. Double-click the Test Unit block to view its contents and confirm that it is a
copy of the Cruise Control Test Generation model.

Note You can configure the harness model to reference the model that you are analyzing using a
Model block instead of using a subsystem. In the Configuration Parameters dialog box, on the
Design Verifier > Results pane, select Generate separate harness model after analysis and
Reference input model in generated harness.

• The Inputs block is a Signal Builder block that contains the generated test case signals. Double-
click the Inputs block to open the Signal Builder dialog box and view the eight test case signals.

• The Size-Type block is a subsystem that transmits signals from the Inputs block to the Test Unit
block. This block verifies that the size and data type of the signals are consistent with the Test
Unit block.

The Signal Builder dialog box contains eight test cases.

1 To view Test Case 5, from the Active Group list, select Test Case 5.

In Test Case 7 at 0.01 seconds:

• The enable and inc signals remain 1.
• The brake and dec signals remain 0.
• The set signal transitions from 1 to 0.
• The speed signal transitions from 100 to 0.

 Analyze a Model

1-13

In the Signal Builder block, the signal group satisfies the test objectives described in the Test
Case Explanation block.

2 To confirm that Simulink Design Verifier achieved complete model coverage, simulate the
harness model using all the test cases. In the Signal Builder dialog box, click the Run all and

produce coverage button .

The Simulink software simulates all the test cases. The Simulink Coverage™ software collects
coverage data for the harness model and displays a coverage report. The report summary shows
that the sldvdemo_cruise_control_harness model achieves 100% coverage.

1 Getting Started

1-14

Summary

Simulate Tests and Produce Model Coverage Report

In the Simulink Design Verifier Results Summary window, if you click Simulate tests and produce a
model coverage report, the software simulates the model and produces a coverage report for the
sldvdemo_cruise_control model. The software stores the report with the following name:

<current_folder>/sldv_output/sldvdemo_cruise_control/...
 sldvdemo_cruise_control_report.html

When you click Run all and produce coverage to simulate tests in the harness model, you may see
the following differences between this coverage report and the report you generated for the model
itself:

• The harness model coverage report might contain additional time steps. When you collect
coverage for the harness model, the model stop time equals the stop time for the longest test case.
As a result, you might achieve additional coverage when you simulate the shorter test cases.

• The cyclomatic complexity coverage for the Test Unit subsystem in the harness model might be
different than the coverage for the model itself due to the structure of the harness model.

Combine Test Cases
If you prefer to review results that are combined into a smaller number of test cases, set the Test
suite optimization parameter to LongTestcases. When you use the LongTestcases optimization,
the analysis generates fewer, but longer, test cases that each satisfy multiple test objectives.

Open the sldvdemo_cruise_control model and rerun the analysis with the LongTestcases
optimization:

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode
settings, click Settings.

2 In the Configuration Parameters dialog box, in the Select tree on the left side, under the Design
Verifier category, select Test Generation.

3 Set the Test suite optimization parameter to LongTestcases.
4 Click Apply and OK to close the Configuration Parameters dialog box.
5 In the sldvdemo_cruise_control model, double-click the block labeled Run.
6 In the Results Summary window, click Create harness model.

 Analyze a Model

1-15

In the harness model, the Signal Builder block and the Test Case Explanation block now contain
one longer test case instead of the eight shorter test cases created earlier in “Generate Test
Cases” on page 1-5.

7 Click Run all and produce coverage to collect coverage.

The analysis still satisfies all 34 objectives.

1 Getting Started

1-16

Analyze a Stateflow Atomic Subchart
In a Stateflow chart, an atomic subchart is a graphical object that allows you to reuse the same state
or subchart across multiple charts and models. You can use Simulink Design Verifier to analyze
atomic subcharts individually. You do not have to analyze the chart that contains the atomic subchart,
or the model that contains the chart.

If you are having problems analyzing a large model, analyzing an atomic subchart in a controlled
environment is helpful. As described in “Bottom-Up Approach to Model Analysis” on page 14-13, by
analyzing atomic subcharts or other components in the model hierarchy individually, you can analyze
a model to:

• Solve problems that slow down or prevent test generation, property proving, or design error
detection.

• Analyze model components that are unreachable in the context of the container model or chart.

Note For more information about atomic subcharts, see “Create Reusable Subcomponents by Using
Atomic Subcharts” (Stateflow).

Analyze an Atomic Subchart by Using Simulink Design Verifier
The sf_atomic_sensor_pair example model models a redundant sensor pair using atomic
subcharts. This example analyzes the Sensor1 subchart in the RedundantSensors chart.

1 Open the sf_atomic_sensor_pair example model:

sf_atomic_sensor_pair

This model demonstrates how to model a simple redundant sensor pair using atomic subcharts.
2 Double-click the RedundantSensors chart to open it.

 Analyze a Stateflow Atomic Subchart

1-17

matlab:sf_atomic_sensor_pair

This Stateflow chart has two atomic subcharts:

• Sensor1
• Sensor2

3 To analyze the Sensor1 subchart using Simulink Design Verifier, right-click the subchart and
select Design Verifier > Generate Tests for Subchart.

During the analysis, the software creates a Simulink model named Sensor1 that contains the
Sensor1 subchart. The new model contains Inport and Outport blocks that respectively
correspond to the data objects u and y in the subchart.

The software saves the new model and other files generated by the analysis in:

<current_folder>/sldv_output/Sensor1
4 When the analysis is complete, view the analysis results for the Sensor1 subchart by clicking

one of the following options:

• Highlight analysis results on model
• Generate detailed analysis report
• Create harness model
• Simulate tests and produce a model coverage report

1 Getting Started

1-18

Overview of the Simulink Design Verifier Workflow

Before you analyze a model for design error detection, test case generation, and property proving,
you must complete a few as shown in this diagram:

The following sections provide a brief overview of the Simulink Design Verifier workflow and include
with links to related documentation in Simulink Design Verifier.

Check Model Compatibility
Before Simulink Design Verifier analyzes a model, the software checks whether the model is
compatible for analysis. For more information on model compatibility, see “Check Model
Compatibility” on page 3-2. The software runs a compatibility check on your model, and then
creates a model representation. The model representation includes the model artifacts that you can
use during analysis. The compatibility check tells you if your model is fully compatible, partially
compatible, or not compatible.

Simulink supports a broad range of and software capabilities in your models but there are some
capabilities that Simulink Design Verifier does not support. For more information, see “Supported and
Unsupported Simulink Blocks in Simulink Design Verifier” on page 3-7 and “Support Limitations
for Simulink Software Features” on page 3-16.

Apply Block Replacement Rules
If you want to work around the compatibility limitations in your model or customize model elements
for analysis, you can use the Simulink Design Verifier block replacement rules. For more information,

 Overview of the Simulink Design Verifier Workflow

1-19

see “What Is Block Replacement?” on page 4-2 and “Block Replacements for Unsupported Blocks”
on page 4-7.

If you want to generate additional values for parameters in your model during analysis, use Simulink
Design Verifier parameter configurations. See “Parameter Configuration for Analysis” on page 5-2
for more information.

Set Simulink Design Verifier Options
You can set the Simulink Design Verifier analysis options in the Configuration Parameters dialog box.
Alternatively, you can use the sldvoptions function to specify the Simulink Design Verifier options
at the command line. For more information, see “Simulink Design Verifier Options” on page 15-2.

Perform Analysis on Model
You can analyze your model for:

• Design Error Detection: Detect design errors that can occur at run time. For more information,
see “Analyze Models for Design Errors” on page 6-4.

• Test Case Generation: Generate test cases that achieve model coverage. For more information, see
“Workflow for Test Case Generation” on page 7-5

• Property Proving Analysis: Prove properties and identify property violations. For more
information, see “Workflow for Proving Model Properties” on page 12-4.

If you plan to generate test cases or prove properties in your model, first run design error detection
for integer overflow and division by zero. Refer to these topics for more information:

• “What Is Design Error Detection?” on page 6-2
• “Detect Integer Overflow and Division-by-Zero Errors” on page 6-19
• “Debug Integer Overflow Design Error Detection Using Model Slicer” on page 6-68

Generate Analysis Results
Once Simulink Design Verifier finishes analyzing the model, it displays the analysis highlights and the
results options in the Results Summary window. For more information, see “Generate Analysis
Results” on page 1-6.

Interpret Analysis Results
You can the review analysis results and generate analysis reports in the HTML, DOCX, or PDF format.
For more information, see “Review Analysis Results”

See Also

More About
• Systematic Model Verification using Simulink Design Verifier
• “Analyze a Model” on page 1-4

1 Getting Started

1-20

How the Simulink Design Verifier
Software Works

• “Analyze a Simple Model” on page 2-2
• “Model Blocks” on page 2-4
• “Block Reduction” on page 2-5
• “Large Models” on page 2-6
• “Handle Incompatibilities with Automatic Stubbing” on page 2-7
• “Analyze Export-Function Models” on page 2-12
• “Analyze Export-Function Model with Function-Call Subsystems” on page 2-13
• “Analyze Export-Function Model with Global Simulink Function” on page 2-16
• “Nonfinite Data” on page 2-19
• “Role of Approximations During Model Analysis” on page 2-20
• “How Simulink Design Verifier Reports Approximations Through Validation Results” on page 2-23
• “Logic Operations Short-Circuiting” on page 2-26
• “Model Representation for Analysis” on page 2-28
• “Share Simulink Cache File for Faster Analysis” on page 2-31
• “Analyze AUTOSAR Component Models” on page 2-33
• “Extend Existing Test Cases by Reusing Model Representation” on page 2-35
• “Configure Model Representation Options” on page 2-39
• “Run Additional Analysis to Reduce Instances of Rational Approximation” on page 2-42
• “Detect Design Errors in AUTOSAR Software Component Model” on page 2-47

2

Analyze a Simple Model

This simple model includes two Logical Operator blocks and a Memory block. The persistent
information in this model is limited to the Boolean value of the Memory block. The input to the model
is a single Boolean value. The following table describes the complete behavior of the model, including
the behavior that results from an arbitrarily long sequence of inputs.

Input Memory Value Output of XOR Block =
Next Memory Value

Output of AND Block

1 false false false false
2 true false true false
3 false true true false
4 true true false true

The test objective is to generate test cases that result in a true output. A true output results when
the input is true, and the output of the Memory block is true. Test case generation follows a path to
reach this condition, which depends on the initial model conditions:

• If the initial memory value is true, the test case is a single time step where the input is true.
• If the initial memory value is false, the test case is two time steps:

1 The input value is true and the memory value is false (row 2). Thus, the output of the XOR
block is true, making the memory value true.

2 Now that the input value and memory value are both true (row 4), the output is true, and
the analysis achieves the test objective.

An infinite number of test cases can cause the output to be true, and regardless of the state value, the
output can be held false for an arbitrary time before making it true. When Simulink Design Verifier
searches, it returns the first test case it encounters that satisfies the objective. This case is invariably
the simulation with the fewest time steps. Sometimes you may find this result undesirable because it
is unrealistic or does not satisfy some other test requirement.

The same basic principles from this example apply to property proving and test case generation.
During test case generation, option parameters explicitly specify the search criteria. For example,
you can specify that Simulink Design Verifier find paths for all block outputs or find only those paths
that cause the block output to be true.

During a property proving analysis, you specify a functional requirement, or property, that you want
Simulink Design Verifier to prove, for example, that the output is always true. If the search completes

2 How the Simulink Design Verifier Software Works

2-2

without finding a path that violates the property, the property is proven. If the software finds a path
where the output is false, it creates a counterexample that causes the output to be false.

During an error detection analysis, Simulink Design Verifier identifies objectives where data overflow
or division-by-zero errors can and cannot occur. The analysis creates test cases that demonstrate how
the errors can occur.

 Analyze a Simple Model

2-3

Model Blocks
If your model contains Model blocks that reference external models, test creation occurs for the top-
level model, considering each referenced model in its execution context.

If multiple Model blocks reference the same model, generated tests attempt to satisfy test objectives
for each instance of the referenced model in its individual context in the top-level model. If you have
three Model blocks that reference a certain model, the analysis produces results for all three
instances.

If you collect coverage using the generated test cases, the cumulative coverage reflects the multiple
instances of the same referenced model. The simulation produces one set of coverage results for each
referenced model; if you have three Model blocks that reference a certain model, the simulation
produces one set of results for that referenced model.

For example, consider a top-level model with three Model blocks referencing the same model. The
referenced model has three test objectives. Analyzing the top-level model produces nine test
objectives. If you simulate the model with the nine test cases, the coverage results for that referenced
model specify three test objectives.

2 How the Simulink Design Verifier Software Works

2-4

Block Reduction
Block reduction achieves faster execution during model simulation and in generated code. When
block reduction is enabled, certain block groups can be collapsed into a single block, or even
removed entirely.

With Simulink Design Verifier, block reduction happens automatically, and blocks in unused code
paths are eliminated from the model. Simulink Design Verifier results do not include test objectives
for blocks that have been reduced.

Consider the Switch block in the following model.

For this Switch block, the control input is always 0. If the Criteria for passing first input block
parameter is u2 ~= 0, the Switch block always passes the third input through to the output port.
When you analyze this model, Simulink Design Verifier removes the Switch block from the model and
does not report any test objectives for the Switch block.

For more information about block reduction, see the description of the “Block reduction” parameter.

 Block Reduction

2-5

Large Models
In larger, more complicated models, Simulink Design Verifier uses mathematical techniques to
simplify the analysis:

• It identifies portions of the model that do not affect the desired objectives.
• It discovers relationships within the model that reduce the complexity of the search.
• It reuses intermediate results from one objective to another.

In this way, the problem is reduced to a search though the logical values that describe your model.

For detailed information about analyzing large models, see “Analyze a Large Model” on page 14-3.

2 How the Simulink Design Verifier Software Works

2-6

Handle Incompatibilities with Automatic Stubbing

In this section...
“What Is Automatic Stubbing?” on page 2-7
“How Automatic Stubbing Works” on page 2-7
“Analyze a Model Using Automatic Stubbing” on page 2-9

What Is Automatic Stubbing?
Automatic stubbing lets you analyze a model that contains objects that Simulink Design Verifier does
not support.

When you enable the automatic stubbing option (it is enabled by default), the software considers only
the interface of the unsupported objects, not their actual behavior. This technique allows the software
to complete the analysis. However, the analysis may achieve only partial results if any unsupported
model element affects the simulation outcome.

How Automatic Stubbing Works
If you enable automatic stubbing, when the Simulink Design Verifier analysis comes to an
unsupported block, the software “stubs” that block. The analysis ignores the behavior of the block,
and as a result, the block output can take any value.

Stub Trigonometric Function Block

Simulink Design Verifier does not support Trigonometric Function blocks when the Function
parameter is set to acos, such as the one in the following graphic.

When stubbing this block during analysis, out_signal can take any value, with the following results.

Analysis Model Result of Stubbing out_signal
Design error detection • If a design-error objective that depends on out_signal is proven

valid, that objective is valid for all simulations. In this case, the
stubbing did not affect the results of the analysis.

• If a design-error objective that depends on out_signal is
falsified, the analysis cannot create a test case. The analysis
cannot determine which input to the stubbed block produces the
output that falsifies the objective.

 Handle Incompatibilities with Automatic Stubbing

2-7

Analysis Model Result of Stubbing out_signal
Test case generation • If a test objective that depends on the value of out_signal is

satisfied, the analysis cannot create a test case. The analysis
cannot determine which input to the stubbed block produces the
output that satisfies the objective.

• If a test objective that depends on the value of out_signal is
unsatisfiable, there is no simulation that can satisfy that
objective. In this case, the stubbing did not affect the results of
the analysis.

Property proving • If a proof objective that depends on out_signal is proven valid,
that objective is valid for all simulations. In this case, the
stubbing did not affect the results of the analysis.

• If a proof objective that depends on out_signal is falsified, the
analysis cannot create a counterexample. The analysis cannot
determine which input to the stubbed block produces the output
that falsifies the objective.

Stub S-Function Block Containing Function-Call Triggers

The Simulink example model sfcndemo_sfun_fcncall has an S-Function block. The S-function
sfun_fcncall triggers the execution of the function-call subsystems f1 subsys1 and f2 subsys2 on
the first and second elements of the first output port.

If you do not enable support for an S-function in Simulink Design Verifier and automatic stubbing is
enabled, the analysis ignores the behavior of the S-function. As a result, the code that triggers the
two function-call subsystems is ignored, resulting in two unsatisfiable objectives. Since the function
calls are ignored, the contents of those subsystems are effectively eliminated from the analysis.

To enable support for an S-function in Simulink Design Verifier, see “Support Limitations and
Considerations for S-Functions and C/C++ Code” on page 3-28

2 How the Simulink Design Verifier Software Works

2-8

matlab:sfcndemo_sfun_fcncall

Analyze a Model Using Automatic Stubbing
This section describes a workflow for using automatic stubbing, with a simple Simulink model as an
example.

• “Check Model Compatibility” on page 2-9
• “Turn On Automatic Stubbing” on page 2-10
• “Review Results” on page 2-11
• “Achieve Complete Results” on page 2-11

The following model contains a Discrete State-Space block, which is not compatible with Simulink
Design Verifier.

Check Model Compatibility

From the Simulink Editor, there are two ways to check whether a model is compatible with Simulink
Design Verifier: by the Simulink Design Verifier compatibility check or by running a Simulink Design
Verifier analysis.

To run the Simulink Design Verifier compatibility check:

• On the Design Verifier tab, click Check Compatibility.

 Handle Incompatibilities with Automatic Stubbing

2-9

• Select the analysis that you want to perform.

To run a Simulink Design Verifier analysis, on the Design Verifier tab, in the Mode section, select
any of these options:

• Select Design Error Detection, then click Detect Design Errors.
• Select Test Generation, then click Generate Tests.
• Select Property Proving, then click Prove Properties.

The software first checks the compatibility of the model. If the model itself is incompatible, for
example, if it uses a variable-step solver, the analysis cannot continue.

If it finds incompatible elements in the model, the software analyzes the model and, by default,
stubs out the incompatible elements. The Diagnostic Viewer also opens, listing the
incompatibilities.

Note For more information, see “View Diagnostics”.

Turn On Automatic Stubbing

Automatic stubbing is enabled by default. To change the automatic stubbing setting, in the
Configuration Parameters dialog box, on the main Design Verifier pane, select Automatic stubbing
of unsupported block and functions. When you run the analysis, the software tells you that
stubbing is turned on and the analysis continues.

2 How the Simulink Design Verifier Software Works

2-10

Review Results

If you run an analysis with automatic stubbing enabled, make sure to review the results. In this
report, generated after a test case generation analysis, you see a table of unsupported blocks that the
software encountered.

Unsupported Blocks

The generated analysis report for the example model shows that the objectives are undecided
because of stubbing. The software cannot generate test cases because it does not understand the
operation of the Discrete State-Space block.

Objective Undecided Due to Stubbing

Achieve Complete Results

If your analysis does not achieve complete results because of the stubbing, you can define custom
block replacements to give a more precise definition of the unsupported blocks. For more
information, follow the steps in “Block Replacements for Unsupported Blocks” on page 4-7.

 Handle Incompatibilities with Automatic Stubbing

2-11

Analyze Export-Function Models
Simulink Design Verifier supports design error detection, test generation, and property proving for
export-function models. The software creates a scheduler model that invokes the export-function
models, and then performs the analysis on the scheduler model. The scheduler model invokes the
function calls based on the sample times and priorities set in the top model. By default, the software
saves the scheduler model in <current_folder>\sldv_output\<model_name>
\<model_name>_SldvScheduler.slx. You can analyze export-function models with periodic and
aperiodic function-call groups. If the model consists of aperiodic function-call or global Simulink
Function call, the scheduler has an additional port called the FcnTriggerPort. For more
information, see “Export-Function Models Overview”.

These topics cover examples that explain a periodic function-call subsystem and global Simulink
Function that you can use as an AUTOSAR server runnable.

• “Analyze Export-Function Model with Function-Call Subsystems” on page 2-13
• “Analyze Export-Function Model with Global Simulink Function” on page 2-16

Limitations
Simulink Design Verifier does not support:

• Models that include export functions with multiple function-call initiators.
• Masked model blocks that export Simulink Function blocks.
• Scoped Simulink functions in export-function models.

See Also

More About
• “Export-Function Models”
• “Analyze a Model” on page 1-4

2 How the Simulink Design Verifier Software Works

2-12

Analyze Export-Function Model with Function-Call Subsystems

This example shows how you can analyze a model which consists of periodic function-call subsystems.
This example uses the AUTOSAR example model
sldvExportFunction_autosar_multirunnables.

1. Open the sldvExportFunction_autosar_multirunnables model.

open_system('sldvExportFunction_autosar_multirunnables');

2. To run the test generation analysis, on the Design Verifier tab, click Generate Tests.

The Simulink Design Verifier Results Summary window indicates that a scheduler model
sldvExportFunction_autosar_multirunnables_SldvScheduler.slx is created. You can also
generate a scheduler model by using sldvextract.

 Analyze Export-Function Model with Function-Call Subsystems

2-13

The scheduler model consists of a MATLAB® function block _SldvExportFcnScheduler. The
function calls are called periodically as the model consists of periodic function-call subsystem.

The MATLAB® code specifies the order in which the periodic function-call execute. Runnable1 and
Runnable2 executes first because the time period is 1 for both of them. After 10 time steps,
Runnable3 executes.

If the model consists of aperiodic function-call subsystems, the scheduler consists of an additional
inport FcnTriggerPort. The value of FcnTriggerPort indicates whether to invoke the function-
call in a time step.

2 How the Simulink Design Verifier Software Works

2-14

For example, if Runnable1 is an aperiodic function-call subsystem, the FcnTriggerPort Inport
block invokes the scheduler model. This graphic shows the Timing Legend window and the scheduler
model for an aperiodic function-call.

After the test generation analysis, in the Simulink Design Verifier Results Summary window, you see
the results that 7/7 objectives are Satisfied.

3. To simulate the test cases and generate a coverage report, click Simulate tests and produce a
model coverage report in the Simulink Design Verifier Results Summary window.The software
simulates the test cases, collects model coverage information, and displays a coverage report.

4. To view the detailed analysis report, click HTML in the Simulink Design Verifier Results Summary
window.

The Schedule for Export Function Analysis section in the Analysis Information chapter lists the
schedule for invoking the export functions.

See Also

• “Export-Function Models”
• “Analyze a Model” on page 1-4

 Analyze Export-Function Model with Function-Call Subsystems

2-15

Analyze Export-Function Model with Global Simulink Function

This example shows how you can analyze an export-function model sldvexGlobalSimFcn that
consists of a global Simulink Function to be used as an AUTOSAR server runnable.

1. Open the sldvexGlobalSimFcn model.

open_system('sldvexGlobalSimFcn');

2. To run the test generation analysis, on the Design Verifier tab, click Generate Tests.

The Simulink Design Verifier Results Summary window indicates that a scheduler model
sldvexGlobalSimFcn_sldvScheduler.slx is created. You can also generate a scheduler model
by using sldvextract.

2 How the Simulink Design Verifier Software Works

2-16

 Analyze Export-Function Model with Global Simulink Function

2-17

The scheduler model consists of a MATLAB function block _SldvExportFcnScheduler and a
function-call subsystem that calls the function calls periodically. This MATLAB function block is driven
by inports which represent the input arguments of the Simulink Function. An additional Inport block
called FcnTriggerPort, the value of which indicates whether to invoke a particular function in a
time step.

3. After the test generation analysis, in the Simulink Design Verifier Results Summary window, you
see the results that 5/5 objectives are Satisfied.

See Also

• “Export-Function Models”
• “Analyze a Model” on page 1-4

2 How the Simulink Design Verifier Software Works

2-18

Nonfinite Data
Simulink Design Verifier does not support nonfinite data (for example, NaN and Inf) and related
operations.

During an analysis, the software handles nonfinite operations as follows:

• In the Relational Operator block:

• If the Relational operator parameter is isFinite, the output is always 1.
• If the Relational operator parameter is isNan or isInf, the output is always 0.

• In the MATLAB Function block:

• For the isFinite function, the output is always 1.
• For the isNan and isInf functions, the output is always 0.

 Nonfinite Data

2-19

Role of Approximations During Model Analysis

In this section...
“Types of Approximations” on page 2-20
“Floating-Point to Rational Number Conversion” on page 2-20
“Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types” on page 2-21
“Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-Point Data Types”
on page 2-21
“While Loops” on page 2-22

The Simulink Design Verifier software generates inputs and parameters to achieve objectives.
However, there can be an infinite number of values for the software to search. To create reasonable
limits on the analysis, the software performs approximations to simplify the analysis. The software
records all the approximations it performed in the Analysis Information chapter of the Simulink
Design Verifier HTML report. For a description of this chapter, see “Analysis Information Chapter” on
page 13-36.

Review the analysis results carefully when the software uses approximations. Evaluate your model to
identify which blocks or subsystems caused the software to perform the approximations.

In rare cases, an approximation can result in test cases that fail to achieve test objectives or
demonstrate a design error, or counterexamples that fail to falsify proof objectives. For example,
suppose the software generates a test case signal that should achieve an objective by exceeding a
threshold, a floating-point round-off error might prevent that signal from attaining the threshold
value. For more information, see “How Simulink Design Verifier Reports Approximations Through
Validation Results” on page 2-23.

Types of Approximations
The Simulink Design Verifier software performs the following approximations when it analyzes a
model:

• “Floating-Point to Rational Number Conversion” on page 2-20
• “Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types” on page 2-21
• “Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-Point Data

Types” on page 2-21
• “While Loops” on page 2-22

Floating-Point to Rational Number Conversion
In some cases, the Simulink Design Verifier software simplifies the linear arithmetic of floating-point
numbers by approximating them with infinite-precision rational numbers. The software discovers how
the logical relationships between these values affect the objectives. This analysis enables the
software to support supervisory logic that is commonly found in embedded controller designs. For an
example, see “Identify the Effect of Approximations Through Validation Results” on page 2-24.

2 How the Simulink Design Verifier Software Works

2-20

If your model contains floating-point values in the signals, input values, or block parameters,
Simulink Design Verifier converts some values to rational numbers before performing its analysis. As
a result of these approximations:

• Round-off error is not considered.
• Upper and lower bounds of floating-point numbers are not considered.
• If your model casts floating-point values to integer values, the integer representation can affect

tests generated for the model. In some rare cases, the generated tests might not satisfy objectives
associated with the floating-point values.

Note You can use the Run additional analysis to reduce instances of rational approximation
option in the Configuration parameters window to reduce instances of approximation. For more
information, see “Run Additional Analysis to Reduce Instances of Rational Approximation” on page 2-
42.

Linearization of Two-Dimensional Lookup Tables for Floating-Point
Data Types
The Simulink Design Verifier software does not support nonlinear arithmetic for floating-point data
types. If your model contains any 2-D Lookup Table blocks, or n-D Lookup Table blocks where n = 2,
with all of the following characteristics, the software approximates nonlinear two-dimensional
interpolation with linear interpolation by fitting planes to each interpolation interval.

Block Characteristics
n-D Lookup Table block, n = 2: • Interpolation method parameter is Linear.

• Extrapolation method parameter is Clip or Linear.
• The input and output signals both have the floating-point data

type.

Approximation of One- and Two-Dimensional Lookup Tables for Integer
and Fixed-Point Data Types
If your model contains lookup tables with the following characteristics, Simulink Design Verifier
automatically converts your original lookup table into a new lookup table composed of breakpoints
that are evenly-spaced in each of their respective dimensions.

Block Characteristics
n-D Lookup Table block, n = 1
or n = 2:

• Interpolation method parameter is Linear.
• Extrapolation method parameter is Clip .
• Index search method parameter is Linear search or

Binary search.
• The input and output signals are both of the same type and are

both integer type or fixed-point type.

This approximation allows Simulink Design Verifier to generate tests significantly faster. The time
saved is pronounced when you have unsatisfiable test objectives in your model.

 Role of Approximations During Model Analysis

2-21

If Simulink Design Verifier applies such approximations to your model, the Simulink Design Verifier
report includes details of the approximation.

While Loops
If your model or a Stateflow chart in your model contains a while loop, Simulink Design Verifier tries
to detect a conservative constant bound that allows the while loop to exit. If the software cannot find
a constant bound, it performs a while loop approximation. With this approximation, the analysis does
not prove objectives to be valid or unsatisfiable and it does not prove dead logic. The generated
analysis report notes this approximation.

The behavior of the while loop approximation is consistent in all modes of analysis, as described in
the following table.

Analysis Mode While Loop Approximation
Design Error Detection Sets number of while loop iterations to 3. Does

not report dead logic or valid objectives.
Test Case Generation Sets number of while loop iterations to 3. Does

not report unsatisfiable objectives.
Property Proving Sets number of while loop iterations to 3. Does

not report valid objectives.

See Also
“How Simulink Design Verifier Reports Approximations Through Validation Results” on page 2-23 |
“Review Analysis Results” on page 7-8

2 How the Simulink Design Verifier Software Works

2-22

How Simulink Design Verifier Reports Approximations Through
Validation Results

Simulink Design Verifier performs approximations during analysis. The software identifies the
presence of approximations and reports them at the level of each objective status in the Objective
Status Chapter of the Simulink Design Verifier HTML report. For more information, see “Role of
Approximations During Model Analysis” on page 2-20 and “Objectives Status Chapters” on page 13-
42.

To validate the test cases or counterexamples during simulation, the model is locked in fast restart
mode. For more information, see “Fast Restart Methodology”.

For example, to ensure the effect of approximations, in the test generation analysis the test cases are
validated against the coverage data during analysis.

Impact of Approximations on Objectives Status
The software provides the test cases or counterexamples for the objectives that are impacted due to
approximations during analysis. These objectives are reported as “Objectives Undecided with
Testcases” on page 13-47 for test generation analysis and “Objectives Undecided with
Counterexamples” on page 13-49 for property-proving analysis.

The software confirms the objectives that can be impacted due to approximations as dead logic, valid,
or unsatisfiable. This table summarizes these objectives for all analysis modes.

Analysis Mode Objectives Status
Design error detection • “Dead Logic under Approximation” on page 13-44

• “Objectives Valid under Approximation” on page 13-45
Test generation “Objectives Unsatisfiable under Approximation” on page 13-47
Property proving “Objectives Valid under Approximation” on page 13-48

The software is unable to confirm the objectives status through validation results for these cases:

• The objectives introduced by the block replacement. For more information, see “What Is Block
Replacement?” on page 4-2.

• The Verification Subsystem consists of the sldv.test or sldv.prove function.
• You abort the analysis by using the Stop button in the Simulink Design Verifier Results Summary

window or the software exceeds its “Maximum analysis time” on page 15-11. Therefore, some
objectives remain unvalidated during analysis and the software is unable to confirm the objectives
status.

• The block with an objective is inside the Simulink test harness but outside the component under
test. For more information, see “Test Harness and Model Relationship” (Simulink Test).

This table summarizes the objectives statuses for the preceding cases. To confirm the status of the
objectives, you must run additional simulations of test cases or counterexamples.

 How Simulink Design Verifier Reports Approximations Through Validation Results

2-23

Analysis Mode Objectives Status
Design error detection • “Active Logic - Needs Simulation” on page 13-44

• “Objectives Error - Needs Simulation” on page 13-45
Test generation “Objectives Satisfied - Needs Simulation” on page 13-46
Property proving “Objectives Falsified - Needs Simulation” on page 13-49

Identify the Effect of Approximations Through Validation Results

This example shows how approximations affect the objectives status of the Switch block. In the
sldvApproximationsExample model, the calculations 1./3 and 2./3 in the Constant block result
in “Floating-Point to Rational Number Conversion” on page 2-20 during analysis.

For inport In2 equal to -1, the input 2 of the Switch block is not equal to 0 during simulation.
Therefore, the Switch does not select inport In3 as output. For test generation and property-proving
analysis, the objective logical trigger input false(output is from 3rd input port)
for the Switch block is undecided due to the impact of approximations during analysis.

1. Open the model sldvApproximationsExample:

open_system('sldvApproximationsExample');

2. To perform test generation analysis, on the Design Verifier tab, click Generate Tests. The
software simulates the model and validates the test results against coverage data.

2 How the Simulink Design Verifier Software Works

2-24

3. To view the detailed analysis report, click HTML in the Simulink Design Verifier Results Summary
window.

This image shows the Test Objectives Status section of the generated analysis report. The software
provides two test cases that are impacted by approximations.

Test Objectives Status - Objective Satisfied

Test Objectives Status - Objective Undecided with Testcases

4. To perform property proving analysis, on the Design Verifier tab, in the Mode section, select
Property Proving. Click Prove Properties.

This image shows the Proof Objectives Status section of the generated analysis report.

Proof Objectives Status - Objective Undecided with Counterexamples

The software provides one counterexample that is impacted by approximations.

Note: The sldvApproximationsExample example model is preconfigured with the Run additional
analysis to reduce the instances of approximations option set to Off. If you enable this option and run
the analysis, the Undecided with Testcases test objective is reported as Unsatisfiable and
the proof objective is reported as Valid.

See Also

More About
• “Review Results” on page 13-35
• “Role of Approximations During Model Analysis” on page 2-20

 How Simulink Design Verifier Reports Approximations Through Validation Results

2-25

docis:sldv_ug#mw_477a4830-617f-44bd-8bd7-fb10bba478cd
docis:sldv_ug#mw_477a4830-617f-44bd-8bd7-fb10bba478cd

Logic Operations Short-Circuiting
Simulink Design Verifier considers logical operations and logical expressions as short-circuiting when
analyzing for dead logic and when generating tests.

Logical Operators and Logical Expressions for Condition and MCDC objectives can be considered
short-circuiting or not when you analyze for dead logic or generate tests. The table summarizes
different considerations:

Short-Circuit consideration for Condition or MCDC Objectives

Modeling element Short-Circuit consideration for Condition or
MCDC Objectives

MATLAB, Stateflow (C/MATLAB) and other
Simulink Blocks (Fcn, If)

Always short-circuited

Logic blocks (standalone/cascaded) Short-circuited only when
CovLogicBlockShortCircuit is ON

For Condition objective, consider the following simple logical operator example model. When
CovLogicBlockShortCircuit parameter is ON, a previous input alone determines the block
output, the analysis ignores any remaining block inputs. If the first input to a Logical Operator block
whose Operator parameter specifies AND is false, the analysis ignores the values of the other inputs.

When CovLogicBlockShortCircuit parameter is OFF, all the inputs are considered.

The tables summarizes the difference in objectives for short-circuit and non short-circuit case for
Condition objective by using a similar logical expression for MATLAB function block:

Short-Circuit considerations for Condition objective

Condition ‘F’ Port 3 CovLogicBlockShortCircuit: ON CovLogicBlockShortCircui
t: OFF

Logical operator (in1) && (in2) && (~in2) (dead logic) ~ in2 (active logic)
MATLAB Function with
logical expression (in1
&& in2 && in2)

(in1) && (in2) && (~in2) (dead logic) (in1) && (in2) && (~in2) (dead
logic)

For MCDC objective, along with the short-circuit mode, the CovMCDCMode or the coverage MCDC
mode is set as a parameter.

2 How the Simulink Design Verifier Software Works

2-26

The tables summarizes the difference in objectives for short-circuit and non short-circuit case for
MCDC objective.

Short-Circuit considerations for MCDC objective

CovLogicBlockSh
ortCircuit

CovMCDCMode Standalone block Cascaded
Network

ON Masking Short circuited MCDC MCDC for network
(Short-circuited)

OFF Masking Non short-circuited MCDC MCDC for network
(Non short-
circuited)

ON Unique cause Short-circuited MCDC MCDC (Short-
circuited) coverage
result can differ
from Simulink
Design Verifier.

OFF Unique cause Non short-circuited MCDC NA

Note If covMCDCMode is Unique cause, then MCDC definition differs between coverage and MCDC.

For more information, see "Short-Circuiting of Boolean Expressions for MCDC" in “Analyzing MCDC
for Cascaded Logic Blocks” (Simulink Coverage).

 Logic Operations Short-Circuiting

2-27

Model Representation for Analysis

In this section...
“Reuse Model Representation for Analysis” on page 2-28
“Limitations” on page 2-30

When you analyze a model for the first time, Simulink Design Verifier performs a compatibility check
and creates a model representation. The model representation contains information about model
behavior to use for analysis. By default, the software saves the model representation at the
“Simulation cache folder” location.

If you modify a model and rerun the analysis, Simulink Design Verifier determines whether to rebuild
the model representation or to use the existing Simulink cache depending on the “Rebuild model
representation” on page 15-13 parameter. A rebuild of the model representation is triggered, when
the Rebuild model representation option is set to If change is detected and the software
detects any changes in the model.

Reuse Model Representation for Analysis
The Rebuild model representation option is set to If change is detected by default and the
software validates the model representation against any model changes and Simulink Design Verifier
analysis options. The software then determines whether to reuse or to rebuild the model
representation for analysis. When you set the option to Always, the model representation is rebuilt
during every model analysis.

When the Rebuild model representation option is set to If change is detected, Simulink
Design Verifier checks for these changes in a model:

• Simulink Design Verifier Options on page 2-28
• “Structural Checksum of a Model” on page 2-29
• “Additional Dependencies” on page 2-30

Simulink Design Verifier Options

The software validates the model representation against any changes in the Simulink Design Verifier
options. This table lists the options that do not affect the model representation, and if you change any
of these options the software reuses the model representation.

Design Verifier Options • “Maximum analysis time” on page 15-11
• “Output folder” on page 15-11
• “Make output file names unique by adding a
suffix” on page 15-12

• “Run additional analysis to reduce instances
of rational approximation” on page 15-15

• “Ignore objectives based on filter” on page 15-
17

• “Filter file(s)” on page 15-18

2 How the Simulink Design Verifier Software Works

2-28

Test Generation options • “Test conditions” on page 15-32
• “Test objectives” on page 15-33
• “Maximum test case steps” on page 15-33
• “Test suite optimization” on page 15-34
• “Extend using existing coverage data” on page

15-38
• “Extend using existing coverage data” on page

15-38
• “Extend using existing test data” on page 15-

39
• “Separate objectives satisfied with the

existing tests/coverage data in the report” on
page 15-40

Property Proving options • “Assertion blocks” on page 15-52
• “Proof assumptions” on page 15-53
• “Strategy” on page 15-53
• “Maximum violation steps” on page 15-54

Results generation options • “Data file name” on page 15-57
• “Include expected output values” on page 15-

57
• “Randomize data that do not affect the

outcome” on page 15-58
• “Generate separate harness model after

analysis” on page 15-59
• “Harness model file name” on page 15-59
• “Reference input model in generated harness”

on page 15-60
• “Harness source” on page 15-61
• “Test File Name” on page 15-61
• “Test Harness Name” on page 15-62

Report generation options • “Generate report of the results” on page 15-
63

• “Generate additional report in PDF format” on
page 15-64

• “Report file name” on page 15-64
• “Include screen shots of properties” on page

15-65
• “Display report” on page 15-66

Structural Checksum of a Model

The Simulink Design Verifier uses both structural checksum and code checksum. A structural
checksum is a computation that detects changes in the model that can affect simulation results. For
more information about the kinds of changes that affect the model, see Rebuild.

 Model Representation for Analysis

2-29

Note When you “Generate Test Cases for Embedded Coder Generated Code” on page 7-28,
Simulink Design Verifier also considers checksum of the generated code.

Additional Dependencies

In addition to structural checksum, Simulink Design Verifier checks for changes in model
dependencies that can impact the analysis results, such as:

• Simulation run-time parameters that are defined in the data dictionary or the MATLAB base,
mask, or model workspaces

• External C or C++ source code files that the model uses during simulation
• Minimum and maximum constraints that are specified for block parameters
• Block parameters that are specified for blocks in the “Simulink Design Verifier Block Library” on

page 1-3, such as Values

Limitations
• The model representation is always rebuilt:

• When Simulink Design Verifier analysis is started from other products such as Simulink Test™,
Simulink Coverage, Simulink Check™, and Requirements Toolbox™.

• When the model contains MATLAB System blocks.
• Simulink Design Verifier does not detect changes in the custom block replacement rules that you

apply, even if the Rebuild model representation option is set to If change is detected. In
such cases, the Simulink cache is reused for analysis and a warning message is displayed in the
Diagnostic Viewer that suggests you to set the Rebuild model representation option to Always,
if you want to rebuild the model representation.

See Also
“Extend Existing Test Cases by Reusing Model Representation” on page 2-35

More About
• Configure Model Representation Options on page 2-39
• “Check Model Compatibility” on page 3-2
• “Simulink Design Verifier Options” on page 15-2

2 How the Simulink Design Verifier Software Works

2-30

Share Simulink Cache File for Faster Analysis
In this section...
“Store the Simulink Cache File” on page 2-31
“Reuse the Simulink Cache File” on page 2-31

You can share the Simulink cache file for faster Simulink Design Verifier analysis. When you analyze a
model, Simulink Design Verifier performs a compatibility check and creates a Simulink cache file that
contains the model representation information. If there is no change in the model, Simulink Design
Verifier reuses the model representation from the Simulink cache file without performing the
compatibility check again. For more information, see “Share Simulink Cache Files for Faster
Simulation” and “Model Representation for Analysis” on page 2-28.

Store the Simulink Cache File
The Simulink cache file is stored in the location specified in the Simulink Preferences > General
dialog box, under Simulation cache folder. By default, the Simulink cache file is stored in the
current working directory.

The file name of the Simulink cache is the same as the file name of the model with an .slxc file
extension.

Reuse the Simulink Cache File
You can reuse the Simulink cache file to speed up the Simulink Design Verifier analysis for later use
by yourself or others. When you perform Simulink Design Verifier analysis, the software determines
whether to rebuild the model representation based on the “Rebuild model representation” on page
15-13 option. By default, this option is set to If change is detected and if there is no change in
the model, the software reuses the model representation from the Simulink cache file for analysis.

If Rebuild model representation is set to Always or if the software detects any change in the
model during analysis, the software rebuilds the model representation and updates the Simulink
cache file.

Note The Simulink cache file accumulates model representation build artifacts for the release in
which it was created and is platform dependent. This cache file does not support cross-release
compatibility.

 Share Simulink Cache File for Faster Analysis

2-31

For information on what a specific Simulink cache contains, double-click the Simulink cache file. The
report contains information of supported releases, platforms, and model representation.

For example, suppose a team is working on large models and uses a source control system to manage
design files. To reduce the amount of time for Simulink Design Verifier analysis, the team follows
these steps:

1 A developer pulls the latest version of the Simulink model from the source control system.
2 Performs Simulink Design Verifier test case generation analysis and shares the latest version of

Simulink cache file to the source control system and the generated test cases to the build
archive.

3 Test engineer pulls the latest version of the model and the Simulink cache file from the source
control systems. Also, pulls the existing test cases from the build archive.

4 Performs test case extension on the same model by using the existing test cases. If no changes
are detected in the model, the model representation from the Simulink cache file is reused for
analysis. For a detailed example, see “Extend Existing Test Cases by Reusing Model
Representation” on page 2-35.

If the test engineer, changes the model or Simulink Design Verifier options that affects the
compatibility results, the model representation is rebuilt and the Simulink cache file is updated.
For more information on Simulink Design Verifier options that leverage the reuse of model
representation, see “Reuse Model Representation for Analysis” on page 2-28.

See Also

More About
• “Model Representation for Analysis” on page 2-28
• Configure Model Representation Options on page 2-39

External Websites
• Simulink Cache (1 min, 27 sec)

2 How the Simulink Design Verifier Software Works

2-32

Analyze AUTOSAR Component Models
Simulink Design Verifier supports design error detection, test generation, and property proving
analysis for AUTOSAR software components (SWC) at the unit level. You can analyze an AUTOSAR
component that contains blocks from the AUTOSAR Blockset Basic Software block library, which
model component calls to AUTOSAR Basic Software (BSW) services, including:

• Diagnostic Event Manager (Dem)
• Function Inhibition Manager (FiM)
• NVRAM Manager (NvM)

Additionally, you can analyze a Simulink model generated by importing descriptions of AUTOSAR
software components from AUTOSAR XML (ARXML) files. See, “Create and Configure AUTOSAR
Software Component” (AUTOSAR Blockset).

The software creates an analysis harness that provides stub implementations of the Basic Software
service operations called by the component, and then performs the analysis on the harness model. By
default, the software saves the harness model in <current_folder>\sldv_output
\<model_name>\<model_name>_SldvStub.slx.

AUTOSAR Model at Component Level

Limitations
The Simulink Design Verifier analysis reports an incompatibility if:

 Analyze AUTOSAR Component Models

2-33

• You use Simulink Design Verifier to generate tests in the Simulink Test, and the harness parameter
is set to Signal Editor.

• The component model contains service component blocks, such as the Diagnostic Service
Component or NVRAM Service Component blocks.

• The component model contains Initialize Function, Reinitialize Function, Reset Function, or
Terminate Function blocks that call a Simulink functions that is not defined in the same
component.

• If you perform Software-in-the-Loop (SIL) code analysis on an AUTOSAR component model
• You export test cases generated by Simulink Design Verifier and run software-in-the-loop (SIL)

simulation on those test cases in Simulink Test Manager. The recommended approach is to
perform back-to-back testing using Simulink Test.

See Also
“Configure Elements of AUTOSAR Software Component for Simulink Modeling Environment”
(AUTOSAR Blockset) | “Import Test Cases for Equivalence Testing” (Simulink Test)

Related Examples
• “Detect Design Errors in AUTOSAR Software Component Model” on page 2-47

2 How the Simulink Design Verifier Software Works

2-34

Extend Existing Test Cases by Reusing Model Representation

This example shows how to avoid unneeded model representation builds when reanalyzing a model.
Consider a case where you perform test generation and the analysis exceeds maximum analysis time.
In the specified analysis time, Simulink Design Verifier analyzes some objectives and saves the
generated test cases in a MAT-file.

To reanalyze the model, you update the maximum analysis time and select the extend existing test
cases option. To speed up the analysis, set the Rebuild model representation option to If change
is detected. Simulink Design Verifier reanalyzes the model by reusing the model representation.
For more information, see “Model Representation for Analysis” on page 2-28.

Step 1. Open the model and specify analysis options

Generate test cases for sldvdemo_cruise_control model by specifying the sldvoptions.

model = 'sldvdemo_cruise_control';
open_system(model);
opts = sldvoptions;
opts.Mode = "TestGeneration";
opts.MaxProcessTime = 10;
opts.RebuildModelRepresentation = "IfChangeIsDetected";

 Extend Existing Test Cases by Reusing Model Representation

2-35

Analyze the model by using this command.

[status, files] = sldvrun('sldvdemo_cruise_control', opts, true);

The Diagnostic Viewer window displays the Test Generation analysis error.

Simulink Design Verifier has exceeded the maximum processing time. You can
extend the time limit by modifying the "Maximum analysis time" edit field on
the Design Verifier pane of the configuration dialog or by modifying the
"MaxProcessTime" attribute of the options object.

After the analysis is completed, the Results Summary window displays the results. The software
reports 22/24 objectives as satisfied and 2/24 objectives as undecided.

2 How the Simulink Design Verifier Software Works

2-36

Step 2. Reanalyze the model by modifying the sldvoptions

To reanalyze the model, you select the extend existing test cases option and update the maximum
analysis time. The Rebuild model representation option is set to If change is detected. The
software validates the cache model representation, detects no change, and reuses the model
representation for analysis.

opts.MaxProcessTime =500;
opts.ExtendExistingTests='on';
opts.IgnoreExistTestSatisfied = 'on';
opts.ExistingTestFile=files.DataFile;
sldvrun('sldvdemo_cruise_control', opts, true);

The results show that 24/24 objectives are satisfied and no additional test cases are generated.

 Extend Existing Test Cases by Reusing Model Representation

2-37

Close the model.

close_system('sldvdemo_cruise_control', 0);

Related Topics

• “Model Representation for Analysis” on page 2-28
• “Extend an Existing Test Suite” on page 7-86

2 How the Simulink Design Verifier Software Works

2-38

Configure Model Representation Options
You can configure the option to build or reuse the model representation from the Design Verifier
pane, “Rebuild model representation” on page 15-13 option or by using the sldvoptions. By
default, the option is set to If change is detected and the software reuses the model
representation for analysis, if there is no change in the model.

When you perform analysis, the Results Summary window displays the information regarding the
model representation. If you select Always for the Rebuild model representation option, the
software rebuilds the model representation during analysis.

If you select If change is detected option, the software validates the existing cached model
representation. If the cached model is successfully validated, it is reused for analysis.

 Configure Model Representation Options

2-39

If change is detected in the model, the model representation is rebuilt. For more information, see
Changes That Affect the Model Representation Rebuild on page 2-28.

2 How the Simulink Design Verifier Software Works

2-40

See Also

More About
• “Model Representation for Analysis” on page 2-28
• “Check Model Compatibility” on page 3-2

 Configure Model Representation Options

2-41

Run Additional Analysis to Reduce Instances of Rational
Approximation

This example shows how to reduce the instances of rational approximation by running additional
analysis. You analyze a model and during the analysis, Simulink® Design Verifier™ identifies the
presence of approximations and the associated objectives are reported as undecided with test case.

You enable the Run additional analysis to reduce instances of rational approximation option to
perform additional analysis to confirm the undecided objectives. When you rerun the analysis,
Simulink cache that contains the model representation information is reused to perform faster
analysis. For more information see “Reuse Model Representation for Analysis” on page 2-28.

Open the Model

The sldvApproximationsExample model results in approximations due to the calculations 1./3 and
2./3 in the Constant block.

open_system('sldvApproximationsExample')

2 How the Simulink Design Verifier Software Works

2-42

Perform Test Case Generation Analysis and Review Results

On the Design Verifier tab, click Generate Tests.

After the analysis completes, the Results Summary window displays that one objective is satisfied and
one objective is undecided with test case.

 Run Additional Analysis to Reduce Instances of Rational Approximation

2-43

To view the detailed analysis report, in the Results Summary window, click HTML. In the report, the
Analysis Information chapter lists the approximations that were performed during analysis

2 How the Simulink Design Verifier Software Works

2-44

The Objective Status chapter gives detailed description of the objectives.

Run Additional Analysis by Reusing Cache

The undecided with test case objective is impacted by approximation, and to confirm this objective
status you run additional analysis.

(a) On the Design Verifier tab, click Test Generation Settings > Settings.

(b) In the Configurations Parameters dialog box, on the Design Verifier pane, in Advanced
parameters, set the Rebuild model representation option to If change is detected and
enable Run additional analysis to reduce instances of rational approximation option. Click
OK.

Note: If you create a new model, by default, the Rebuild model representation option is set to If
change is detected.

(c) To perform test generation analysis, click Generate Tests. The existing cache is validated against
the model and the analysis reuses the cache if no change is detected.

The Results Summary window displays that the cached model representation is validated and no
change is detected. Hence, the analysis skips the compatibility check and reuses the model
representation for analysis.

 Run Additional Analysis to Reduce Instances of Rational Approximation

2-45

After the analysis completes, the Results Summary window displays that one objective is satisfied and
one objective is unsatisfiable.

Review Analysis Results

To view the detailed analysis report, in the Results Summary window, click HTML. In the report, the
Objectives Status chapter gives a detailed description of the objectives.

Related Topics

• “Model Representation for Analysis” on page 2-28
• “Run additional analysis to reduce instances of rational approximation” on page 15-15
• “Rebuild model representation” on page 15-13

2 How the Simulink Design Verifier Software Works

2-46

Detect Design Errors in AUTOSAR Software Component Model

The AUTOSAR standard defines Basic Software (BSW) services that run in the AUTOSAR run-time
environment. The services include NVRAM Manager (NvM) Diagnostic Event Manager (Dem), and
Function Inhibition Manager (FiM) services. The following example shows how to use Simulink
Design Verifier to run design error checks on the AUTOSAR component model.

Prepare the Model

Open the AUTOSAR software component. This example uses AUTOSAR simulink model
autosar_bsw_monitor.

model = 'autosar_bsw_monitor';
open_system(model);

 Detect Design Errors in AUTOSAR Software Component Model

2-47

Monitor component autosar_bsw_monitor contains a call to the Dem service interface
DiagnosticMonitor and four calls to the Dem service interface DiagnosticInfo. The four
DiagnosticInfo calls are implemented using the Basic Software library block DiagnosticInfoCaller
(AUTOSAR Blockset). Each block is configured to call the DiagnosticInfo operation
GetEventFailed. The GetEventFailed calls use client ports TPS1StuckLow, TPS1StuckHigh,
TPS2StuckLow, and TPS2StuckHigh.

Perform Design Error Detection Analysis

To detect the design errors in the above component model, configure the Design Verifier options as
follows:

opts = sldvoptions;
opts.Mode = "DesignErrorDetection";
opts.DetectDeadLogic = 'on';
opts.DetectActiveLogic = 'on';

Analyze the model.

[status, files] = sldvrun('autosar_bsw_monitor', opts, true);

The Simulink® Design Verifier™ Results Summary window indicates that an analysis harness model
autosar_bsw_monitor_SldvStub is created. You can also generate the same analysis harness
model using sldvextract function.

Review the Analysis Results

The Simulink Design Verifier Results Summary window shows that 18 of 18 objectives are active logic
in the model.

2 How the Simulink Design Verifier Software Works

2-48

To view the detailed analysis report, click the HTML link in the Results Summary window. The
Design Error Detection Objectives Status section includes the Active Logic objectives statuses
for the model.

 Detect Design Errors in AUTOSAR Software Component Model

2-49

The analysis report also captures information about the analysis harness for analyzing the model in
the Analysis Harness Information section. The Stubbed Simulink Functions for Analysis
section in the Analysis Harness Information section lists the stubbed Simulink functions.

Note that Simulink Design Verifier assumes that the output of stubbed Simulink Functions is held
when the functions are invoked multiple times in a single step.

Related Links

• “Analyze AUTOSAR Component Models” on page 2-33

2 How the Simulink Design Verifier Software Works

2-50

Checking Compatibility with the
Simulink Design Verifier Software

• “Check Model Compatibility” on page 3-2
• “Supported and Unsupported Simulink Blocks in Simulink Design Verifier” on page 3-7
• “Support Limitations for Simulink Software Features” on page 3-16
• “Support Limitations for Model Blocks” on page 3-19
• “Support Limitations for Stateflow Software Features” on page 3-21
• “Support Limitations for MATLAB for Code Generation” on page 3-25
• “Support Limitations and Considerations for S-Functions and C/C++ Code” on page 3-28

3

Check Model Compatibility
In this section...
“Run Compatibility Check” on page 3-2
“Compatibility Check Results” on page 3-3

With Simulink Design Verifier, you can analyze Simulink models to:

• Detect design errors that can occur at a run time.
• Generate test cases that achieve model coverage.
• Prove properties and identify property violations.

Before Simulink Design Verifier analyzes a model, the software checks whether the model is
compatible for analysis. The model is compatible for analysis when:

• The model is compiled into an executable form.
• The model is compatible with code generation.
• The model performs zero-second simulation with no errors, that is the simulation start and stop

time is 0.

The software supports a broad range of Simulink and Stateflow software capabilities in your models.
However, there are capabilities that the product does not support, described in “Support Limitations
for Simulink Software Features” on page 3-16 and “Support Limitations for Stateflow Software
Features” on page 3-21.

For more information on supported Simulink blocks, see “Supported and Unsupported Simulink
Blocks in Simulink Design Verifier” on page 3-7.

Run Compatibility Check
Before the software begins an analysis, it checks the compatibility of your model, and then creates a
model representation. The model representation includes the model artifacts that are used during
analysis. For more information, see “Model Representation for Analysis” on page 2-28.

Before you start an analysis, you can run a compatibility check on your model by using one of these
methods. When you use any of these methods, the model representation is always rebuilt.

• On the Design Verifier tab, in the Analyze section, click Check Compatibility.
• In the Model Advisor, select either By Product > Simulink Design Verifier > Check

compatibility with Simulink Design Verifier or By Task > Simulink Design Verifier
Compatibility Check > Check compatibility with Simulink Design Verifier. Click Run This
Check.

For more information, see “Simulink Design Verifier Checks”.
• To run the compatibility check programmatically at the command line or in a MATLAB program,

use the sldvcompat function . For more information, see sldvcompat.
• To check compatibility of a Subsystem, right-click the Subsystem and select Design Verifier >

Check Subsystem Compatibility.

3 Checking Compatibility with the Simulink Design Verifier Software

3-2

Compatibility Check Results
When you run a compatibility check on a model, the Results Summary window displays one of these
results:

• “Model Is Compatible” on page 3-3
• “Model Is Incompatible” on page 3-3
• “Model Is Partially Compatible” on page 3-5

Model Is Compatible

If your model is compatible, you can continue with the analysis in the Results Summary window. For
example, to continue the test generation analysis, click Generate Tests.

Note After you have completed the compatibility check, if you change the model, you cannot
continue the analysis in the Results Summary window. If you change your model, rerun the
compatibility check for analysis.

Model Is Incompatible

If the model is incompatible with Simulink Design Verifier, you can identify and fix the
incompatibilities through the Diagnostic Viewer messages. For more information, see “View
Diagnostics”.

 Check Model Compatibility

3-3

• If your model uses a variable-step solver, configure the solver Type to Fixed-step.

• If your model has nonfinite data, change the value of the data or configure the model so that the
data is treated as a variable during Simulink Design Verifier analysis. For more information, see
“Nonfinite Data” on page 2-19.

3 Checking Compatibility with the Simulink Design Verifier Software

3-4

If your model is large and contains many subsystems, you can use the Test Generation Advisor to
determine whether certain subsystems cause the incompatibility. For more information, see “Use Test
Generation Advisor to Identify Analyzable Components” on page 7-24.

Model Is Partially Compatible

A model is partially compatible if at least one model object in the model is incompatible. Simulink
Design Verifier continues the analysis for partially compatible model by stubbing out the unsupported
elements. By default, the “Automatic stubbing of unsupported blocks and functions” on page 15-13
option is set to On. For more information, see “Handle Incompatibilities with Automatic Stubbing” on
page 2-7.

 Check Model Compatibility

3-5

See Also
“Overview of the Simulink Design Verifier Workflow” on page 1-19 | “Block Replacements for
Unsupported Blocks” on page 4-7 | “Model Representation for Analysis” on page 2-28

3 Checking Compatibility with the Simulink Design Verifier Software

3-6

Supported and Unsupported Simulink Blocks in Simulink
Design Verifier

Simulink Design Verifier provides various levels of support for the Simulink blocks:

• Supported
• Partially supported
• Not supported

If your model contains partially supported blocks, you can enable automatic stubbing. In order to
improve the scalability of the analysis, automatic stubbing conservatively abstracts the block
behavior. As a result, the analysis may not successfully analyze all the objectives. For more details
about automatic stubbing, see “Handle Incompatibilities with Automatic Stubbing” on page 2-7.

To achieve 100% coverage, avoid using partially supported blocks in models that you analyze.

The following tables summarize Simulink Design Verifier analysis support for Simulink blocks. Each
table lists the blocks in a Simulink library and also describes support information for that particular
block.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries. Those blocks are listed under
their respective libraries.

Continuous Library

Block Support Notes
Derivative Not supported
Integrator Not supported
Integrator Limited Not supported
PID Controller Not supported
PID Controller (2DOF) Not supported
Second-Order Integrator Not supported
Second-Order Integrator Limited Not supported
State-Space Not supported
Transfer Fcn Not supported
Transport Delay Not supported
Variable Time Delay Not supported
Variable Transport Delay Not supported
Zero-Pole Not supported

 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

3-7

Discontinuities Library

The software supports all blocks in the Discontinuities library.

Discrete Library

Block Support Notes
Delay Supported
Difference Supported
Discrete Derivative Supported
Discrete Filter Supported
Discrete FIR Filter Supported
Discrete PID Controller Supported
Discrete PID Controller (2DOF) Supported
Discrete State-Space Not supported
Discrete Transfer Fcn Supported
Discrete Zero-Pole Not supported
Discrete-Time Integrator Supported
Memory Supported
Tapped Delay Supported
Transfer Fcn First Order Supported
Transfer Fcn Lead or Lag Supported
Transfer Fcn Real Zero Supported
Unit Delay Supported
Zero-Order Hold Supported

Logic and Bit Operations Library

The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block Support Notes
Cosine Supported
Direct Lookup Table (n-D) Supported
Interpolation Using Prelookup Partially supported when:

• The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than 4.

or

• The Interpolation method parameter is Linear and the
Number of sub-table selection dimensions parameter is not
0.

3 Checking Compatibility with the Simulink Design Verifier Software

3-8

Block Support Notes
1-D Lookup Table Partially supported when the Interpolation method or the

Extrapolation method parameter is Cubic Spline.
2-D Lookup Table Not supported when the Interpolation method or the

Extrapolation method parameter is Akima Spline.
n-D Lookup Table Partially supported when:

• The Interpolation method or the Extrapolation method
parameter is Cubic Spline.

or

• The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than 5.

Not supported when the Interpolation method or the
Extrapolation method parameter is Akima Spline.

Lookup Table Dynamic Supported
Prelookup Supported
Sine Supported

Math Operations Library

Block Support Notes
Abs Supported
Add Supported
Algebraic Constraint Supported
Assignment Supported
Bias Supported
Complex to Magnitude-Angle Supported
Complex to Real-Imag Supported
Divide Supported
Dot Product Supported
Find Nonzero Elements Not supported
Gain Supported
Magnitude-Angle to Complex Supported
Math Function Supported. Support for pow function is limited to integer

exponents only.
Matrix Concatenate Supported
MinMax Supported
MinMax Running Resettable Supported
Permute Dimensions Supported
Polynomial Supported

 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

3-9

Block Support Notes
Product Supported
Product of Elements Supported
Real-Imag to Complex Supported
Reciprocal Sqrt Partially supported
Reshape Supported
Rounding Function Supported
Sign Supported
Signed Sqrt Partially supported
Sine Wave Function Partially supported
Slider Gain Supported
Sqrt Partially supported
Squeeze Supported
Subtract Supported
Sum Supported
Sum of Elements Supported
Trigonometric Function Supported if Function is sin, cos, or sincos, and

Approximation method is CORDIC. Partially supported
otherwise.

Unary Minus Supported
Vector Concatenate Supported
Weighted Sample Time Math Supported

Model Verification Library

The software supports all blocks in the Model Verification library.

Model-Wide Utilities Library

Block Support Notes
Block Support Table Supported
DocBlock Supported
Model Info Supported
Timed-Based Linearization Not supported
Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes
Atomic Subsystem Supported
Code Reuse Subsystem Supported

3 Checking Compatibility with the Simulink Design Verifier Software

3-10

Block Support Notes
Configurable Subsystem Supported
Enable Supported
Enabled Subsystem Design range checks do not consider specified minimum and

maximum values for blocks connected to the output port of the
subsystem. For more information on design range checks, see
“Check for Specified Minimum and Maximum Value Violations”
on page 6-23.

Simulink Design Verifier treats Enabled Subsystems as short-
circuited during test generation.

Enabled and Triggered Subsystem Not supported when the trigger control signal specifies a fixed-
point data type.

Design range checks do not consider specified minimum and
maximum values for blocks connected to the output port of the
subsystem. For more information on design range checks, see
“Check for Specified Minimum and Maximum Value Violations”
on page 6-23.

Simulink Design Verifier treats Enabled and Triggered
Subsystems as short-circuited during test generation.

For Each Supported with the following limitations:

• When For Each Subsystem contains one or more Simulink
Design Verifier Test Condition, Test Objective, Proof
Assumption, or Proof Objective blocks, not supported.

• When the mask parameters of the For Each Subsystem are
partitioned, not supported.

For Each Subsystem Supported with the following limitations:

• When For Each Subsystem contains one or more Simulink
Design Verifier Test Condition, Test Objective, Proof
Assumption, or Proof Objective blocks, not supported.

• When the mask parameters of the For Each Subsystem are
partitioned, not supported.

For Iterator Subsystem Supported
Function-Call Feedback Latch Supported
Function-Call Generator Supported
Function-Call Split Supported
Function-Call Subsystem Design range checks do not consider specified minimum and

maximum values for blocks connected to the output port of the
subsystem. For more information on design range checks, see
“Check for Specified Minimum and Maximum Value Violations”
on page 6-23.

If Parameter configurations are not supported. The analysis
ignores parameter configurations that you specify for an If block.

 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

3-11

Block Support Notes
If Action Subsystem Supported
In Bus Element Supported
Inport Supported
Model Supported except for the limitations described in “Support

Limitations for Model Blocks” on page 3-19.
Out Bus Element Supported
Outport Supported
Resettable Subsystem Supported
Subsystem Supported
Variant Transitions in Stateflow Supported.

Only the active variant is analyzed.
Switch Case Supported
Switch Case Action Subsystem Supported
Trigger Supported
Triggered Subsystem Not supported when the trigger control signal specifies a fixed-

point data type.

Design range checks do not consider specified minimum and
maximum values for blocks connected to the output port of the
subsystem. For more information on design range checks, see
“Check for Specified Minimum and Maximum Value Violations”
on page 6-23.

Simulink Design Verifier treats Enabled Subsystems as short-
circuited during test generation.

Variant Subsystem Not supported when the Generate preprocessor conditionals
parameter is enabled.

Only the active variant is analyzed.
While Iterator Subsystem Supported

Signal Attributes Library

The software supports all blocks in the Signal Attributes library.

Signal Routing Library

Block Support Notes
Bus Assignment Supported
Bus Creator Supported
Bus Selector Supported
Data Store Memory Supported
Data Store Read Supported

3 Checking Compatibility with the Simulink Design Verifier Software

3-12

Block Support Notes
Data Store Write Supported
Demux Supported
Environment Controller Supported
From Supported
Goto Supported
Goto Tag Visibility Supported
Index Vector Supported
Manual Switch The Manual Switch block is compatible with the software, but

the analysis ignores this block in a model. The analysis does not
flag the coverage objectives for this block as satisfiable or
unsatisfiable.

Model coverage data is collected for the Manual Switch block.
Merge Supported
Multiport Switch Supported
Mux Supported
Selector Supported
Switch Supported
Vector Concatenate Supported

Sinks Library

Block Support Notes
Display Supported
Floating Scope Supported
Outport (Out1) Supported
Out Bus Element Supported
Scope Supported
Stop Simulation Not supported
Terminator Supported
To File Supported
To Workspace Supported

Sources Library

Block Support Notes
Band-Limited White Noise Not supported
Chirp Signal Partially supported
Clock Supported

 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

3-13

Block Support Notes
Constant Supported unless Constant value is inf or nan (in which case,

it is not supported).
Counter Free-Running Supported
Counter Limited Supported
Digital Clock Supported
Enumerated Constant Supported
From File Partially supported. When MAT-file data is stored in MATLAB

timeseries format, not supported.
From Workspace Partially supported
Ground Supported
Inport (In1) Supported
In Bus Element Supported if Simulink.Bus type is defined for the In Bus

Element.
Pulse Generator Supported
Ramp Supported
Random Number Not supported
Repeating Sequence Partially supported
Repeating Sequence Interpolated Partially supported
Repeating Sequence Stair Supported
Signal Editor Not supported
Signal Generator Partially supported if wave form is sine. Supported if wave form

is square. Not supported if wave form is random.
Sine Wave Partially supported
Step Supported
Uniform Random Number Not supported

User-Defined Functions Library

Block Support Notes
C Function Partially supported. The C Function block is stubbed out during

the Simulink Design Verifier analysis.
C Caller Supported.
Initialize Function • Not Supported for Initialize function containing Parameter

Writer blocks.
• Not supported as a target for subsystem analysis.

Interpreted MATLAB Function Partially supported
Level-2 MATLAB S-Function For limitations, see “Support Limitations and Considerations for

S-Functions and C/C++ Code” on page 3-28.
MATLAB Function For limitations, see “Support Limitations for MATLAB for Code

Generation” on page 3-25.

3 Checking Compatibility with the Simulink Design Verifier Software

3-14

Block Support Notes
MATLAB System • Decision, Condition and MCDC Coverage objectives are

supported in Test Generation. Enhanced MCDC, Relational
Boundary and Custom Test objectives are not supported.

• Custom Proof objectives are not supported in Property
Proving.

• For further limitations, see “Support Limitations for MATLAB
for Code Generation” on page 3-25.

Logical expressions within assignment statements are not
analyzed for coverage objectives.

Reset Function Not supported
S-Function Builder For limitations, see “Support Limitations and Considerations for

S-Functions and C/C++ Code” on page 3-28.
Simulink Function • For export-function models, see “Analyze Export-Function

Models” on page 2-12.
• Global Simulink functions within a non export-function model

reference are not supported.
Terminate Function Partially supported.

• The behaviour of Terminate function is ignored and is
replaced by an empty function during the analysis.

• Not supported as a target for subsystem analysis.
Observer Reference Supported with limitations. See “Isolate Verification Logic with

Observers” on page 12-29.
Simscape Library Not supported

 Supported and Unsupported Simulink Blocks in Simulink Design Verifier

3-15

Support Limitations for Simulink Software Features

Simulink Design Verifier does not support the following Simulink software features. Avoid using these
unsupported features.

Not Supported Description
Variable-step solvers The software supports only fixed-step solvers.

For more information, see “Fixed Step Solvers in Simulink”.
Callback functions The software does not execute model callback functions during the

analysis. The results that the analysis generates, such as the harness
model, may behave inconsistently with the expected behavior.

• If a model or any referenced model calls a callback function that
changes any block parameters, model parameters, or workspace
variables, the analysis does not reflect those changes.

• Changing the storage class of base workspace variables on model
callback functions or mask initializations is not supported.

• Callback functions called prior to analysis, such as the
PreLoadFcn or PostLoadFcn model callbacks, are fully
supported.

Model callback functions The software supports model callback functions only if the InitFcn
callback of the model is empty.

Algebraic loops The software does not support models that contain algebraic loops.

For more information, see “Algebraic Loop Concepts”.
Masked subsystem
initialization functions

The software does not support models whose masked subsystem
initialization:

• Modifies any attribute of any workspace parameter.
• Deletes or creates blocks.

3 Checking Compatibility with the Simulink Design Verifier Software

3-16

Not Supported Description
Variable-size signals The software supports test generation for models with bounded

variable-size signals. For more information on how to generate test
cases when input signals are of variable-size, see “Achieve Coverage
in Models with Variable-Size Inputs” on page 9-24.

In addition, the following are the limitations for analysis:

1 Relational boundary coverage objectives
2 Enhanced MCDC coverage objectives
3 Models with variable-size signals at root level input port
4 Models with variable-size signals with maximum size 1

Note

• Coverage objectives of single port logical and min-max blocks with
variable size signals are not considered.

• The analysis is performed under the assumptions that at any step,
all the variable-size inputs of a block will have same size.

Multiword fixed-point data
types

The software does not support multiword fixed-point data types larger
than 128 bits.

Nonzero start times Although Simulink allows you to specify a nonzero simulation start
time, the analysis generates signal data that begins only at zero. If
your model specifies a nonzero start time:

• If you do not select the Reference input model in generated
harness parameter (the default), the harness model is a
subsystem. The analysis sets the start time of the harness model to
1 and continues the analysis.

• If you select the Reference input model in generated harness
parameter, a Model block references the harness model. The
software cannot change the start time of the harness model, so the
analysis stops and you see a recommendation to set the Start
time parameter to 0.

• Simulink Design Verifier assumes zero start time for analysis and
generates signal data that begins at zero. Zero start time might
impact the reporting of the objective status. For example, in the
test generation analysis, the software might report some
objectives as Undecided with Testcases. For more
information, see “Simulation Basics”.

 Support Limitations for Simulink Software Features

3-17

Not Supported Description
Nonfinite data The software does not support nonfinite data (for example, NaN and

Inf) and related operations.

In the Relational Operator block, the software assigns the output as
follows:

• If the Relational operator parameter is isFinite, the output is
always 1.

• If the Relational operator parameter is isNan or isInf, the
output is always 0.

In the MATLAB Function block, the software assigns the return value
as follows:

• For the isFinite function, the output is always 1.
• For the isNan and isInf functions, the output is always 0.

Concurrent execution The software does not support models that are configured for
concurrent execution.

Signals with nonzero sample
time offset

The software does not support models with signals that have nonzero
sample time offsets.

Models with no output ports The software only supports models that have one or more output
ports. If a model contains test condition or test objective blocks and
no output ports are present in the model, then nominal test cases will
be generated.

Large floating-point
constants outside the range
[-realmax/2,
realmax/2]

The use of large floating-point constants can cause out of memory
errors or substantial loss of precision. Avoid using such constants if
possible.

Symbolic Dimensions The software does not support symbolic dimensions for test
generation, property proving, or design error detection.

Simulink Strings Models that contain blocks with string data types as block parameters
are not supported. For more information, see “Simulink Strings”.

Parameter Tuning The software does not support parameter tuning for the parameters
that are defined in the Model Workspace.

Row-major Algorithms The software does not support models that contain MATLAB System
blocks that use coder.rowMajor directive. For more information
see, “Use algorithms optimized for row-major array layout”.

3 Checking Compatibility with the Simulink Design Verifier Software

3-18

Support Limitations for Model Blocks
Simulink Design Verifier supports the Model block with the following limitations. The software cannot
analyze a model containing one or more Model blocks if:

• The referenced model is protected. Protected referenced models are encoded to obscure their
contents. This allows third parties to use the referenced model without being able to view the
intellectual property that makes up the model.

For more information, see “Reference Protected Models from Third Parties”.
• The parent model or any of the referenced models returns an error when you set the
Configuration Parameters > Diagnostics > Connectivity > Element name mismatch
parameter to error.

You can use the Element name mismatch diagnostic along with bus objects so that your model
meets the bus element naming requirements imposed by some blocks.

• The Model block uses asynchronous function-call inputs.
• Any of the Model blocks in the model reference hierarchy creates an artificial algebraic loop. If

this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box, set the Minimize
algebraic loop parameter to error so that Simulink reports an algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters dialog box, select the
Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.
3 Simulate the model.
4 Simulink will remove the algebraic loop if possible. If Simulink cannot eliminate the artificial

algebraic loop, highlight the location of the algebraic loop by opening the Modeling tab and,
in the Compile section, clicking Update Model.

5 Eliminate the artificial algebraic loop so that the software can analyze the model. Break the
loop with Unit Delay blocks so that the execution order is predictable.

Note For more information, see “Algebraic Loop Concepts”.
• The parent model and the referenced model have mismatched data type override settings. The

data type override setting of the parent model and its referenced models must be the same, unless
the data type override setting of the parent model is Use local settings. You can configure
data type override settings to simulate a model that specifies fixed-point data types. Using this
setting, the software temporarily overrides data types with floating-point data types during
simulation.

set_param('MyModel','DataTypeOverride','Double')

For more information, see set_param.

To observe the true behavior of your model, set the data type override parameter to
UseLocalSettings or Off.

set_param('MyModel','DataTypeOverride','Off')
• The referenced model is a Model block with virtual buses at input ports, and the signals in the bus

do not all have the same sample time at compilation. To make the model compatible with Simulink

 Support Limitations for Model Blocks

3-19

Design Verifier analysis, convert the virtual bus to a nonvirtual bus, or specify an explicit sample
time for the port.

• When you run the analysis on Model block, then the code generated as a top model is not
supported.

3 Checking Compatibility with the Simulink Design Verifier Software

3-20

Support Limitations for Stateflow Software Features

Simulink Design Verifier does not support the following Stateflow software features. Avoid using
these unsupported features in models that you analyze.

In this section...
“ml Namespace Operator, ml Function, ml Expressions” on page 3-21
“C or C++ Operators” on page 3-21
“C Math Functions” on page 3-21
“Atomic Subcharts That Call Exported Graphical Functions Outside a Subchart” on page 3-22
“Atomic Subchart Input and Output Mapping” on page 3-22
“Recursion and Cyclic Behavior” on page 3-22
“Custom C/C++ Code” on page 3-23
“Textual Functions with Literal String Arguments” on page 3-24

ml Namespace Operator, ml Function, ml Expressions
The software does not support calls to MATLAB functions or access to MATLAB workspace variables,
which the Stateflow software allows. See “Access MATLAB Functions and Workspace Data in C
Charts” (Stateflow).

C or C++ Operators
The software does not support the sizeof operator, which the Stateflow software allows.

C Math Functions
The software supports calls to the following C math functions:

• abs
• ceil
• fabs
• floor
• fmod
• labs
• ldexp
• pow (only for integer exponents)

The software does not support calls to other C math functions, which the Stateflow software allows. If
automatic stubbing is enabled, which it is by default, the software eliminates these unsupported
functions during the analysis.

For information about C math functions in Stateflow, see “Call C Library Functions in C Charts”
(Stateflow).

 Support Limitations for Stateflow Software Features

3-21

Note For details about automatic stubbing, see “Handle Incompatibilities with Automatic Stubbing”
on page 2-7.

Atomic Subcharts That Call Exported Graphical Functions Outside a
Subchart
The software does not support atomic subcharts that call exported graphical functions, which the
Stateflow software allows.

Note For information about exported functions, see “Export Stateflow Functions for Reuse”
(Stateflow).

Atomic Subchart Input and Output Mapping
If an input or output in an atomic subchart maps to chart-level data of a different scope, the software
does not support the chart that contains that atomic subchart.

For an atomic subchart input, this incompatibility applies when the input maps to chart-level data of
output, local, or parameter scope. For an atomic subchart output, this incompatibility applies when
the output maps to chart-level data of local scope.

Recursion and Cyclic Behavior
The software does not support recursive functions, which occur when a function calls itself directly or
indirectly through another function call. Stateflow software allows you to implement recursion using
graphical functions.

In addition, the software does not support recursion that the Stateflow software allows you to
implement using a combination of event broadcasts and function calls.

Note For information about avoiding recursion in Stateflow charts, see “Avoid Unwanted Recursion
in a Chart” (Stateflow).

Stateflow software also allows you to create cyclic behavior, where a sequence of steps is repeated
indefinitely. If your model has a chart with cyclic behavior, the software cannot analyze it.

Note For information about cyclic behavior in Stateflow charts, see “Detect Cyclic Behavior”
(Stateflow).

However, you can modify a chart with cyclic behavior so that it is compatible, as in the following
example.

The following chart creates cyclic behavior. State A calls state A1, which broadcasts a Clear event to
state B, which calls state B2, which broadcasts a Set event back to state A, causing the cyclic
behavior.

3 Checking Compatibility with the Simulink Design Verifier Software

3-22

If you change the send function calls to use directed event broadcasts so that the Set and Clear
events are broadcast directly to the states B1 and A1, respectively, the cyclic behavior disappears and
the software can analyze the model.

Note For information about the benefits of directed event broadcasts, see “Broadcast Local Events to
Synchronize Parallel States” (Stateflow).

Custom C/C++ Code
If your model consists of custom C/C++ code, Simulink Design Verifier supports analysis based on
these settings:

• If you enable import custom code and custom code analysis options, the software supports custom
C/C++ code for analysis. For more information, see “Import custom code” and “Enable custom
code analysis”.

• If you enable import custom code option and the custom code analysis option is set to Off, the
model is compatible for analysis, but calls to the custom code are stubbed during analysis.

• If the import custom code option is set to Off, the custom code is not supported and the model is
incompatible for analysis.

 Support Limitations for Stateflow Software Features

3-23

Textual Functions with Literal String Arguments
The software does not support literal string arguments to textual functions in a Stateflow chart.

3 Checking Compatibility with the Simulink Design Verifier Software

3-24

Support Limitations for MATLAB for Code Generation

In this section...
“Unsupported MATLAB for Code Generation Features” on page 3-25
“Support Limitations for MATLAB for Code Generation Library Functions” on page 3-25

Unsupported MATLAB for Code Generation Features
Simulink Design Verifier does not support the following features of the MATLAB Function block in the
Simulink software and MATLAB functions in the Stateflow software. Avoid using these unsupported
features in models that you analyze with Simulink Design Verifier.

Not Supported Description
Characters The software does not support characters, which MATLAB for

code generation allows.
C functions The software does not support calls to external C functions,

which MATLAB for code generation allows.
Extrinsic functions The software supports extrinsic functions only when they do not

affect the output of a MATLAB function.

Support Limitations for MATLAB for Code Generation Library Functions
Simulink Design Verifier provides various levels of support for MATLAB for code generation library
functions. The software either fully or partially supports particular functions. It does not support
other functions.

If your model contains unsupported functions, you can turn on automatic stubbing, which considers
the interface of the unsupported functions, but not their behavior. However, if any of the unsupported
functions affect the simulation outcome, the analysis might achieve only partial results. For details
about automatic stubbing, see “Handle Incompatibilities with Automatic Stubbing” on page 2-7.

To achieve 100% coverage, avoid using unsupported MATLAB library functions in models that you
analyze.

The following table lists Simulink Design Verifier support for categories of library functions in code
generation from MATLAB:

• Software supports functions in that category, indicated by a dash (—).
• Software does not support functions in that category.
• Software supports the function in that category with limitations as specified.

For the complete listing of available functions, see “Functions and Objects Supported for C/C++ Code
Generation”.

Function Category Support Notes
Aerospace Toolbox functions Not supported.

 Support Limitations for MATLAB for Code Generation

3-25

Function Category Support Notes
Arithmetic operator functions Supported with the following limitations:
 mldivide (\) Supported.
 mpower (^) Supports only integer exponents.

Otherwise partially supported.
 mrdivide (/) Supported.
 power (.^) Supports integer exponents. Float

exponents partially supported.
Bit-wise operation functions —
Casting functions Supported with the following limitations:
 char Not supported.
 typecast Not supported.
Communications Toolbox™ functions Not supported.
Complex number functions Partially supported.
Computer Vision Toolbox™ functions Not supported.
Data type functions —
Derivative and Integral functions Not supported.
Discrete math functions —
Error handling functions Supported with the following limitations:
 assert Supported, but does not behave like

a Proof Objective block.
Exponential functions Supported.
Filtering and convolution functions Supported with the following limitations:
 detrend Supported if argument is a scalar.

Otherwise, partially supported.
Fixed-Point Designer functions Supported.
Histogram functions Not supported.
Image Processing Toolbox™ functions Not supported.
Input and output functions —
Interpolation and computation geometry Supported with the following limitations:
 cart2pol Partially supported.
 cart2sph Partially supported.
 pol2cart Partially supported.
 sph2cart Partially supported.
Linear algebra Not supported.
Logical operator functions —
MATLAB Compiler™ functions Not supported.
Matrix and array functions Supported with the following limitations:
 angle Partially supported.

3 Checking Compatibility with the Simulink Design Verifier Software

3-26

Function Category Support Notes
 cond Partially supported.
 det Supported.
 eig Partially supported.
 inv Supported.
 invhilb Not supported.
 logspace Partially supported.
 lu Supported.
 norm Supported when invoked using the

syntax norm(A,p) where p is either
1 or inf. Otherwise partially
supported.

 normest Partially supported.
 pinv Partially supported.
 planerot Partially supported.
 qr Partially supported.
 rank Partially supported.
 rcond Supported.
 subspace Partially supported.
Nested functions Supported.
Nonlinear numerical methods Not supported.
Polynomial functions Not supported.
Relational operations functions —
Rounding and remainder functions —
Set functions —
Signal Processing functions in MATLAB Not supported.
Signal Processing Toolbox™ functions Not supported.
Special values Supported with the following limitations:
 rand Partially supported.
 randn Partially supported.
Specialized math Not supported.
Statistical functions —
String functions Supported with the following limitations:
 char Not supported.
 ischar Not supported.
Trigonometric functions Not supported.

 Support Limitations for MATLAB for Code Generation

3-27

Support Limitations and Considerations for S-Functions and
C/C++ Code

In this section...
“Enabling S-Functions in Simulink Design Verifier” on page 3-28
“Support Limitations for S-Functions and C/C++ Code” on page 3-28
“Handle Volatile Variables as Normal Variables” on page 3-29
“Considerations for Enabling S-Functions and C/C++ Code in Simulink Design Verifier” on page 3-
29
“Source Code Protection” on page 3-29

Enabling S-Functions in Simulink Design Verifier
Simulink Design Verifier supports test case generation for code generated with Embedded Coder®.
Simulink Design Verifier also supports error detection, test case generation, and property proving for
S-Functions that:

• The Legacy Code Tool generates, with def.Options.supportCoverageAndDesignVerifier
set to true.

• The S-Function Builder generates, with Enable support for Design Verifier selected on the
Build Info tab of the S-Function Builder dialog box.

• The function slcovmex compiles, with the option -sldv passed to the function when compiling
the S-function.

For more information on the three approaches, see “About C MEX S-Functions”.

Support Limitations for S-Functions and C/C++ Code
• Simulink Design Verifier does not support S-Functions or C/C++ code containing:

• Continuous states. Simulink Design Verifier does not analyze such code.
• Zero-crossing functions. Simulink Design Verifier ignores such code during analysis.
• Constants that describe INF or NaN objects. Simulink Design Verifier considers such code as

containing floating-point overflow errors. Although Simulink Design Verifier analysis cannot
determine the type of overflow error for such cases, the analysis can determine which lines of
code introduce the incompatibility. Polyspace® can provide more information on why your code
contains floating-point overflow errors.

• You must specify that the signal elements entering the ports of S-Functions compiled with
slcovmex are contiguous. Use the SimStruct function ssSetInputPortRequiredContiguous.

Simulink Design Verifier supports the following design errors for S-Function and C/C++ code:

• Dead logic including active logic.
• Array out of bounds. This includes pointer out of bounds in case of C/C++.
• Division-by-Zero.

3 Checking Compatibility with the Simulink Design Verifier Software

3-28

Handle Volatile Variables as Normal Variables
Simulink Design Verifier allows the option for volatile variables to be stubbed or handled as normal
variables. When you select the Ignore the volatile qualifier parameter, volatile elements will be
treated in the same as the non-volatile elements. Deselecting the Ignore the volatile qualifier will
revert to the previous behavior of stubbing access to volatile elements.

Considerations for Enabling S-Functions and C/C++ Code in Simulink
Design Verifier

• When performing property proving or test generation analysis for models with enabled S-
Functions or C/C++ code generated with Embedded Coder, Simulink Design Verifier assumes that
the code contains no run-time errors. If the code contains run-time errors such as division by zero,
access to non-initialized variables or array out of bounds, the property proving or test generation
analysis can produce incorrect results. Code that has been checked by Polyspace and is free of
run-time errors provide correct results in Simulink Design Verifier analysis.

To avoid incorrect results that are produced due to run-time errors, perform design error
detection analysis first, and then perform property proving or test generation analysis.

• If Simulink Design Verifier cannot determine the size of arrays in your code (for instance for
arrays that are dynamically allocated with non-constant size), Simulink Design Verifier assumes an
upper bound for the array. Ensure that the given upper bound is appropriate.

• If you do not enable Simulink Design Verifier support for an S-function, Simulink Design Verifier
stubs the S-function. With S-function support enabled, Simulink Design Verifier analyzed the
content of the S-function to get more detailed information. Sometimes, Simulink Design Verifier
internally stubs the S-function. Internal stubs can be the result of different C/C++ constructs,
such as:

• Calls to library functions (the library function is replaced by a stub).
• Complex pointer operations.
• Casts to or from incompatible or unknown pointer types.

Models containing such constructs are labeled Partially compatible.

Source Code Protection
To analyze the contents of an S-function, information about the implementation of the S-function,
including information derived from the source code, are stored within the shared object. Although
this information is not directly accessible to users, consider disabling Simulink Design Verifier
support for S-Functions in models that are released externally if the S-Functions contain sensitive
source code.

See Also
“Configuring S-Function for Test Case Generation” on page 7-109 | “Generate Test Cases for
Embedded Coder Generated Code” on page 7-28

 Support Limitations and Considerations for S-Functions and C/C++ Code

3-29

Working with Block Replacements

• “What Is Block Replacement?” on page 4-2
• “Built-In Block Replacements” on page 4-4
• “Template for Block Replacement Rules” on page 4-6
• “Block Replacements for Unsupported Blocks” on page 4-7

4

What Is Block Replacement?
Using Simulink Design Verifier, you can define rules to replace blocks automatically in your model.
For example, you can work around a block that is incompatible with the software by creating a rule
that replaces an unsupported Simulink block in your model with a supported block that is functionally
equivalent. Or, you can customize blocks for analysis by creating a rule that adds constraints or
objectives to particular blocks in your model.

When performing block replacements, the software makes a copy of your model and replaces blocks
in the copy, without altering your original model. This way, you can easily customize a model for
analysis.

The Simulink Design Verifier software replaces blocks automatically in a model using:

• Libraries of replacement blocks
• Rules that define which blocks to replace and under what conditions

You replace any block with any built-in block, library block, or subsystem.

Block replacements are extensible, allowing you to define your own libraries of replacement blocks
and custom block replacement rules. Using block replacements, you can

• Work around an incompatibility, such as the presence of unsupported blocks in your model.
• Customize a block for analysis, such as:

• Adding constraints to its input signals
• Adding objectives to its output signals
• Eliminating the contents of a subsystem or Model block to simplify your analysis

Note You can use automatic stubbing as an alternative to block replacements to resolve
incompatibilities. Automatic stubbing replaces unsupported blocks with elements that have the same
interface. For more information, see “Handle Incompatibilities with Automatic Stubbing” on page 2-7.

Block Replacement Effects on Test Generation
Replacing blocks can affect test case generation if the replaced blocks share functionality with other
parts of your model. Before you replace blocks, understand functional dependencies on those blocks
or on shared signals. See “Highlight Functional Dependencies”. Replacement blocks can also affect
other analysis workflows such as property proving.

For example, you can customize a block for analysis using a replacement block that adds objectives to
an input signal. If another subsystem depends on that signal, the replacement block effectively adds
an objective for the subsystem.

In this example, the breakpoint range of u1 in the 2-D Lookup Table is 5–7. The switch threshold 8
falls outside the u1 lookup table range.

4 Working with Block Replacements

4-2

Tests generated without replacing the 2D Lookup Table satisfy two objectives: that the trigger is not
greater than the Switch block threshold 8, and that the trigger is greater than the Switch block
threshold 8.

Objectives Satisfied

The blkrep_rule_lookup2D_normal.m block replacement rule replaces the 2D Lookup Table with
a masked subsystem containing the 2D Lookup Table and a MATLAB Function block.

The MATLAB Function block constrains the analysis within the breakpoint bounds of the table.

 What Is Block Replacement?

4-3

Built-In Block Replacements
The Simulink Design Verifier software provides a set of block replacement rules and a corresponding
library of replacement blocks. Use these built-in block replacements when analyzing models. They
serve as examples that you can examine to learn how to create your own block replacements.

The following table lists the factory default block replacement rules, available in the matlabroot
\toolbox\sldv\sldv\private folder. There are two implementations of each factory-default block
replacement rule. Rules whose file names end with _normal.m replace blocks with Subsystem
blocks.

File Name Description
blkrep_rule_lookup_normal.m A rule that replaces 1-D Lookup Table blocks with an

implementation that includes test objectives for each
breakpoint and interval specified by the Breakpoints
parameter.

blkrep_rule_lookup2D_normal.m A rule that adds Test Condition/Proof Assumption blocks
to the input ports of 2-D Lookup Table blocks. Each Test
Condition/Proof Assumption block constrains signal values
to the interval specified by the corresponding breakpoint
vector.

blkrep_rule_mpswitch2_normal.m A rule that adds a Test Condition/Proof Assumption block
to the control input port of Multiport Switch blocks whose
Number of data ports parameter is 2. The Test
Condition/Proof Assumption block constrains signal values
to the interval [1, 2] (or [0, 1] if the block uses zero-based
indexing).

blkrep_rule_mpswitch3_normal.m A rule that adds a Test Condition/Proof Assumption block
to the control input port of Multiport Switch blocks whose
Number of data ports parameter is 3. The Test
Condition/Proof Assumption block constrains signal values
to the interval [1, 3] (or [0, 2] if the block uses zero-based
indexing).

blkrep_rule_mpswitch4_normal.m A rule that adds a Test Condition/Proof Assumption block
to the control input port of Multiport Switch blocks whose
Number of data ports parameter is 4. The Test
Condition/Proof Assumption block constrains signal values
to the interval [1, 4] (or [0, 3] if the block uses zero-based
indexing).

blkrep_rule_mpswitch5_normal.m A rule that adds a Test Condition/Proof Assumption block
to the control input port of Multiport Switch blocks whose
Number of data ports parameter is 5. The Test
Condition/Proof Assumption block constrains signal values
to the interval [1, 5] (or [0, 4] if the block uses zero-based
indexing).

blkrep_rule_switch_normal.m A rule that replaces Switch blocks with an implementation
that includes test objectives, requiring that each switch
position be exercised when the values of the first and
third input ports are different.

4 Working with Block Replacements

4-4

File Name Description
blkrep_rule_switch_nonvir_normal.m A rule that replaces Switch blocks having non-virtual bus

inputs with an implementation that converts non-virtual
bus inputs to virtual bus inputs. This implementation
includes test objectives and requires that each switch
position be exercised when the values of the first and
third input ports are different.

blkrep_rule_selector
 IndexVecPort_normal.m

A rule that adds a Test Condition/Proof Assumption block
to the index port of Selector blocks whose Index Option
parameter is Index vector (port). The Test
Condition/Proof Assumption block constrains signal values
to an interval whose endpoints are derived from the
values of the Selector block's Input port size and Index
mode parameters.

blkrep_rule_selector
 StartingIdxPort_normal.m

A rule that adds a Test Condition/Proof Assumption block
to the index port of Selector blocks whose Index Option
parameter is Starting index (port). The Test
Condition/Proof Assumption block constrains signal values
to an interval whose endpoints are derived from the
values of the Selector block's Input port size, Output
size, and Index mode parameters.

The library of replacement blocks that corresponds to the factory default rules is

matlabroot/toolbox/sldv/sldv/sldvblockreplacementlib

 Built-In Block Replacements

4-5

Template for Block Replacement Rules
To help you create block replacement rules, Simulink Design Verifier provides an annotated template
that contains a skeleton implementation of the requisite callbacks:

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

To create a block replacement rule, make a copy of the template and edit the copy to implement the
desired behavior for the rule you are creating. The comments in the template provide hints about how
to use each section.

Block replacement rules have the following restrictions:

• The function that represents a block replacement rule must include particular callbacks. Use the
block replacement rule template as a starting point for writing a custom rule. (See “Block
Replacements for Unsupported Blocks” on page 4-7.)

• The function that represents a block replacement rule must be on the MATLAB search path.

4 Working with Block Replacements

4-6

Block Replacements for Unsupported Blocks

This example shows how to use Simulink® Design Verifier™ functions to replace unsupported blocks
and how to customize test vector generation for specific requirements.

Model with an Unsupported Block

The example model includes a Switch block whose output is controlled by a Sqrt block. For each
switch position, the output of the model is calculated by a 1-D Lookup Table block. For this model, the
example concentrates on generating test cases that satisfy the following:

1. Achieve 100% lookup table coverage.

2. Test vectors demonstrate each Switch block position when the values of its first and third input
ports differ.

open_system('sldvdemo_sqrt_blockrep');

Checking Model Compatibility

Since the sqrt function is not supported, this model is partially compatible with Simulink Design
Verifier.

sldvcompat('sldvdemo_sqrt_blockrep');

04-Mar-2023 00:17:36
Checking compatibility for test generation: model 'sldvdemo_sqrt_blockrep'
Compiling model...done
Building model representation...done

 Block Replacements for Unsupported Blocks

4-7

04-Mar-2023 00:17:41

'sldvdemo_sqrt_blockrep' is partially compatible for test generation with Simulink Design Verifier.

The model can be analyzed by Simulink Design Verifier.
It contains unsupported elements that will be stubbed out during analysis. The results of the analysis might be incomplete.
See the Diagnostic Viewer for more details on the unsupported elements.

Creating a Custom Block Replacement Rule to Work Around the Incompatibility

This model can be analyzed for test generation by automatically stubbing the unsupported Sqrt block.
However, test cases cannot be generated for the Switch block positions because Simulink Design
Verifier does not understand the Sqrt block and the output of this block is effecting the Switch block.
Since you want test cases for the Switch block, you need to replace the Sqrt block with a supported
block that is functionally equivalent. The library block sldvdemo_custom_blockreplib shown
below constrains the input signal to the range [0 10000] and approximates the sqrt function by
using a 1-D Lookup Table block.

The table data was calculated to match the values of sqrt, with a maximum error of 0.2 in the range
[0 10000]. Refer to the mask initialization pane of the block Sqrt_Approx in the library
sldvdemo_custom_blockreplib for the values of the lookup table data.

The replacement rule is in defined the MATLAB-file sldvdemo_custom_blkrep_rule_sqrt.m.
Since the replacement block sldvdemo_custom_blockreplib for the Sqrt block is only valid for
double or single types, this rule ensures that these conditions are satisfied before allowing a block
replacement.

 function rule = sldvdemo_custom_blkrep_rule_sqrt

 rule = SldvBlockReplacement.blockreprule;
 rule.fileName = mfilename;

 rule.blockType = 'Sqrt';

 rule.replacementPath = sprintf('sldvdemo_custom_blockreplib/Sqrt_Approx');

 rule.replacementMode = 'Normal';

 parameter.OutMin = '$original.OutMin$';
 parameter.OutMax = '$original.OutMax$';
 parameter.OutDataTypeStr = '$original.OutDataTypeStr$';
 rule.parameterMap = parameter;

 rule.isReplaceableCallBack = @replacementTestFunction;

 end

 function out = replacementTestFunction(blockH)

 out = false;
 acceptedOutDataTypeStr = {'double','single',...
 'Inherit: Inherit via back propagation',...
 'Inherit: Same as input'};
 I = strmatch(get_param(blockH,'OutDataTypeStr'),acceptedOutDataTypeStr,'exact');
 if ~isempty(I)

 portDataTypes = get_param(blockH,'CompiledPortDataTypes');

 out = any(strcmp(portDataTypes.Inport,{'double','single'})) && ...
 strcmp(portDataTypes.Inport,portDataTypes.Outport);

4 Working with Block Replacements

4-8

 end
 end

open_system('sldvdemo_custom_blockreplib');
open_system('sldvdemo_custom_blockreplib/Sqrt_Approx/1-D Lookup Table');

Configuring Simulink® Design Verifier™ Options for Block Replacement

You will run Simulink Design Verifier in test generation mode with block replacements enabled. In
order to generate test cases for positions of Switch block, you must use the custom replacement rule
sldvdemo_custom_blkrep_rule_sqrt.m.

Since you are also interested in lookup table coverage, you need the built-in block replacement
blkrep_rule_lookup_normal.m, which inserts test objectives for each interval and breakpoint
value for a 1-D Lookup Table block. Moreover, you need the built-in rule
blkrep_rule_switch_normal.m, which requires that each switch position be exercised when the
values of the first and third input ports differ.

The analysis will run for a maximum of 30 seconds and produce a harness model. Report generation
is also enabled. Other Simulink Design Verifier options are set to their default values.

opts = sldvoptions;
opts.Mode = 'TestGeneration';
opts.MaxProcessTime = 80;
opts.BlockReplacement = 'on';
opts.BlockReplacementRulesList = ['sldvdemo_custom_blkrep_rule_sqrt.m,' ...
 'blkrep_rule_lookup_normal.m,'...
 'blkrep_rule_switch_normal.m'];
opts.SaveHarnessModel = 'on';
opts.ModelReferenceHarness = 'on';
opts.SaveReport = 'on';

Executing Test Generation with Block Replacements

The sldvrun function analyzes the model using the settings defined in a sldvoptions object opts.
The generated report includes a chapter summarizing block replacements performed on the model.

[status,fileNames] = sldvrun('sldvdemo_sqrt_blockrep', opts, true);

 Block Replacements for Unsupported Blocks

4-9

Executing Tests in the Harness Model

Enable the lookup table coverage metric and then run the test cases using the harness model. You
can also execute the suite of tests by clicking the "Run all" button on the Signal Builder dialog box
after enabling lookup table coverage from the Configuration Parameters dialog. In the Coverage tab,
select Enable coverage analysis and then select Coverage metrics > Other metrics > Lookup
table.

The coverage report shown below indicates that you can reach 100% lookup table coverage with the
test vectors that Simulink Design Verifier generated.

[harnessModelPath,harnessModel] = fileparts(fileNames.HarnessModel);
set_param(harnessModel,'covMetricSettings','dcmte');
sldvdemo_playall(harnessModel);

Clean Up

To complete the example, close all models and remove the files that Simulink Design Verifier
generated.

close_system('sldvdemo_custom_blockreplib');
close_system(fileNames.HarnessModel,0);
close_system(fileNames.BlockReplacementModel,0);
close_system('sldvdemo_sqrt_blockrep',0);
delete(fileNames.HarnessModel);
delete(fileNames.BlockReplacementModel);
delete(fileNames.DataFile);

4 Working with Block Replacements

4-10

Specifying Parameter Configurations

• “Parameter Configuration for Analysis” on page 5-2
• “Use Parameter Table” on page 5-7
• “Specify Parameter Configuration for Structure or Bus Parameters” on page 5-12
• “Specify Parameter Configuration for Full Coverage” on page 5-17
• “Store Parameter Constraints in MATLAB Code Files” on page 5-26
• “Use Parameter Configuration File” on page 5-29
• “Automatically Infer Parameter Specification” on page 5-32
• “Determine from Generated Code” on page 5-36
• “Using Command Line Functions to Support Changing Parameters” on page 5-39
• “Generate Parameters Values” on page 5-45
• “Extend Existing Test Cases After Applying Parameter Configurations” on page 5-46

5

Parameter Configuration for Analysis
In this section...
“What is Parameter Configuration for Analysis?” on page 5-2
“Specify Parameter Constraints for Models Using Referenced Configuration Set” on page 5-3
“Data Types in Parameter Configurations” on page 5-4
“Parameters in Variant Blocks” on page 5-5

What is Parameter Configuration for Analysis?
Simulink Design Verifier software can treat parameters in your model as variables during its analysis.
For example, suppose you specify a variable that is defined in the MATLAB workspace as the value of
a block parameter in your model. You can instruct Simulink Design Verifier to use additional values
for that parameter in its analysis.

You can achieve this by placing a constraint on a parameter in your model, during analysis that
parameter takes only your specified constraint value or values. A group of constraints on parameters
in the same model is also called a parameter configuration.

This allows you to, for example:

• Extend the results of design error detection or property proving analysis to consider the impact of
additional parameter values.

• Generate comprehensive test cases for situations in which parameter values must vary to achieve
more complete coverage results. For more information, see “Specify Parameter Configuration for
Full Coverage” on page 5-17.

Simulink Design Verifier provides the following workflows to specify parameter configuration:

5 Specifying Parameter Configurations

5-2

Parameter Configuration Workflows
Parameter Configuration How to Select Parameters Constraints?
Treat all parameters as constants Retains the initial value for all parameters during

the analysis. Thus, analysis considers all
parameters as constants.

Automatically infer parameter specification For each parameter, the minimum or maximum
value configured in Simulink.Parameter
object is used as the parameter configuration for
analysis.

When test generation target is Model, Simulink
Design Verifier selects as many parameters as
possible for parameter configuration.

When test generation target is Code Generated
as Top Model or Code Generated as Model
Reference, parameters whose value can be
changed in the generated code are selected for
parameter configuration. See “Automatically Infer
Parameter Specification” on page 5-32.

Determine from generated code Parameters whose value can be changed in the
generated code are selected for parameter
configuration during the analysis.

For such parameters, the minimum or maximum
value from Simulink.Parameter object is used
as the parameter configuration for analysis. See
“Determine from Generated Code” on page 5-
36.

Use parameter table Parameters and constraints in the parameter
table must be specified. See “Use Parameter
Table” on page 5-7

Use parameter configuration files Parameters and constraints in the input file must
be specified. See “Use Parameter Configuration
File” on page 5-29

Specify Parameter Constraints for Models Using Referenced
Configuration Set
If your model uses reference configuration set, you can use Override capability to specify parameter
constraints. Before you work with parameter table in a referenced configuration set, follow these
steps:

1 Open the model.
2 On the Design Verifier tab, click Settings to open the Configuration parameters window. The

Configuration parameters window shows the Configuration reference for the model.
3 Click on Parameters and Variants from Design Verifier pane.
4 To edit and save the constraints locally, right-click on the Parameters configuration and select

Override.

 Parameter Configuration for Analysis

5-3

5 Similarly, override the values in Parameter table. Right-click in the Parameter table area and
select Override and specify the values for the model by clicking on Find parameters.

6 The Parameter table area highlights the override settings for the model.

You can perform the analysis after specifying the values for the parameter table. For more
information on how to specify constraint values, see “Use Parameter Table” on page 5-7.

Data Types in Parameter Configurations
Consider the following issues related to data types when constraining parameter values:

5 Specifying Parameter Configurations

5-4

• “Parameters Converted to Fixed Point in the Model” on page 5-5
• “Parameters Defined as Simulink.Parameter and Referenced by Multiple Locations” on page 5-5
• “Complex Data as Parameters not Supported” on page 5-5
• “Tuning Array of Structure or Bus Data types are not supported” on page 5-5

Parameters Converted to Fixed Point in the Model

If your model references a base workspace parameter whose data type is auto, single, or double,
and the model converts that parameter to a fixed-point data type, you must define the constraints for
that parameter according to its fixed-point type.

Parameters Defined as Simulink.Parameter and Referenced by Multiple Locations

For a parameter defined as Simulink.Parameter or an inherited class of Simulink.Parameter
whose data type is auto, if the parameter is referenced by multiple locations with different data
types, Simulink Design Verifier cannot generate values for that parameter during the analysis.

Complex Data as Parameters not Supported

If the data type of a parameter in the MATLAB workspace is complex, Simulink Design Verifier does
not support generating values for that parameter during the analysis.

Tuning Array of Structure or Bus Data types are not supported

Simulink Design Verifier does not support tuning array of structure or bus data types during the
analysis.

Parameters in Variant Blocks
Parameters can be used to select variants in the model using variant blocks such as Variant
Subsystem, Variant Source and Variant Sinks.

Simulink Design Verifier supports only active variant for blocks the where Variant activation time
parameter is not set to startup. For blocks where Variant activation time is startup, Simulink
Design Verifier analyzes all variants when you select Analyze all Startup Variants under Design
Verifier > Parameters and Variants in Configuration Parameters dialog box.

To analyze a model that contains variant constraints, open the Launch Variant Manager. Use the
Variant Manager to run predefined configurations for a model, and use the model under any of the
configurations. The Simulink Design Verifier analysis report includes the results information about
the variants blocks.

Simulink Design Verifier does not support block replacement in models that contain model reference
with startup variants.

To perform the Simulink Design Verifier analysis on variant blocks with Variant activation time set
to startup, see “Verify and Validate Variant Models with Startup Activation Time”.

See Also
“Variant Manager for Simulink” | “Variant Activation Time for Variant Blocks”

 Parameter Configuration for Analysis

5-5

More About
• “Specify Parameter Configuration for Full Coverage” on page 5-17
• “Extend Existing Test Cases After Applying Parameter Configurations” on page 5-46

5 Specifying Parameter Configurations

5-6

Use Parameter Table

In this section...
“Find Parameters” on page 5-8
“Edit Parameter Constraints” on page 5-10
“Highlight Constrained Parameters in Model” on page 5-11

Using the Parameter Table, you can find and autogenerate constraints for parameters in your model.
This example uses the following model, which contains Gain and Constant parameters defined as m
and b, respectively.

The model callback function PreLoadFcn defines m and b in the MATLAB workspace.

 Use Parameter Table

5-7

When the model opens:

• m is set to 5.
• b is a Simulink.Parameter object of type int8 whose value is set to 5.

Find Parameters
This example shows how to specify values or ranges of values used for model parameters during
Simulink Design Verifier analysis.

Open the Parameter Table.

On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode settings,
click Settings.

In the Configuration Parameters dialog box, select Design Verifier > Parameters and Variants.

Find parameters that can be constrained for analysis.

At the bottom of the Parameter Table, click Find parameters. The Parameter Table searches your
model for parameters that can be configured and loads them in the table.

5 Specifying Parameter Configurations

5-8

When possible, the Parameter Table autogenerates constraint values for parameters. You can use
these autogenerated values or specify your own constraint.

In this example, in the Parameter Table, rows for model parameters m and b appear.

Each row represents a parameter configuration. You can edit the parameter’s constraint value(s) in
the field under Constraint. To use your specified parameter configuration in analysis, select the
check box in the field under Use. The following table provides more details about these and other
columns in the Parameter Table.

For parameter in row, the column... Shows...
Use Whether specified constraint for parameter is

used in analysis.

To include parameter configuration in analysis,
select the check box. To exclude parameter
configuration from analysis, clear the selection.

Name Name of parameter.
Constraint Autogenerated or user-specified constraint

value(s) for parameter.

To change the specified constraint value(s),
double-click in this field and enter new constraint
value(s).

Value Value of parameter. If the parameter is defined in
a Simulink data dictionary that is linked to the
model, the column shows the value of the
parameter in the data dictionary. Otherwise, it
shows the value of the parameter in the base
workspace.

Min Specified minimum value for parameter, if
parameter is of type Simulink.Parameter and
has a specified minimum value.

Max Specified maximum value for parameter, if
parameter is of type Simulink.Parameter and
has a specified maximum value.

Model Element Path to model component(s) where parameter is
used.

Note If you use a MATLAB variable from a data dictionary as a model parameter, SLDV analysis does
not consider the parameter as tunable. If you want the parameter to be tunable for the analysis, use a

 Use Parameter Table

5-9

Simulink.Parameter object for the parameter. To create a Simulink.Parameter object in the
data dictionary:

1 In the Model Explorer, on the Model Hierarchy pane, select the workspace under the data
dictionary that contains your MATLAB variable.

2 Select Add > Simulink Parameter. You see a new variable titled Param in the workspace.
3 Rename the variable. Assign the same data type as the original MATLAB variable.
4 In your model, use the variable that you just created as your parameter.

Edit Parameter Constraints
For each parameter you want to treat as a variable during analysis, specify constraint values.

In the Parameter Table, in the Constraint column, double-click the field for the parameter you want
to constrain. Enter your constraint values.

For this example:

• For parameter b, specify the value range [4, 10].
• For parameter m, specify the value 5.

To enable a parameter configuration for analysis, click to select the row that corresponds to the
configured parameter. Click Enable.

To enable multiple parameter configurations at once, shift-click to select multiple rows, and click
Enable.

To exclude parameter configurations from analysis, click to select the row that corresponds to the
configured parameter. Click Disable.

When you disable a parameter configuration, the specified constraint for this parameter is not used in
analysis.

To disable multiple parameter configurations at once, shift-click to select multiple rows, and click
Disable.

To exclude a parameter configuration from analysis and delete its specified constraint, click to select
the row that corresponds to the configured parameter. Click Clear.

The Parameter Table clears the specified constraint for the parameter, and the parameter
configuration is excluded from analysis.

5 Specifying Parameter Configurations

5-10

To clear multiple parameter configurations at once, shift-click to select multiple rows, and click
Clear.

Highlight Constrained Parameters in Model
Highlight model components that use the parameters for which you have specified constraints.

Select the parameter(s) you want to highlight in the model.

To select a parameter, click anywhere inside the Name or Constraint columns for either parameter.
Shift-click to select multiple parameters.

Click Highlight in Model.

In the Simulink Editor, model components that use the selected parameters are highlighted.

You can also define constraints for parameters using Parameter Configuration File. For more
information, see “Template Parameter Configuration File” on page 5-29 in “Use Parameter
Configuration File” on page 5-29.

To define constraints for structure or bus parameter, see “Specify Parameter Configuration for
Structure or Bus Parameters” on page 5-12.

 Use Parameter Table

5-11

Specify Parameter Configuration for Structure or Bus
Parameters

About This Example Model
This example describes how to generate tests that constrain the values for the structures and bus
signals in a model. Suppose that your model includes a variable called kpGainsStructure, which is
a structure in the MATLAB workspace. The model uses a Bus Selector block to separate the structure
fields into individual bus signals. You can constrain the values of the structure or the values of the bus
signals to ensure that they stay within the specified range during simulation.

This example describes how to create and analyze a simple Simulink model, then use Simulink Design
Verifier to generates test cases for the model. The model contains an input signal In1 whose value is
set between -1 to 1. kpGainsStructure is a structure that contains three fields, Kp1, Kp2, and Kp3,
and outputs them to a Bus Selector block that separates the fields into individual bus signals. The
block called Mode has a constant value parameter, which is set to mode determines the three bus
signals as an input to the kpGain block.

The value of In1 is multiplied by d, then multiplied by the selected bus signal. The result passes to a
Saturation block whose limit is defined between -0.5 to 0.5.

Based on the mode value, Simulink selects one of the three kpGainsStructure fields and specifies
the constraints. The input signal to the Saturation block must be below the lower limit or fall above
the upper limit to satisfy the decision objective of the Saturation block. Simulink Design Verifier then
tunes these parameters to achieve this limit. The following workflow guides you through the process
of completing this example.

Preload Workspace Variable for Structure Parameter
Preload the value of the MATLAB workspace variable kpGainsStructure. The structure contains
the fields Kp1, Kp2, and Kp3.

1 On the Modeling tab, select Model Settings > Model Properties.
2 Click the Callbacks tab.
3 Click PreLoadFcn, then load the Kp1, Kp2, and Kp3 fields of myStruct:

load('struct_param.mat');
myStruct.Kp1 = 15;
myStruct.Kp2 = -5;

5 Specifying Parameter Configurations

5-12

myStruct.Kp3 = -5;
gainsParam = Simulink.Parameter(myStruct);
mode = 1;
d = Simulink.Parameter(0.012);

4 Click OK to close the Model Properties dialog box and save the model.

Because the structure parameter is called by the Constant block, you need to define the output of the
Constant block as a bus. Follow these steps:

1 Double-click the Gains block to open Block Parameters dialog box.
2 Under Signal Attributes, select Output data type as Bus:BusO.
3 Click OK.

Define Parameter Constraint Values
There are two ways to constrain the values of structure or bus signals in the Configuration Parameter
window: by using the parameter table or the parameter configuration file.

• Parameter Table
• Parameter configuration file

Define Parameter Constraint Values using Parameter Table
When possible, parameter table automatically generates constraint values for each parameter,
depending on the data type and location of the parameter in the model. For more information, see
“Use Parameter Table” on page 5-7.

Follow these steps to generate the constraint value for each parameter:

1 On the Apps tab, under Model Verification, Validation, and Test, click Design Verifier.
2 On the Design Verifier tab, click Test Generation Settings.
3 In Configuration Parameters dialog box, select Design Verifier > Parameters and Variants.
4 Select Use parameter table.
5 Click Find parameters.
6 The parameter table populates with the parameters from your model.

 Specify Parameter Configuration for Structure or Bus Parameters

5-13

7 In the parameter table, in the Constraint column,

• {1,2,3} for mode
• [-0.01 0.15] for d

8 Click OK.

Define Constraint Values using Parameter Configuration File
This is an alternative approach that you can use to define the values of constraints instead of using
the Parameter Table. The Simulink Design Verifier software provides a template that you can make a
copy and edit it. For more information, see “Template Parameter Configuration File” on page 5-29 in
“Use Parameter Configuration File” on page 5-29. By default, the path to the parameter
configuration file is:

matlabroot/toolbox/sldv/sldv/sldv_params_template.m

To associate the parameter configuration file with your model before analyzing the model, in the
Configuration Parameters dialog box, on the Design Verifier > Parameters and Variants pane,
ensure that Use parameter table is cleared and enter the file name of the configuration file in the
Parameter configuration file field.

Follow these steps to define the constraint values in Parameter configuration file:

1 In sldv_params_template.m, enter:

function params = params_config
params.mode = {1, 2, 3};
params.d = [-.001 0.15];
params.gainsParam.Kp1 = Sldv.Interval(0, 50);
params.gainsParam.Kp2 = Sldv.Interval(-10, 10);
params.gainsParam.Kp3 = [-5, 5];

2 Save the file with the name params_config.m.
3 Open the model DemoModel.
4 On the Apps pane, under Model Verification, Validation, and Test, click Design Verifier.
5 On the Design Verifier tab, click Test Generation Settings.
6 In Configuration Parameters dialog box, select Design Verifier > Parameters and Variants.
7 Click Browse, then select params_config.m parameter configuration file created saved in step

2.

5 Specifying Parameter Configurations

5-14

Analyze Example Model
Analyze the model with the parameter constraints enabled and generate the analysis report:

1 On the Design Verifier tab, in the Mode section, select Test Generation. Click Generate
Tests.

Simulink Design Verifier analyzes your model to generate test cases.
2 When the software completes its analysis, in the Simulink Design Verifier Results Summary

window, next to Detailed analysis report, select HTML.

The software displays an HTML report named DemoModel.html.

3 In the table of contents of the Simulink Design Verifier report, click Test Cases.
4 Click Test Case 1 to display the subsection for that test case.

Test Case 1 shows that Simulink Design Verifier tuned all the parameters in such a way that all
the inputs coming from the In1 input signal, the Gain block and the mode variable will either fall
below -0.5 or above 0.5. While generating test cases, all the constraints satisfy the objectives.

 Specify Parameter Configuration for Structure or Bus Parameters

5-15

Similarly, the parameters for Test Case 2 and Test Case 3 are tuned and satisfy the objectives.

See Also
“Use Parameter Table” on page 5-7

5 Specifying Parameter Configurations

5-16

Specify Parameter Configuration for Full Coverage
In this section...
“About This Example” on page 5-17
“Construct Example Model” on page 5-17
“Parameterize Constant Block” on page 5-18
“Preload Workspace Variable” on page 5-18
“Autogenerate Parameter Constraint” on page 5-19
“Analyze Example Model” on page 5-20
“Simulate Test Cases” on page 5-22

About This Example
This example describes how to create and analyze a simple Simulink model, for which you generate
test cases that achieve decision coverage. However, in this example, achieving complete decision
coverage is possible only when Simulink Design Verifier treats a particular block parameter as a
variable during its analysis. This example explains how to specify parameter configurations for use
with the analysis.

The following workflow guides you through the process of completing this example.

Task Description See...
1 Construct the example model. “Construct Example Model” on page 5-17
2 Specify a variable as the value of a

Constant block parameter.
“Parameterize Constant Block” on page 5-18

3 Constrain the value of the variable
that the Constant block specifies.

“Autogenerate Parameter Constraint” on page 5-
19

4 Generate test cases for your model
and interpret the results.

“Analyze Example Model” on page 5-20

5 Simulate the test cases and measure
the resulting decision coverage.

“Simulate Test Cases” on page 5-22

Construct Example Model
Construct a simple Simulink model to use in this example:

1 Create an empty Simulink model.
2 Copy the following blocks into the empty Simulink Editor:

• From the Sources library:

• Two Inport blocks to initiate the input signals
• A Constant block to control the switch

• From the Signal Routing library: A Multiport Switch block to provide simple logic
• From the Sinks library: An Outport block to receive the output signal

 Specify Parameter Configuration for Full Coverage

5-17

3 Double-click the Multiport Switch block to access its dialog box and specify its Number of data
ports option as 2.

4 Connect the blocks so that your model looks like the following.

5 On the Simulation tab, click the arrow on the right of the Prepare section and click Model
Settings.

6 In the Configuration Parameters dialog box, select the Solver. Under Solver selection, set the
Type option to Fixed-step, and then set the Solver option to discrete (no continuous
states).

7 In the Diagnostics pane, set Automatic solver parameter selection to none.
8 Click OK to apply your changes and close the Configuration Parameters dialog box.
9 Save your model as ex_defining_params_example for use in the next procedure.

Parameterize Constant Block
Parameterize the Constant block in your model by specifying a variable as the value of the Constant
block's Constant value parameter:

1 Double-click the Constant block.
2 In the Constant value box, enter A.
3 Click OK to apply your change and close the Constant block parameter dialog box.
4 Save your model.

Preload Workspace Variable
Preload the value of the MATLAB workspace variable A referenced by the Constant block:

1 On the Modeling tab, select Model Settings > Model Properties.
2 Click the Callbacks tab.
3 In the PreLoadFcn, enter:

A = Simulink.Parameter(int8(1));
A.Min = 1;
A.Max = 2;

4 Click OK to close the Model Properties dialog box and save your changes.
5 Close your model.

5 Specifying Parameter Configurations

5-18

6 Open your model.

When you open the model, the PreLoadFcn defines a variable A of type int8 whose value is 1.

Autogenerate Parameter Constraint
Use the Parameter Table to constrain variable A to specified values.

1 On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Design Verifier.
2 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode

settings, click Settings.
3 In Configuration Parameters dialog box, select Design Verifier > Parameters and Variants.
4 Select Use parameter table.
5 Click Find parameters.

The Parameter Table is populated with parameters from your model. When possible, it
autogenerates constraint values for each parameter, depending on the data type and location of
the parameter in the model.

In this case, a row appears for the parameter A that you defined. The table row for A displays the
following information:

• In the Name column, the parameter name (A).
• In the Constraint column, the constraint specified on parameter A. The Parameter Table

autogenerates the constraint values [1, 2].
• In the Value column, the value of A in the base workspace. This value is 1.
• In the Model Element column, the model component in which A resides

(ex_defining_params_example/Constant).
• In the Use column, a check box indicating whether the specified constraint values in the table

are configured for analysis.

 Specify Parameter Configuration for Full Coverage

5-19

6 In the Parameter Table, in the row for parameter A, make sure that you select the Use check box.

When you enable this parameter configuration, during Simulink Design Verifier analysis, the
parameter A takes only the int8 values 1 and 2.

7 In the Configuration Parameters dialog box, click OK.
8 Save your model.

Analyze Example Model
Analyze the model using the parameter configuration you just created, and generate the analysis
report:

1 On the Design Verifier tab, in the Mode section, select Test Generation. Click Generate
Tests.

Simulink Design Verifier analyzes your model to generate test cases.
2 When the software completes its analysis, in the Simulink Design Verifier Results Summary

window, select Generate detailed analysis report.

The software displays an HTML report named ex_defining_params_example_report.html.

5 Specifying Parameter Configurations

5-20

Keep the Results Summary window open for the next procedure.
3 In the Simulink Design Verifier report Table of Contents, click Test Cases.
4 Click Test Case 1 to display the subsection for that test case.

This section provides details about Test Case 1 that Simulink Design Verifier generated to satisfy
a coverage objective in the model. In this test case, a value of 1 for parameter A satisfies the
objective.

5 Scroll down to the Test Case 2 section in the Test Cases chapter.

 Specify Parameter Configuration for Full Coverage

5-21

This section provides details about Test Case 2, which satisfies another coverage objective in the
model. In this test case, a value of 2 for parameter A satisfies the objective.

Simulate Test Cases
Simulate the generated test cases and review the coverage report that results from the simulation:

1 In the Simulink Design Verifier Results Summary window, select Create harness model.

The software creates and opens a harness model named
ex_defining_params_example_harness.

2 The block labeled Inputs in the harness model is a Signal Builder block that contains the test
case signals. Double-click the Inputs block to view the test case signals in the Signal Builder
block.

5 Specifying Parameter Configurations

5-22

3
In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates each of the test cases in succession, collects coverage data for
each simulation, and displays an HTML report of the combined coverage results at the end of the
last simulation.

4 In the model coverage report, review the Summary section:

 Specify Parameter Configuration for Full Coverage

5-23

This section summarizes the coverage results for the harness model and its Test Unit subsystem.
Observe that the subsystem achieves 100% decision coverage.

5 In the Summary section, click the Test Unit subsystem.

The report displays detailed coverage results for the Test Unit subsystem.

5 Specifying Parameter Configurations

5-24

This section reveals that the Multiport Switch block achieves 100% decision coverage because
the test cases exercise each of the switch pathways.

See Also
“Extend Existing Test Cases After Applying Parameter Configurations” on page 5-46

 Specify Parameter Configuration for Full Coverage

5-25

Store Parameter Constraints in MATLAB Code Files
In this section...
“Export Parameter Constraints to File” on page 5-26
“Import Parameter Constraints from File” on page 5-27

You can use the Parameter Table to manage constraints on your model parameters for analysis. If you
place a constraint on a parameter in your model, during analysis that parameter takes only your
specified constraint value or values. A group of constraints on parameters in the same model is also
called a parameter configuration. You can store groups of parameter constraints in a MATLAB code
file called a parameter configuration file. For more information on configuring parameters for
Simulink Design Verifier, see “Use Parameter Table” on page 5-7.

To enable parameter configuration, on the Design Verifier tab, in the Prepare section, from the
drop-down menu for the mode settings, click Settings. In the Configuration Parameters dialog box,
on the Design Verifier > Parameters and Variants pane..

Export Parameter Constraints to File
Using the Parameter Table, you can export parameter constraint values to a MATLAB code file. If you
later want to use the same parameter configuration in a different analysis, you can import your
previously specified parameter constraint values from the MATLAB code file.

To export parameter constraint values to a file:

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode
settings, click Settings. In the Configuration Parameters dialog box, select Design Verifier >
Parameters and Variants.

The Parameter Table shows specified constraint values for parameters in your model, as in the
following example screen shot.

5 Specifying Parameter Configurations

5-26

2 Click Export to File.

The Parameter Configuration File saves the current parameter configurations to a .m file with
the name you specify. Parameters that do not have the Use check box enabled appear as
commented lines in the parameter configuration file.

In the example shown in the previous step, the parameter configuration file contains the
following code:

function params = ex_many_params_config
params.param_01 = {0, 1};
% params.param_02 = {0, 01};
params.param_03 = {0, 1};
% params.param_04 = {0, 1};

Import Parameter Constraints from File
If you defined parameter configurations for analysis in a release prior to R2014a, you can import
corresponding MATLAB files and manage these parameters in the Parameter Table.

To import parameter constraints from a MATLAB code file:

 Store Parameter Constraints in MATLAB Code Files

5-27

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode
settings, click Settings. In the Configuration Parameters dialog box, select Design Verifier >
Parameters and Variants.

2 Click Add from File. Choose a parameter configuration file.

The Parameter Table loads specified parameter constraints from the code, excluding code
comments, from the file. If you specify a constraint for a parameter and then load a parameter
configuration file containing constraint specification for the same parameter, the constraint
specified in the file overwrites the preexisting constraint in the table.

Simulink Design Verifier provides an example parameter configuration file for the example model
sldvdemo_param_identification:

matlabroot/toolbox/sldv/sldvdemos/sldvdemo_param_ident_config.m

See Also

More About
• “Generate Parameters Values” on page 5-45

5 Specifying Parameter Configurations

5-28

Use Parameter Configuration File
In this section...
“Template Parameter Configuration File” on page 5-29
“Syntax in Parameter Configuration Files” on page 5-29

To specify parameters as variables for analysis, you can use the Parameter Table or define parameter
configurations in a MATLAB code file. You can also export parameter configuration files from the
Parameter Table. For more information, see “Store Parameter Constraints in MATLAB Code Files” on
page 5-26.

This example shows how to define parameter configurations in a MATLAB code file. For an example
that shows how to define these parameter configurations using the Parameter Table, see “Use
Parameter Table” on page 5-7.

Template Parameter Configuration File
The Simulink Design Verifier software provides an annotated template that you can use as a starting
point:

matlabroot/toolbox/sldv/sldv/sldv_params_template.m

To create a parameter configuration file, make a copy of the template and edit the copy. The
comments in the template explain the syntax for defining parameter configurations.

To associate the parameter configuration file with your model before analyzing the model, in the
Configuration Parameters dialog box, on the Design Verifier > Parameters and Variants pane,
enter the file name in the Parameter configuration file field.

Syntax in Parameter Configuration Files
Specify parameter configurations using a structure whose fields share the same names as the
parameters that you treat as input variables.

For example, suppose you want to constrain the Gain and Constant value parameters, m and b,
which appear in the following model:

The PreLoadFcn callback function defines m and b in the MATLAB workspace when you open the
model:

 Use Parameter Configuration File

5-29

• m is set to 5.
• b is a Simulink.Parameter object of type int8 whose value is set to 5.

In your parameter configuration file, specify constraints for m and b:

params.b = int8([4 10]);
params.m = {};

This file specifies:

• b is an 8-bit signed integer from 4 to 10. The constraint type must match the type of the
parameter b in the MATLAB workspace, int8, in this example.

• m is not constrained to any values.

Specify points using the Sldv.Point constructor, which accepts a single value as its argument.
Specify intervals using the Sldv.Interval constructor, which requires two input arguments, i.e., a
lower bound and an upper bound for the interval. Optionally, you can provide one of the following
values as a third input argument that specifies inclusion or exclusion of the interval endpoints:

• '()' — Defines an open interval.
• '[]' — Defines a closed interval.

5 Specifying Parameter Configurations

5-30

• '(]' — Defines a left-open interval.
• '[)' — Defines a right-open interval.

Note By default, Simulink Design Verifier considers an interval to be closed if you omit this
argument.

The following example constrains m to 3 and b to any value in the closed interval [0, 10]:

params.m = Sldv.Point(3);
params.b = Sldv.Interval(0, 10);

If the parameters are scalar, you can omit the constructors and instead specify single values or two-
element vectors. For example, you can alternatively specify the previous example as:

params.m = 3;
params.b = [0 10];

Note To indicate no constraint for an input parameter, specify params.m = {} or params.m = [].
The analysis treats this parameter as free input.

You can specify multiple constraints for a single parameter using a cell array. In this case, the
analysis combines the constraints using a logical OR operation.

The following example constrains m to either 3 or 5 and constrains b to any value in the closed
interval [0, 10]:

params.m = {3, 5};
params.b = [0 10];

You can specify several sets of parameters by expanding the size of your structure. For example, the
following example uses a 1-by-2 structure to define two sets of parameters:

params(1).m = {3, 5};
params(1).b = [0 10];

params(2).m = {12, 15, Sldv.Interval(50, 60, '()')};
params(2).b = 5;

The first parameter set constrains m to either 3 or 5 and constrains b to any value in the closed
interval [0, 10]. The second parameter set constrains m to either 12, 15, or any value in the open
interval (50, 60), and constrains b to 5.

 Use Parameter Configuration File

5-31

Automatically Infer Parameter Specification
Simulink Design Verifier automates the process of selecting parameters that is a part of parameter
configuration and determines minimum and maximum values of such parameters configured in the
Simulink.Parameter object.

When test generation target is Model, Simulink Design Verifier selects as many parameters as
possible for parameter configuration.

When test generation target is Code Generated as Top Model or Code Generated as Model
Reference, parameters whose value can be changed in the generated code are selected for
parameter configuration.

The PreLoadFcn callback function model, defines codeTunableParam and constParam in the
MATLAB workspace.

The code generation settings for the model:

5 Specifying Parameter Configurations

5-32

Set storage class of constParam to Const and codeTunableParam to ExportedGlobal.

Configuring Parameters by Using Automatically infer parameter
specification
This example shows how to automatically infer constraint values used for model parameters during
Simulink Design Verifier analysis.

1 Open Model Settings > Design Verifier > Parameters and Variants.
2 Click on the drop down for Parameter Configuration and select Automatically infer

parameter specification.

This automatically infers the parameters that will be selected based on the test generation target
and the parameter settings based on their definition.

When the test generation target is Model, Simulink Design Verifier analysis selects all the supported
parameters.

In the above example, both the parameters constParam and codeTunableParam, are configured
during the analysis.

 Automatically Infer Parameter Specification

5-33

The results window shows that all objectives for both the Multiport switch blocks are satisfied.

When the test generation target is set to Code Generated as Top Model, parameter constParam
cannot be changed in the generated code. So, Simulink Design Verifier selects codeTunableParam
for parameter configuration.

5 Specifying Parameter Configurations

5-34

The Undecided objectives are related to the code corresponding to Multiport Switch1.

 Automatically Infer Parameter Specification

5-35

Determine from Generated Code
Simulink Design Verifier selects the parameters whose value can be changed in the generated code
for parameter configuration.

For such parameters, the minimum or maximum value from Simulink.Parameter object is used as
parameter configuration for analysis.

Note

• This workflow is recommended when you have generated the code before the analysis is run.
• This parameter configuration can be used for both Model and Code workflows.

The PreLoadFcn callback function model, defines codeTunableParam and constParam in the
MATLAB workspace.

The code generation settings for the model:

5 Specifying Parameter Configurations

5-36

Set storage class of constParam to Const and codeTunableParam to ExportedGlobal.

Configuring Parameters by Using Determine from generated code
This example shows how to configure parameters by using Determine from generated code
workflow during the Simulink Design Verifier analysis.

1 Open Model Settings > Design Verifier > Parameters and Variants.
2 Click on the drop down for Parameter Configuration and select Determine from generated

code.

This automatically infers the parameters that will be selected based on the code generated and
the parameter settings based on their definition.

In the above example, the parameter constParam cannot be changed in the generated code. So
Simulink Design Verifier selects codeTunableParam for parameter configuration.

 Determine from Generated Code

5-37

The Undecided objectives are related to the code corresponding to Multiport Switch1.

5 Specifying Parameter Configurations

5-38

Using Command Line Functions to Support Changing
Parameters

This example shows how to use Simulink® Design Verifier™ command-line functions to generate test
data that incorporates different parameter values.

Controller Model with an Adjustable Parameter

The example model is a simple controller with a single parameter. The constant parameter
'control_mode' can be either 1 or 2. The parameter must take both values for the test cases to achieve
complete coverage. The value determines the switch block output and which enabled subsystem will
execute.

open_system('sldvdemo_param_controller');

Specifying Parameter Values for Analysis

Simulink Design Verifier does not identify parameter values. The tool uses the parameter values at
the start of analysis for generating tests and proving properties. You can force the tool to incorporate
changing parameter values by repeating analysis with different values.

 Using Command Line Functions to Support Changing Parameters

5-39

The first iteration of design verifier will use control_mode=1.

control_mode = 1;

Simulink® Design Verifier™ Options

Simulink Design Verifier functions use options objects created with the sldvoptions function to
control all aspects of analysis and output.

In this example, we will run Simulink Design Verifier in test generation mode for a maximum of 300
seconds and produce a harness model. We will disable the report generation.

The default values of the remaining options are set correctly to generate tests. You can use the get
command to display all the options and values.

opts = sldvoptions;
opts.Mode = 'TestGeneration';
opts.MaxProcessTime = 300;
opts.SaveHarnessModel = 'on';
opts.SaveReport = 'off';
opts.HarnessModelFileName = '$ModelName$_harness.slx';

get(opts)

 Mode: 'TestGeneration'
 MaxProcessTime: 300
 AutomaticStubbing: 'on'
 UseParallel: 'off'
 DesignMinMaxConstraints: 'on'
 OutputDir: 'sldv_output/$ModelName$'
 MakeOutputFilesUnique: 'on'
 BlockReplacement: 'off'
 BlockReplacementRulesList: '<FactoryDefaultRules>'
 BlockReplacementModelFileName: '$ModelName$_replacement'
 ParameterConfiguration: 'None'
 ParametersConfigFileName: 'sldv_params_template.m'
 ParameterNames: []
 ParameterConstraints: []
 ParameterUseInAnalysis: []
 TestgenTarget: 'Model'
 ModelCoverageObjectives: 'ConditionDecision'
 TestConditions: 'UseLocalSettings'
 TestObjectives: 'UseLocalSettings'
 MaxTestCaseSteps: 10000
 TestSuiteOptimization: 'Auto'
 Assertions: 'UseLocalSettings'
 ProofAssumptions: 'UseLocalSettings'
 ExtendExistingTests: 'off'
 ExistingTestFile: ''
 IgnoreExistTestSatisfied: 'on'
 IgnoreCovSatisfied: 'off'
 CoverageDataFile: ''
 CovFilter: 'off'
 CovFilterFileName: ''
 IncludeRelationalBoundary: 'off'
 RelativeTolerance: 0.0100
 AbsoluteTolerance: 1.0000e-05
 DetectDeadLogic: 'off'

5 Specifying Parameter Configurations

5-40

 DetectActiveLogic: 'off'
 DeadLogicObjectives: 'ConditionDecision'
 DetectOutOfBounds: 'on'
 DetectDivisionByZero: 'on'
 DetectIntegerOverflow: 'on'
 DetectInfNaN: 'off'
 DetectSubnormal: 'off'
 DesignMinMaxCheck: 'off'
 DetectDSMAccessViolations: 'off'
 DetectHISMViolationsHisl_0002: 'off'
 DetectHISMViolationsHisl_0003: 'off'
 DetectHISMViolationsHisl_0004: 'off'
 DetectHISMViolationsHisl_0028: 'off'
 DetectBlockInputRangeViolations: 'off'
 ProvingStrategy: 'Prove'
 MaxViolationSteps: 20
 DataFileName: '$ModelName$_sldvdata'
 SaveExpectedOutput: 'off'
 RandomizeNoEffectData: 'off'
 SaveHarnessModel: 'on'
 HarnessModelFileName: '$ModelName$_harness.slx'
 ModelReferenceHarness: 'on'
 HarnessSource: 'Signal Editor'
 SaveReport: 'off'
 ReportPDFFormat: 'off'
 ReportFileName: '$ModelName$_report'
 ReportIncludeGraphics: 'off'
 DisplayReport: 'on'
 SFcnSupport: 'on'
 CodeAnalysisExtraOptions: ''
 CodeAnalysisIgnoreVolatile: 'on'
 ReduceRationalApprox: 'on'
 SlTestFileName: '$ModelName$_test'
 SlTestHarnessName: '$ModelName$_sldvharness'
 SlTestHarnessSource: 'Inport'
 StrictEnhancedMCDC: 'off'
 RebuildModelRepresentation: 'IfChangeIsDetected'
 AnalyzeAllStartupVariants: 'on'

Generating Tests and Collecting Coverage

The sldvgencov function generates test suites and model coverage together. All tests that can be
generated with the current parameter values will be collected into the harness model and the
resulting coverage returned in a coverage data object.

[status,coverageData,files] = sldvgencov('sldvdemo_param_controller',opts);

04-Mar-2023 00:18:27
Checking compatibility for test generation: model 'sldvdemo_param_controller'
Compiling model...done
Building model representation...done

04-Mar-2023 00:18:32

'sldvdemo_param_controller' is compatible for test generation with Simulink Design Verifier.

 Using Command Line Functions to Support Changing Parameters

5-41

Generating tests using model representation from 04-Mar-2023 00:18:32...

..............
04-Mar-2023 00:18:41

Completed normally.

Generating output files:

 Harness model:
 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex05697027\sldv_output\sldvdemo_param_controller\sldvdemo_param_controller_harness.slx

04-Mar-2023 00:18:44
Results generation completed.

 Data file:
 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex05697027\sldv_output\sldvdemo_param_controller\sldvdemo_param_controller_sldvdata.mat

Integrating Parameter Initialization Into a Test Harness

Generated test cases must be run with the same parameter values used during analysis. An
initialization command configures the values during simulation of test cases. The
sldvmergeharness function incorporates initialization commands into test harnesses.

initCmdStr = 'control_mode=1;'
[path,modelName] = fileparts(files.HarnessModel);
sldvmergeharness(modelName,modelName,initCmdStr);

initCmdStr =

 'control_mode=1;'

Modifying Parameters and Repeating Test Generation

Modifying parameter values enables additional test generation. Passing a coverage data object as the
third input to sldvgencov forces the function to ignore all model coverage test objectives that have
been satisfied. We use the coverage data that was returned from the earlier call to sldvgencov to
restrict test generation to unsatisfied test objectives.

control_mode=2;
[status,newCov,newFiles] = sldvgencov('sldvdemo_param_controller',opts,false,coverageData);

04-Mar-2023 00:18:48

5 Specifying Parameter Configurations

5-42

Validating cached model representation from 04-Mar-2023 00:18:32...change detected

04-Mar-2023 00:18:48
Checking compatibility for test generation: model 'sldvdemo_param_controller'
Compiling model...done
Building model representation...done

04-Mar-2023 00:18:52

'sldvdemo_param_controller' is compatible for test generation with Simulink Design Verifier.

Generating tests using model representation from 04-Mar-2023 00:18:52...

..............
04-Mar-2023 00:18:56

Completed normally.

Generating output files:

 Harness model:
 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex05697027\sldv_output\sldvdemo_param_controller\sldvdemo_param_controller_harness1.slx

04-Mar-2023 00:18:58
Results generation completed.

 Data file:
 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex05697027\sldv_output\sldvdemo_param_controller\sldvdemo_param_controller_sldvdata1.mat

Merging Test Harnesses Into a Single Model

Another call to sldvharnessmerge merges the test data from the new harness and its initialization
command into the existing harness model.

newInitCmd = 'control_mode=2;'
[path,newModelName] = fileparts(newFiles.HarnessModel);
sldvmergeharness(modelName,newModelName,newInitCmd);

newInitCmd =

 'control_mode=2;'

 Using Command Line Functions to Support Changing Parameters

5-43

Executing the Tests in the Harness Model

We close the second harness model that was created because the test cases have been merged into
the first harness model. You can execute the suite of tests by clicking the 'Run all' button on the
Signal Builder.

close_system(newModelName,0);
sldvdemo_playall(modelName);

Clean Up

To complete the example, close the models and remove the generated files.

close_system(modelName,0);
close_system('sldvdemo_param_controller',0);
delete(files.HarnessModel);
delete(newFiles.HarnessModel);

5 Specifying Parameter Configurations

5-44

Generate Parameters Values

This example shows how to tune parameters using parameter configuration file for Simulink® Design
Verifier™ analysis. The model contains the parameter control_mode that enables the active
controller and selects its output to be the model output. Simulink Design Verifier treats this
parameter as an input that is constrained to be either 1 or 2 and generates the appropriate value for
each test case.

open_system('sldvdemo_param_identification');

 Generate Parameters Values

5-45

Extend Existing Test Cases After Applying Parameter
Configurations

This example shows how to achieve missing coverage by extending existing test cases after applying
parameter configurations.

In this example, you generate test cases for a model and review the analysis results. The results show
that the model consists of unsatisfiable objectives and does not achieve full coverage. Then, you apply
parameter configurations in the model and reuse the previously generated test cases to achieve full
model coverage.

Step 1: Generate Initial Test Cases and Review Results

The sldvexParameterController model is a cruise control model that controls the throttle speed
by selecting a P Controller or PI Controller. The ControllerModeSelection subsystem uses the
SelectMode parameter to select the controller mode. Define the enumerated data type for
Selectmode by using the function Simulink.defineIntEnumType. For more information on
enumerated values, see “Use Enumerated Data in Simulink Models”.

Simulink.defineIntEnumType('EnumForControllerSelection',...
{'Pmode','PImode'},[1;2]);
SelectMode = Simulink.Parameter;
SelectMode.Value = EnumForControllerSelection.Pmode;
model = 'sldvexParameterController';
open_system(model);

5 Specifying Parameter Configurations

5-46

Set the sldvoptions and analyze the model by using the specified options.

opts = sldvoptions;
opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'MCDC';
[status, files] = sldvrun(model, opts, true);

After the analysis completes, the Results Summary window displays that 15 out of 54 objectives are
unsatisfiable.

In the Results Summary window, click Highlight analysis results on model. Double-click the
ControllerModeSelection subsystem. The PI_ModeSelection and P_ModeSelection
subsystems are highlighted in red and consist of unsatisfiable objectives.

 Extend Existing Test Cases After Applying Parameter Configurations

5-47

To view the model coverage report, in the Results Summary window, click Simulate tests and
produce a model coverage report. The report shows that the model does not achieve full coverage.

Full coverage is not achieved because the parameter value SelectMode is restricted to the default
value of EnumForControllerSelection.Pmode. Consequently, full coverage is not achieved for
the PI_ModeSelection subsystem.

Step 2: Configure Parameter Configurations and Extend Existing Test Cases

If you apply parameter configurations, Simulink Design Verifier treats the parameter as a variable
during analysis and constraints the values based on the constraint values that you specify.

Apply parameter configurations for the SelectMode parameter by specifying the constraint values
for parameterValue.

5 Specifying Parameter Configurations

5-48

controlParameter = [{'SelectMode'}];
parameterValue = [{'[EnumForControllerSelection.Pmode EnumForControllerSelection.PImode]'}];
opts.Parameters = 'on';
opts.ParametersUseConfig = 'on';
opts.ParameterNames = controlParameter;
opts.ParameterConstraints = parameterValue;
opts.ParameterUseInAnalysis = {'on'};

To reuse the previously generated test cases, configure the analysis option to extend the existing test
cases and specify the existing test file.

opts.ExtendExistingTests = 'on';
opts.IgnoreExistTestSatisfied = 'off';
opts.ExistingTestFile = files.DataFile;

Step 3: Perform Analysis and Review Coverage Report

Analyze the model by using the specified options.

[status, fileNames] = sldvrun(model, opts, true);

After the analysis completes, the Results Summary window displays that all the objectives are
satisfied.

To generate model coverage report, click Simulate tests and produce a model coverage report.
The report shows that the model achieves full coverage.

To complete this example, close the model.

close_system('sldvexParameterController', 0);

See also

• “Parameter Configuration for Analysis” on page 5-2
• “When to Extend Existing Test Cases” on page 8-2

 Extend Existing Test Cases After Applying Parameter Configurations

5-49

Detecting Design Errors

• “What Is Design Error Detection?” on page 6-2
• “Derived Ranges in Design Error Detection” on page 6-3
• “Analyze Models for Design Errors” on page 6-4
• “Dead Logic Detection” on page 6-7
• “Detect Dead Logic Caused by an Incorrect Value” on page 6-12
• “Common Causes for Dead Logic” on page 6-15
• “Detect Integer Overflow and Division-by-Zero Errors” on page 6-19
• “Check for Specified Minimum and Maximum Value Violations” on page 6-23
• “Detect Out of Bound Array Access Errors” on page 6-28
• “Detect Non-Finite, NaN, and Subnormal Floating-Point Values” on page 6-33
• “Detect Data Store Access Violations” on page 6-37
• “Detect Violations of High-Integrity Systems Modeling Guidelines” on page 6-41
• “Filter Objectives by Using Simulink Design Verifier Filter Explorer” on page 6-46
• “Detect Integer Overflow Errors” on page 6-51
• “Detect Out of Bound Array Access Example Model” on page 6-54
• “Detect Design Errors in C/C++ Custom Code” on page 6-57
• “Exclude and Justify Objectives for Design Error Detection” on page 6-59
• “Detect Integer Overflow in a Model with Complex Inputs” on page 6-65
• “Debug Integer Overflow Design Error Detection Using Model Slicer” on page 6-68
• “Analyzing the Results for a Dead Logic Analysis” on page 6-73

Analyzing the Results for a Dead Logic Analysis

6

What Is Design Error Detection?

Design error detection is a Simulink Design Verifier analysis mode that detects the following types of
errors:

• Dead logic
• Out of bound array access
• Integer or fixed-point data overflow
• Division by zero
• Errors in floating-point usage (Inf/NaN and subnormal)
• Intermediate signal values that are outside the specified minimum and maximum values
• Data store access violations
• Specified block input range violations
• High-Integrity Systems Modeling checks

Before you simulate your model, analyze your model in design error detection mode to find and
diagnose these errors. Design error detection analysis determines the conditions that cause the error,
helping you identify possible design flaws. Design error detection analysis also computes a range of
signal values that can occur for block outports and Stateflow local data in your model.

Model objects that have decision or condition outcomes receive dead logic detection.

After the analysis, you can:

• Click individual blocks to view the analysis results for that block.
• Create a harness model containing test cases that demonstrate the errors.
• Create an analysis report that contains detailed results for the entire model.

See Also
“Analyze Models for Design Errors” on page 6-4 | “Design Verifier Pane: Design Error Detection” on
page 15-42

6 Detecting Design Errors

6-2

Derived Ranges in Design Error Detection
When you specify minimum and maximum values for a signal or data in a model, these values define a
design range.

During design error detection, the software analyzes the model behavior and computes the values
that can occur during simulation for:

• Block Outports
• Stateflow local data

The range of these values is called a derived range.

The Use specified input minimum and maximum values parameter in the Configuration
Parameters dialog box, on the Design Verifier pane, if enabled, tells the analysis to consider the
design ranges on the model input ports as constraints when calculating the derived ranges. By
default, the Use specified input minimum and maximum values parameter is enabled.

If Use specified input minimum and maximum values is disabled, the software does not restrict
the signals when computing the derived ranges.

To see how this process works, consider the following model.

In this model, the design ranges are:

• Inport block: [–35..35]
• Abs block output: [0..30]

Given the design range on the Inport block, the only possible values for the Abs block output are
values from 0 to 35. Therefore, the derived range for the Abs block is [0..35].

However, if you disable the Use specified input minimum and maximum values parameter, the
analysis calculates the derived ranges based on unrestricted values of the input ports of the model. In
the preceding model, the only valid outputs of the Abs block are nonnegative numbers. Consequently,
the derived range for the Abs block is [0..Inf].

 Derived Ranges in Design Error Detection

6-3

Analyze Models for Design Errors
In this section...
“Workflow for Detecting Design Errors” on page 6-4
“Understand the Analysis Results” on page 6-4
“Review the Latest Analysis Results in the Results Summary Window” on page 6-5
“Check For Design Errors using the Model Advisor” on page 6-6

Workflow for Detecting Design Errors
To analyze your model for design errors, use the following workflow:

1 Verify that your model is compatible with Simulink Design Verifier software.
2 If you have Stateflow objects in your model, in the Configuration Parameters dialog box, on the

Diagnostics > Stateflow pane, set Unreachable execution path to error.
3 Specify options that control how Simulink Design Verifier detects design errors in your model.
4 Execute the Simulink Design Verifier analysis.
5 Review the analysis results.

Understand the Analysis Results
When you run a design error detection analysis, by default, the software highlights model objects in
one of four colors so that the analysis results are easy to review.

Model Object
Highlighting Color

Analysis Results

Green Both of the following:

• The analysis proved the absence of dead logic.
• The analysis proved the absence of errors for the other design error

detection checks.
Red At least one of the following:

• The analysis found dead logic.
• The analysis found an error for one of the other design error detection

checks.

6 Detecting Design Errors

6-4

Model Object
Highlighting Color

Analysis Results

Orange For at least one objective, the analysis could not determine if the model
object has dead logic or one of the other design error detection errors.
This situation can occur when:

• The analysis times out.
• The software cannot determine if an error occurred or not. This result

is due to:

• Automatic stubbing; for more information, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-7.

• Limitations of the analysis engine.
Gray The model object was not part of the analysis.
Steel blue All objectives from this model object were excluded or justified using a

filter files provided during the analysis.

The Simulink Design Verifier Results window initially displays a summary of the analysis results, as in
the following example.

When you click an object in the model, additional details about the results for that object are
displayed in the Simulink Design Verifier Results window.

Tip By default, the Simulink Design Verifier Results window is always the topmost visible window. To
change that setting, click the icon and on the context menu, clear the check mark next to Always
on top.

Review the Latest Analysis Results in the Results Summary Window
If you close the analysis results to fix the cause of the errors in your model, you might need to review
the analysis results again. As long as your model remains unchanged, you can view the results of your
most recent analysis results in the Results Summary Window.

 Analyze Models for Design Errors

6-5

To view the latest results, on the Design Verifier tab, in the Review Results section, click Results
Summary.

For any Simulink Design Verifier analysis, from the Results Summary Window, you can perform the
following tasks:

• Open filter explorer.
• Highlight the analysis results on the model.
• View tests in Simulation Data Inspector.
• Generate a detailed analysis report.
• Create the harness model, or if the harness model already exists, open it.

Note If no objectives are falsified or satisfied, you cannot create the harness model.
• Export test cases to Simulink Test.
• View the data file.
• View the log file.

Check For Design Errors using the Model Advisor
You can perform design error detection analysis from the Model Advisor, which is particularly useful
if you need to perform other model checks. To analyze your model from the Model Advisor, follow this
high-level workflow:

1 Specify options that control how Simulink Design Verifier detects design errors in your model.
2 Open the Model Advisor.
3 From the system hierarchy, select the model or model component you want to analyze
4 Expand the design error detection analysis items. Look for Simulink Design Verifier under either

By Product or By Task.
5 If you have not checked your model for compatibility, enable the compatibility check for Simulink

Design Verifier.
6 Select the design error detection checks you want to run.
7 Run the selected checks.
8 Review the analysis results.

See Also

More About
• “Check Your Model Using the Model Advisor”

6 Detecting Design Errors

6-6

Dead Logic Detection
In this section...
“Run a Partial Check for Dead Logic” on page 6-7
“Run an Exhaustive Analysis for Dead Logic” on page 6-7
“Run a Dead Logic Analysis and Review Results” on page 6-8

Before you simulate a model, use dead logic detection to analyze the model for dead logic. In
Simulink Design Verifier, design error detection for dead logic consists of two analysis options:

• Dead logic (partial): If you select this option, Simulink Design Verifier analyzes your model without
making any approximations, such as rational approximation for floating points, or while loop
approximation. For more information, see “Role of Approximations During Model Analysis” on
page 2-20. With this option, Simulink Design Verifier does not report active logic or undecided
objectives and it may not identify some dead logic in your model.

This option is available in:

• The Model Advisor. See “Check For Design Errors using the Model Advisor” on page 6-6.
• The Configuration Parameters dialog box, on the Design Verifier > Design Error Detection

pane.
• Run exhaustive analysis: With this option, Simulink Design Verifier reports active logic in addition

to dead logic as well as undecided objectives. This option may in some cases identify or find
additional dead logic. The analysis may use approximations and are reported accordingly.

This option is available in Configuration Parameters dialog box, on the Design Verifier > Design
Error Detection pane.

Run a Partial Check for Dead Logic
If you are not using the Model Advisor, to detect dead logic:

1 On the Design Verifier tab, in the Mode section, select Design Error Detection.
2 Click Error Detection Settings.
3 In the Configuration Parameters dialog box, on the Design Verifier > Design Error Detection

pane:

a Enable the “Dead logic (partial)” on page 15-43 option.
b Clear the “Run exhaustive analysis” on page 15-43 option, if it is selected.
c Set “Coverage objectives to be analyzed” on page 15-44 to MCDC. The available options

from the drop-down menu are Decision, Condition Decision, and MCDC.
4 To apply these settings, click OK and close the Configuration Parameters dialog box.
5 Click Detect Design Errors.

Run an Exhaustive Analysis for Dead Logic
1 On the Design Verifier tab, in the Mode section, select Design Error Detection.
2 Click Error Detection Settings.

 Dead Logic Detection

6-7

3 In the Configuration Parameters dialog box, on the Design Verifier > Design Error Detection
pane:

a Enable the “Dead logic (partial)” on page 15-43 option.
b Clear the “Run exhaustive analysis” on page 15-43 option, if it is selected.
c Set “Coverage objectives to be analyzed” on page 15-44 to MCDC. The available options

from the drop-down menu are Decision, Condition Decision, and MCDC.
4 To apply these settings, click OK and close the Configuration Parameters dialog box.
5 Click Detect Design Errors.

Run a Dead Logic Analysis and Review Results
This example shows how to detect dead logic in the sldvSlicerdemo_dead_logic example model.
Dead logic detection finds the unreachable objectives in the model that cause the model element to
remain inactive.

1 Open the sldvSlicerdemo_dead_logic model.

open_system('sldvSlicerdemo_dead_logic');
2 On the Design Verifier tab, in the Mode section, select Design Error Detection.
3 Click Error Detection Settings.
4 In the Configuration Parameters dialog box, on the Design Verifier > Design Error Detection

pane:

a Enable the “Dead logic (partial)” on page 15-43 option.
b Clear the “Run exhaustive analysis” on page 15-43 option, if it is selected.
c Set “Coverage objectives to be analyzed” on page 15-44 to MCDC. The available options

from the drop-down menu are Decision, Condition Decision, and MCDC.
5 Click Detect Design Errors.

The software analyzes the model for dead logic and displays the results in the Results Summary
window. The result indicates that 10 of the 32 objectives were found to be dead logic.

6 Detecting Design Errors

6-8

6 Click Highlight analysis results on model. The dead logic model elements are highlighted in
red.

7 Open the Controller subsystem, and click the OR block highlighted in red. The Result
Inspector displays the summary of the dead logic.

The set input is equal to 1, so the input port 1 of the OR block can only be true. The status
implies that the input port 1 false condition is a dead logic. Similarly, the input port 2 is
unreachable, as the objective never executes and is dead logic.

 Dead Logic Detection

6-9

8 To view the detailed analysis report, in the Results Summary window, click HTML.

The report displays the summary of all the results that are dead logic in the model.

Dead Logic

The software stores the detailed analysis results in the DeadLogic field in the “Manage
Simulink Design Verifier Data Files” on page 13-7. You can use the data file for further analysis
of the results.

Suggestion:

You can use Model Slicer to find the parameters which could have an impact on a particular block by
following these steps:

a. Create an object of SLSlicerAPI.ParameterDependence using Model Slicer.

slicerObj = slslicer('sldvSlicerdemo_dead_logic');
pd = slicerObj.parameterDependence;

b. Find the parameters affecting the Discrete-Time Integrator block.

param = parametersAffectingBlock(pd, 'sldvSlicerdemo_dead_logic/Controller/PI Controller/Discrete-Time Integrator');

6 Detecting Design Errors

6-10

The image above displays the parameters returned by the function parametersAffectingBlock
which have an impact on the Discrete-Time Integrator block. The parameters returned by the
function can be considered for tuning.

c. Perform clean-up to exit compile state of the model.

slicerObj.terminate;

See Also

More About
• “Design Verifier Pane: Design Error Detection” on page 15-42

 Dead Logic Detection

6-11

Detect Dead Logic Caused by an Incorrect Value
In this section...
“Analyze the Fuel System Model” on page 6-12
“Review the Results and Trace to the Model” on page 6-13
“Investigate the Cause of the Dead Logic” on page 6-13
“Update the Input Constraint and Reanalyze the Model” on page 6-14

Dead logic detection helps you to identify:

• Model design errors.
• Extraneous model elements.
• Model elements that should be executed, but are not.

In this example, you analyze a fuel rate controller model to determine if the model contains dead
logic. Dead logic detection finds the incorrect variable value that causes a transition condition in a
Stateflow chart to remain inactive.

Analyze the Fuel System Model
1 Open the model.

sldvdemo_fuelsys_logic_simple

Ensure that the current folder is writable.
2 Configure dead logic detection.

On the Design Verifier tab, in the Mode section, select Design Error Detection.
3 Select Error Detection Settings.
4 In the Configuration Parameters dialog box, on the Design Verifier > Design Error Detection

pane:

a Enable the “Dead logic (partial)” on page 15-43 option.
b Clear the “Run exhaustive analysis” on page 15-43 option, if it is selected.
c Set Coverage objectives to be analyzed to Condition Decision. The available options

from the drop-down menu are Decision, Condition Decision, and MCDC.
5 Click Detect Design Errors.
6 The results dialog box shows that there are 2/109 objectives that are dead logic.

6 Detecting Design Errors

6-12

Review the Results and Trace to the Model
1 Create an analysis report. From the results inspector window, click HTML.
2 Scroll to the Dead Logic section. The table lists two instances of dead logic.
3 In the Description column, one of the dead logic instances is the false condition of press <

zero_thresh. The dead logic result indicates that in the simulation, the false condition was
not executed. This logic is part of the Sens_Failure_Counter.INC transition.

4 Click the Model Item link. Simulink highlights the transition in the chart.

Investigate the Cause of the Dead Logic
1 The logical statement controlling the transition is

speed==0 & press < zero_thresh
2 Return to the report. Scroll to the Constraints section.
3 The value of the input control logic/Input Data "press" is constrained from 0 through 2.

Click the link to open the input in the Model Explorer.
4 Select the Model Workspace in the Model Explorer. In the contents table, select zero_thresh.

The value of zero_thresh is 250.

Given the constrained value of press, it is always less than zero_thresh and therefore, the
false condition is never exercised.

 Detect Dead Logic Caused by an Incorrect Value

6-13

Update the Input Constraint and Reanalyze the Model
1 Change the value of zero_thresh to 0.250.
2 Reanalyze the model. On the Design Verifier tab, click Detect Design Errors.
3 In the new results, the objective is no longer dead logic.

See Also

Related Examples
• “Dead Logic Detection” on page 6-7

6 Detecting Design Errors

6-14

Common Causes for Dead Logic
Common modeling patterns that lead to dead logic in a model include:

In this section...
“Short-Circuiting of a Logical Operator Block During Analysis” on page 6-15
“Conditional Execution of a Block” on page 6-15
“Parameter Values Treated as Constants” on page 6-16
“Upstream Blocks” on page 6-17
“Library-Linked Blocks” on page 6-17
“Restrictions on Signal Ranges” on page 6-17

When you perform design error detection analysis, Simulink Design Verifier reports the common
causes of dead logic in the Results window.

Short-Circuiting of a Logical Operator Block During Analysis

Simulink Design Verifier treats logic blocks as if they are short-circuiting when analyzing for dead
logic.

For example, in this model, if In2 is false, the software ignores the third input due to the short-
circuiting. The Results window lists this port as dead logic. See “Logic Operations Short-Circuiting”
on page 2-26.

Conditional Execution of a Block

If your model consists of Switch or Multiport Switch blocks and the Conditional input branch
execution parameter is set to On, the conditional execution can often cause unexpected dead logic.

 Common Causes for Dead Logic

6-15

Consider this example model where the Conditional input branch execution parameter is set to
On. The AND Logical Operator block is conditionally executed, which causes the dead logic for the
block. For more information, see “Conditional input branch execution”.

Parameter Values Treated as Constants
If your model contains parameters, Simulink Design Verifier treats the values as constants by default.
This might cause dead logic in the model. In these cases, consider configuring these parameters to be
tuned during analysis.

For example, consider this model, where all of the parameters are set to zero. These settings cause
the dead logic for the Less Than block.

6 Detecting Design Errors

6-16

Upstream Blocks
When a particular block has dead logic, this often leads to a cascade effect that causes downstream
blocks to have dead logic.

Consider the above example model. The dead logic in the Less Than block causes the dead logic in
the corresponding downstream blocks. It is therefore often helpful to review the upstream dead logic
before reviewing any downstream dead logic.

Library-Linked Blocks
Library blocks may be written with defensive conditions that are redundant in some of the locations
where they are used. In some cases, this may cause dead logic. See “Exclude and Justify Objectives
for Design Error Detection” on page 6-59.

Restrictions on Signal Ranges
Root-level Inport blocks with minimum and maximum values as constraints and Test Condition blocks
in the test generation may cause dead logic. For example, consider ConditionGreaterThan0 Switch
block, where the second Inport block has a minimum and maximum range of 1 and 100, respectively.
This causes the Switch block in this subsystem to have dead logic.

 Common Causes for Dead Logic

6-17

See Also

More About
• “Run a Dead Logic Analysis and Review Results” on page 6-8
• “Analyzing the Results for a Dead Logic Analysis” on page 6-73

6 Detecting Design Errors

6-18

Detect Integer Overflow and Division-by-Zero Errors
In this section...
“About This Example” on page 6-19
“Analyze the Model” on page 6-19
“Review the Analysis Results” on page 6-19

About This Example
The following sections describe how to analyze the sldvdemo_cruise_control_fxp_fixed model
for integer overflow and division-by-zero errors.

Analyze the Model
Open and check model for integer overflow and division-by-zero errors:

1 Open the sldvdemo_cruise_control_fxp_fixed model.
2 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode

settings, click Settings.
3 In the Configuration Parameters dialog box, select Design Verifier > Design Error Detection.
4 On the Design Error Detection pane, select:

• Integer overflow
• Division by zero

5 In the Configuration Parameters dialog box, on the Diagnostics > Data Validity pane, set
Signals > Wrap on overflow, Signals > Saturate on overflow and Parameters > Detect
overflow to error.

6 Click OK to save these settings and close the Configuration Parameters dialog box.
7 In the Mode section, select Design Error Detection.
8 Click Detect Design Errors.

When the analysis is complete:

• The software highlights the model with the analysis results.
• The Simulink Design Verifier Results dialog box opens and displays a summary of the analysis.

Review the Analysis Results
• “Review the Results on the Model” on page 6-19
• “Review the Harness Model” on page 6-21
• “Review the Analysis Report” on page 6-22

Review the Results on the Model

The derived ranges can help you understand the source of an error by identifying the possible signal
values, as you can see by taking the following steps:

 Detect Integer Overflow and Division-by-Zero Errors

6-19

1 At the top level of the sldvdemo_cruise_control_fxp_fixed model, click the Fixed-Point
Controller subsystem.

The Simulink Design Verifier Results window displays the derived range of possible signal values
for the Outports, as calculated by the analysis:

• The values of Outport 1 (throt) range from –2.6101 to 2.6096.
• The values of Outport 2 (target) range from 0 to 255.9960.

2 Click the Outport blocks of the sldvdemo_cruise_control_fxp_fixed model to see the same
signal bound values.

3 Open the Fixed-Point Controller subsystem.

Two objects in this subsystem are outlined in red. The PI Controller subsystem is outlined in
green.

4 Click the Sum block, outlined in red, that provides the error input to the PI Controller subsystem.

This Sum block can produce an overflow error. The analysis found a test case that can result in a
computation where the output of the Sum block exceeds the range [–128..127.9960].

6 Detecting Design Errors

6-20

5 To more fully understand this error, click the two blocks that provide the inputs to the Sum block.
In the Simulink Design Verifier Results window, view their derived ranges:

• The third Outport from the Bus block has a range of [0..256].
• The Outport from the Switch block has a range of [0..256].

You can see that the sum operation for these signal ranges can compute a value that exceeds the
range [–128..128] for the Outport of the Sum block.

The analysis reports the overflow error on the Sum block. The analysis does not propagate this
error and assumes that the Sum block output is within the valid range for any subsequent
computations.

6 Click the PI Controller subsystem, outlined in green. None of the blocks in the PI Controller
subsystem can produce overflow or division-by-zero errors. When the software analyzes the PI
Controller subsystem, it ignores the overflow error from the Sum block and assumes that the
inputs to the subsystem are valid.

Keep the sldvdemo_cruise_control_fxp_fixed model open. In the next section, you create the
harness model to see the test case that generates the Sum block overflow error.

Review the Harness Model

To see the test cases that demonstrate the errors, generate the harness model from the Simulink
Design Verifier Results window:

1 In the sldvdemo_cruise_control_fxp_fixed model, open the Fixed-Point Controller
subsystem.

2 Click the Sum block, outlined in red, that provides the error input to the PI Controller subsystem.

The Simulink Design Verifier Results window displays information that an overflow error
occurred.

3 In the Simulink Design Verifier Results window, click View counterexamples.

The software creates a harness model containing the test case with the signal values that cause
this overflow error.

In the harness model, the Signal Builder dialog box opens, with Test Case 2 displayed.
4 Click the Start simulation button to simulate the model with this test case.

As expected, the simulation fails due to an overflow error at the Sum block in the Fixed-Point
Controller subsystem.

 Detect Integer Overflow and Division-by-Zero Errors

6-21

For more information, see “Manage Simulink Design Verifier Harness Models” on page 13-13.

Review the Analysis Report

To view an HTML report containing detailed information about the analysis report for the
sldvdemo_cruise_control_fxp_fixed model:

1 In the Simulink Design Verifier Results window, to redisplay the results summary, click Back to
summary.

2 Click Generate detailed analysis report.

The software generates a detailed analysis report that opens in a browser.

For the sldvdemo_cruise_control_fxp_fixed model, the Design Error Detection Objectives
Status chapter of the report provides detailed results in two categories:

• Objectives Valid — Model objects that did not produce errors
• Objectives Falsified with Counterexamples — Model objects for which test cases generated

errors

Model objects that have decision or condition outcomes receive dead logic detection. For more
information on the complete list of model objects that have decision or condition objectives, see
“Model Objects That Receive Coverage” (Simulink Coverage).

For more information, see “Review Results” on page 13-35.

See Also

More About
• “Detect Integer Overflow Errors” on page 6-51
• “Detect Integer Overflow in a Model with Complex Inputs” on page 6-65

6 Detecting Design Errors

6-22

Check for Specified Minimum and Maximum Value Violations
In this section...
“Limitations of Checking Specified Minimum and Maximum Value Violations” on page 6-23
“About This Example” on page 6-23
“Create the Example Model” on page 6-24
“Analyze the Model” on page 6-25
“Review the Analysis Results” on page 6-25

During a design error detection analysis, the software checks the specified minimum and maximum
values on intermediate signals throughout the model and on the output ports. These values define the
design ranges.

The analysis checks for specified minimum and maximum values on:

• Simulink block outputs, with the exception of the limitations described in the next section
• Simulink.Signal objects
• Stateflow data objects
• MATLAB for code generation data objects
• Global data store writes

If the analysis detects that a signal exceeds the design range, the results identify where in the model
the errors occurred. In addition, you can generate a harness model that contains test cases that
demonstrate how the error occurred.

Limitations of Checking Specified Minimum and Maximum Value
Violations
If you analyze a model checking if specified minimum and maximum values are exceeded, the
software cannot check minimum and maximum values specified on:

• Any Mux block with an output connected to a Selector block
• Merge block inputs

To work around this limitation, use a Simulink.Signal object on the Merge block output and
specify the range on the Simulink.Signal object.

Note For information about how a Simulink Design Verifier analysis handles specified minimum and
maximum values on input ports, see “Minimum and Maximum Input Constraints” on page 11-2.

About This Example
In this section, you create and analyze a model that has specified design minimum and maximum
values on:

• The input ports

 Check for Specified Minimum and Maximum Value Violations

6-23

• The output ports of two of the intermediate blocks

The design error detection analysis identifies blocks where the output values exceed the design
range. If the analysis detects this error, this example demonstrates how the analysis uses the
specified minimum and maximum values when continuing the analysis.

Create the Example Model
Create the model for this example:

1 In the MATLAB toolstrip, on the Home tab, select New > Simulink Model.
2 From the Simulink Commonly Used Blocks library, add the following blocks to the model and

assign the indicated parameter values.

Block Tab Parameter Value
Inport Signal Attributes Minimum 0
Inport Signal Attributes Maximum 5
Gain Main Gain 5
Gain Signal Attributes Output minimum 0
Gain Signal Attributes Output maximum 20
Gain Signal Attributes Output data type int16
Saturation Main Upper limit 25
Saturation Main Lower limit -25
Saturation Signal Attributes Output minimum -25
Saturation Signal Attributes Output maximum 25
Outport No changes

3 Connect the four blocks as shown.

4 To display the specified minimum and maximum values, on the Debug tab, select Information
Overlays > Signal Data Ranges.

5 On the Modeling tab, click Model Settings.
6 In the Configuration Parameters dialog box, on the Solver pane, under Solver selection:

a Set Type to Fixed-step.

The Simulink Design Verifier software does not support variable-step solvers.
b Set Solver to discrete (no continuous states).

7 On the Design Verifier pane, set Mode to Design error detection.
8 On the Design Verifier > Design Error Detection pane:

a Select Specified minimum and maximum value violations.

6 Detecting Design Errors

6-24

b Clear the Integer overflow and Division by zero parameters.

In this example, you check only for intermediate minimum and maximum violations.
9 To save these settings and exit the Configuration Parameters dialog box, click OK.
10 Save the model and name it ex_interim_minmax.

Analyze the Model
To analyze the example model to identify any intermediate signals that violate the specified minimum
and maximum values, perform design error detection analysis.

On the Design Verifier tab, click Detect Design Errors.

After the analysis is complete:

• The software highlights the model with the analysis results.

• The Simulink Design Verifier Results dialog box opens and displays a summary of the analysis.

Review the Analysis Results
• “Review Results on the Model” on page 6-25
• “Review the Harness Model” on page 6-26
• “Review the Analysis Report” on page 6-27

Review Results on the Model

In the model window, the Gain block is colored red and the Saturation block is colored green. This
indicates that:

• At least one objective associated with the Gain block was falsified. For this example, the analysis
falsified exactly one objective.

 Check for Specified Minimum and Maximum Value Violations

6-25

• All objectives associated with the Saturation block were satisfied. For this example, the analysis
satisfied exactly one objective.

To understand these results:

1 Click the Gain block.

The Simulink Design Verifier Results window shows that the design range for the output was
[0..20], but the analysis detected an error and generated a test case that demonstrates that error.
Because the design range for the input block is [0..5], when the input to the Gain block is 5, the
output is 25, which exceeds the specified maximum value on that port.

The analysis computes and displays the derived range to help you understand how the design
range was exceeded.

2 Click the Saturation block.

The Simulink Design Verifier Results window shows that the output of the Saturation block never
exceeded the design range [–25..25]. The input to the Saturation block never exceeded [0..25],
which is the derived range that the analysis propagated from the Gain block.

Review the Harness Model

When the analysis completes, you can create a harness model contains the test cases that result in
errors.

For the example model, view the test case that caused the design range error in the Gain block:

6 Detecting Design Errors

6-26

1 After the analysis completes and the model is highlighted, click the Gain block.
2 In the Simulink Design Verifier Results window, click View test case.

The software creates a harness model named ex_interim_minmax_harness and opens the
Signal Builder block in the harness model that contains the test case.

In the Signal Builder block, one test case, whose signal value is 5, caused the output of the Gain
block to be 25, which exceeds the specified maximum of 20.

3 Before you simulate this test case, in the Configuration Parameters dialog box, on the
Diagnostics > Data Validity pane, set Simulation range checking to warning or error.

Setting this parameter specifies the diagnostic action to take if Simulink detects signals that
exceed specified minimum or maximum values during simulation.

• If you specify warning, the simulation displays a warning message and continues.
• If you specify error, the simulation displays an error message and stops.

4 Click OK to save your change and close the Configuration Parameters dialog box.
5 In the Signal Builder block window, click Start simulation to simulate the model with this test

case.

As expected, in the MATLAB window, the simulation displays a warning or error that the output
value of the Gain block exceeds the specified maximum.

Review the Analysis Report

You can also generate an HTML report containing detailed information about the analysis report for
the ex_interim_minmax model. To create this report, in the Simulink Design Verifier Results
window, click Generate detailed analysis report. The analysis report opens in a browser.

In the analysis report, the Design Error Detection Objectives Status chapter of the report
provides detailed results in two categories:

• Objectives Proven Valid — The output values for the Saturation block are always within the
design range.

• Objectives Falsified with Test Cases — The output values for the Gain block violated the design
range.

 Check for Specified Minimum and Maximum Value Violations

6-27

Detect Out of Bound Array Access Errors
In this section...
“Design Error Detection for Out of Bound Array Access” on page 6-28
“Detect Out of Bound Array Access Example Model” on page 6-28
“Limitations of Support for Out of Bound Array Access Design Error Detection” on page 6-31

Design Error Detection for Out of Bound Array Access

Simulink Design Verifier design error detection analysis detects out of bound array access errors in
your model. In simulation, when your model attempts to access an array element using an invalid
index, an out of bound array access error occurs.

To detect out of bound array access errors in your model:

1 On the Design Verifier tab, in the Mode section, select Design Error Detection.
2 Click Error Detection Settings.
3 In the Configuration Parameters dialog box, in Design Error Detection pane, select Out of

bound array access.
4 Click OK.
5 Click Detect Design Errors.

The Simulink Design Verifier log window opens, showing the progress of the analysis.

When the analysis is complete:

• The software highlights the model with the analysis results.
• The Simulink Design Verifier Results dialog box opens and displays an analysis summary.

Note If a model contains out of bound array access error, after the first occurrence of array access,
Simulink Design Verifier assumes that the array index is within bounds for the remaining analysis.
Hence, design error detection objectives that are analyzed after this assumption may be reported as
valid, even if the design errors occur in the model.

Detect Out of Bound Array Access Example Model

This example shows how to detect out of bound array access errors and review the analysis results. In
the sldvdemo_array_bounds example model, the ComputeIndex MATLAB Function block uses the
input signal values to determine range of indices with minimum minIdx and maximum maxIdx. The
ArrayOp_Matlab, ArrayOp_MAL, and ArrayOp_SF blocks use the set of integer indices between
minIdx and maxIdx to access array elements and perform array operations.

Step 1: Open the Model

At the command prompt, enter:

open_system('sldvdemo_array_bounds');

6 Detecting Design Errors

6-28

Step 2: Perform Design Error Detection Analysis

The analysis options in the model are preconfigured for out of bound array access error detection. To
view these options, in the Simulink Editor, double-click the View Options button.

To perform design error detection analysis, in the Simulink Editor, double-click the Run button. The
Simulink® Design Verifier™ Results Summary window opens that displays the progress of the
analysis. When the analysis completes, the example model is highlighted with the analysis results.

 Detect Out of Bound Array Access Errors

6-29

Step 3: Review Analysis Results

To view the analysis results inside the chart, double-click the ArrayOp_SF Chart block that is
highlighted in red.

Simulink Design Verifier detects that the index out of bound errors occurs in array u in state Diff.

Step 4: Create Harness and Simulate Test Cases

Click the first View test case link. Simulink Design Verifier creates and opens a harness model that
contains test cases, that demonstrate out of bound array access errors. In the Signal Builder dialog
box, click Start simulation to simulate the harness model with Test Case 2.

The simulation stops before entering the state Diff. The Stateflow® Debugger opens. The following
error is shown:

6 Detecting Design Errors

6-30

Attempted to access index 4 of u with smaller dimension sizes. The valid
index range is 0 to 3. This error will stop the simulation. State 'Diff' in
Chart 'sldvdemo_array_bounds_harness/Test Unit (copied from
sldvdemo_array_bounds)/ArrayOp_SF': y = u[maxIdx] - u[minIdx];

Keep the Stateflow® Debugger open at this breakpoint. In the sldvdemo_array_bounds_harness
model, hold your cursor over the Diff state to see the data values at this simulation breakpoint.

Using Test Case 2 input signal values, the ComputeIndex MATLAB Function block determines the
range of array indices to be 1:4. One-based indexing is consistent with MATLAB syntax, so these
indices are valid for the ArrayOp_Matlab MATLAB Function block and the ArrayOp_MAL Stateflow®
chart.

The ArrayOp_SF Stateflow® chart uses C as the action language, which does not support one-based
indexing. Thus, 1:4 is not a valid index range for array access in the chart. The valid index range for
array access in the chart is 0:3, as reported by the error message. When either maxIdx or minIdx
evaluates to 4, an out of bound array access error occurs in the ArrayOp_SF Chart block. For more
information on zero-based indexing support, see “Differences Between MATLAB and C as Action
Language Syntax” (Stateflow).

Limitations of Support for Out of Bound Array Access Design Error
Detection
Inf Index Values

Design error detection does not support indexing by Inf. If your model attempts to access an array
using an index value that evaluates to Inf, design error detection does not report an out of bound
array access error, but in simulation, an out of bound array access error occurs.

 Detect Out of Bound Array Access Errors

6-31

Index Vector Block with Scalar Data Input

Out of bound array access design error detection does not support Index Vector blocks with scalar
data inputs. If your model includes an Index Vector block that specifies a scalar data input instead of
a vector data input and the control input causes an out of bounds array access, design error detection
does not report an error, but an error occurs in simulation.

See Also

More About
• “Detect Out of Bound Array Access Example Model” on page 6-54

6 Detecting Design Errors

6-32

Detect Non-Finite, NaN, and Subnormal Floating-Point Values
To detect occurrences of nonfinite, NaN, and subnormal floating-point values in a model:

1 On the Design Verifier tab, in the Mode section, select Design Error Detection.
2 Click Error Detection Settings.
3 In the Configuration Parameters dialog box, in Design Error Detection pane:

a Select the check box for “Non-finite and NaN floating-point values” on page 15-47.
b Select the check box for “Subnormal floating-point values” on page 15-47.
c To apply these settings, click OK and close the Configuration Parameters dialog box.

4 Click Detect Design Errors.

Simulink Design Verifier analyzes the model to detect the occurrences of nonfinite, NaN, and
subnormal floating-point values.

After the analysis is complete:

• The software highlights the model with the analysis results.
• The Results Summary windows displays the summary of the analysis.

Assumptions and Limitations
When you analyze a model and select “Non-finite and NaN floating-point values” on page 15-47, the
software assumes that the floating-point input values and the tunable parameter values are finite.

When you analyze a model and select “Subnormal floating-point values” on page 15-47, the software
assumes that the floating-point input values and the tunable parameter values are normal.

Models that use double-precision floating-point signals take more time to analyze than similar models
that use single-precision floating-point signals. As a result, models that use double-precision floating-
point signals might time out whereas similar models that use single-precision floating-point signals
complete their analysis. To improve analysis performance, consider specifying minimum and
maximum values that mimic environmental constraints on root-level Inport blocks.

If the model contains cast operations between floating-point signals and multiword fixed-point
signals, the analysis might not be able to decide all objectives.

Run Design Error Detection Analysis to Detect Floating-Point Errors

This example shows how to detect nonfinite, NaN, and subnormal floating-point values in the
sldvexFloatingPointErrorChecks example model. The model consists of floating-point
arithmetic operations that result in an error. Perform design error detection analysis to detect these
errors in the model.

1. Open the Model

This example model consists of Add and Divide blocks that handle floating-point calculations. The
design error detection analysis detects the occurrences of floating-point errors in the model and
reports the results.

 Detect Non-Finite, NaN, and Subnormal Floating-Point Values

6-33

open_system('sldvexFloatingPointErrorChecks');

2. Perform Design Error Detection Analysis

The model is preconfigured with Non-finite and NaN floating-point values and Subnormal
floating-point values options set to On. For more information see “Design Verifier Pane: Design
Error Detection” on page 15-42.

To perform design error detection analysis, on the Design Verifier tab, in the Mode section, select
Design Error Detection. Click Detect Design Errors.

The software analyzes the model for floating-point errors and displays the results in the Results
Summary window. The result indicates that 4 out of 6 objectives are falsified.

3. Review Analysis Results

a. Click Highlight analysis results on model. The model blocks that result in floating-point errors
are highlighted in red.

6 Detecting Design Errors

6-34

b. Click the Add block highlighted in red. The Result Inspector displays the summary of the floating-
point error objectives.

c. Click the Division block highlighted in red. The Result Inspector displays the summary of the
floating-point error objectives.

4. View Detailed Analysis Report

To view the detailed analysis report, in the Results Summary window, click HTML. The report
displays the summary of all occurrences of floating-point errors in the model.

 Detect Non-Finite, NaN, and Subnormal Floating-Point Values

6-35

5. Clean Up

To complete this example, close the model.

close_system('sldvexFloatingPointErrorChecks', 0);

See Also

More About
• “Design Verifier Pane: Design Error Detection” on page 15-42
• “Simulink Design Verifier Options” on page 15-2

6 Detecting Design Errors

6-36

Detect Data Store Access Violations
Simulink Design Verifier design error detection analysis identifies unintended sequences of data store
reads and writes that occur during simulation. The analysis detects these data store access violations:

• Read-before-write
• Write-after-read
• Write-after-write

To detect data store access violations in your model:

1 On the Design Verifier tab, in the Mode section, select Design Error Detection.
2 Click Error Detection Settings.
3 In the Configuration Parameters dialog box, in the Design Error Detection pane, select “Data

store access violations” on page 15-45. Click OK.
4 Click Detect Design Errors.

After the analysis is complete, the software highlights the model with the analysis results and the
Results Summary window displays the summary of the analysis.

Detect Data Store Access Violations in a Model

This example shows how to detect data store access violations and review the analysis results. The
sldvexDataStoreAccessViolations example model consists of Data Store Memory blocks that
define the alpha and beta data stores. In the example model, the Write Subsystem writes the
data to the data store by using Data Store Write blocks and the Read Subsystem reads the data
from the data store by using the Data Store Read blocks.

Step 1: Open the Model

At the command prompt, enter:

open_system('sldvexDataStoreAccessViolations');

 Detect Data Store Access Violations

6-37

Step 2: Configure Analysis Options to Detect Data Store Access Violations

The model is preconfigured with the Data store access violations parameter set to On.

Step 3: Perform Design Error Detection Analysis

On the Design Verifier tab, click Detect Design Errors. Simulink Design Verifier analyzes the
model for data store access violations. After the analysis completes, the Results Summary window
displays that one objective was falsified.

Step 4: Review Analysis Results

The model is highlighted with the analysis results.

(1) Open the Read Subsystem and click Data Store Read1 block that is highlighted in red. The
Results Inspector window displays the Read-before-write objective that violates the data store access
order.

6 Detecting Design Errors

6-38

(2) To view the test case that replicates the error, click View test case. The harness model and the
Signal Builder block open that displays the test case.

(3) To simulate the test case, in the Signal Builder dialog box, click Start simulation. After the
simulation completes, the Diagnostic Viewer window displays this warning message:

The block 'sldvexDataStoreAccessViolations_harness/Test Unit (copied from
sldvexDataStoreAccessViolations)/Read Subsystem/Data Store Read1' is reading
from the data store 'sldvexDataStoreAccessViolations_harness/Test Unit
(copied from sldvexDataStoreAccessViolations)/Data Store Memory1' before any
blocks have written to this entire region of memory at time 0.0. For
performance reasons, occurrences of this diagnostic for this memory at other
simulation time steps will be suppressed.

Step 5: Fix the Data Store Access Violation Error

The read-before-write objective results in error because no block has been written to the beta data
store before the read operation executes.

Open the Write Subsystem and double-click Write "alpha". In the Write "alpha" subsystem,
only the alpha data store is written with a constant value. Hence, the read-before-write data store
access violation occurs for the "beta" Data Store Read block.

To fix the error, in the Write "alpha" subsystem, add a Constant block and write its value to beta
data store by using the Data Store Write block (highlighted in figure below).

 Detect Data Store Access Violations

6-39

On the Design Verifier tab, click Detect Design Errors. After the analysis completes, the software
reports that all the objectives are valid.

See Also

• “Data Store Basics”
• “Detect Data Store Access Violations”

See Also

More About
• “Design Verifier Pane: Design Error Detection” on page 15-42

6 Detecting Design Errors

6-40

Detect Violations of High-Integrity Systems Modeling
Guidelines

Simulink Design Verifier design error detection analysis detects violations of the following High-
Integrity Systems Modeling Guidelines:

• Usage of rem and reciprocal operations - hisl_0002
• Usage of square root operations - hisl_0003
• Usage of log and log10 operations - hisl_0004
• Usage of Reciprocal Square Root blocks - hisl_0028

Usage of rem and reciprocal operations - hisl_0002
Specify whether to check the usage of rem and reciprocal operations that cause non-finite results.

This corresponds to the hisl_0002 check for High-Integrity Systems Modeling. For more information,
see hisl_0002: Usage of Math Function blocks (rem and reciprocal).

Usage of square root operations - hisl_0003
Specify whether to check the usage of Square Root operations with inputs that can be negative.

This corresponds to the hisl_0003 check for High-Integrity Systems Modeling. For more information,
see hisl_0003: Usage of Square Root blocks.

Usage of log and log10 operations - hisl_0004
Specify whether to check the usage of log and log10 operations that cause non-finite results.

This corresponds to the hisl_0004 check for High-Integrity Systems Modeling. For more information,
see hisl_0004: Usage of Math Function blocks (natural logarithm and base 10 logarithm).

Usage of Reciprocal Square Root blocks - hisl_0028
Specify whether to check the usage of Reciprocal Square Root blocks with inputs that can go zero or
negative.

This corresponds to the hisl_0028 check for High Integrity Systems Modeling. For more information,
see hisl_0028: Usage of Reciprocal Square Root blocks.

Detect Violations of High-Integrity Systems Modeling Guidelines

This example shows how to detect violations of High-Integrity Systems Modeling guidelines.

1. Open the Model

This example model explains about usage of remainder and reciprocal operations, square root
operations, log and log10 operations, and Reciprocal Square Root blocks.

 Detect Violations of High-Integrity Systems Modeling Guidelines

6-41

open_system('sldvexHislChecks');

2. Perform Design Error Detection Analysis

The model is preconfigured with High-Integrity Systems Modeling checks, Usage of remainder and
reciprocal operations- hisl_0002, Usage of square root operations-hisl_0003, Usage of log
and log10 operations-hisl_0004, and Usage of Reciprocal Square Root blocks-hisl_0028. For
more information see “Design Verifier Pane: Design Error Detection” on page 15-42.

To perform design error detection analysis, on the Design Verifier tab, in the Mode section, select
Design Error Detection. Then click Detect Design Errors.

The software analyzes the model for violations of the High-Integrity Systems Modeling guidelines and
displays the results in the Results Summary window. The results indicate that 15 out of 29 objectives
are falsified.

6 Detecting Design Errors

6-42

3. Review Analysis Results

Click Highlight analysis results on model. The blocks that result in violations of High-Integrity
Systems Modeling guidelines are highlighted in red.

a. Click the Rem and Reciprocal blocks highlighted in red. The Result Inspector displays the
summary of the violation of hisl_0002 guideline.

 Detect Violations of High-Integrity Systems Modeling Guidelines

6-43

b. Click the Sqrt block highlighted in red. The Result Inspector displays the summary of the violation
of hisl_0003 guideline.

c. Click the Log and Log10 blocks highlighted in red. The Result Inspector displays the summary of
the violation of hisl_0004 guideline.

d. Click the Reciprocal Square Root block highlighted in red. The Result Inspector displays the
summary of the violation of hisl_0028 guideline.

6 Detecting Design Errors

6-44

e. Click the MATLAB Function block highlighted in red. The Result Inspector displays the summary
of hisl_0002, hisl_0003, and hisl_0004 checks.

4. View Detailed Analysis Report

To view the detailed analysis report, in the Results Summary window, click HTML. The report
displays the summary of all occurrences of High-Integrity Systems Modeling violations in the model.

5. Clean Up

To complete this example, close the model.

close_system('sldvexHislChecks', 0);

See Also

More About
• “Simulink Design Verifier Options” on page 15-2
• “Design Verifier Pane: Design Error Detection” on page 15-42

 Detect Violations of High-Integrity Systems Modeling Guidelines

6-45

Filter Objectives by Using Simulink Design Verifier Filter
Explorer

Filtering model objects and code expressions from design error detection or test generation analysis
allows you to focus on a subset of objects for Simulink Design Verifier analysis. Use filters when you
have model objects that take a long time to analyze or when you want to focus on specific objectives
for analysis.

You can add one or more filter files by opening the Configuration Parameters window, clicking
Design Verifier and, under Advanced parameters, selecting “Ignore objectives based on filter” on
page 15-17. Enter your filter files in the Filter file(s) parameter. For more information about
coverage filter files, see “Creating and Using Coverage Filters” (Simulink Coverage). You can also
filter the Design Verifier objectives for code-based analysis to align code-based results to model-
based results.

After you perform design error detection or test generation analysis, you can justify unsatisfiable,
dead logic, undecided, and falsified objectives by using the Simulink Design Verifier Filter
Explorer. When you edit filters by using Simulink Design Verifier Filter Explorer, you can update the
Simulink Design Verifier report and highlight the analysis results on the model without reanalyzing
the model. For detailed example on how to filter objectives, see “Exclude and Justify Objectives for
Design Error Detection” on page 6-59.

Use the Simulink Design Verifier Filter Explorer to Edit Filter Files
After analyzing your model, you can use Simulink Design Verifier Filter Explorer to justify the
falsified, unsatisfiable, undecided, and dead logic objectives and update the filter files.

You can open the filter explorer from the Results Summary window or from the Results Inspector
window.

• In the Results Summary window, click Open filter explorer.

• In the Results Inspector window,

• To see the filter rule for a justified objective, click View.
• To justify an objective, click Justify.

6 Detecting Design Errors

6-46

In the Simulink Design Verifier Filter Explorer, you can:

• Create, load, edit, or save filter files.
• Create a filter file to justify all the Unsatisfiable, Falsified and Dead Logic objectives from

the active sldvData.
• Navigate to the model to inspect the model objects associated with a filter rule.
• Add rationale description about why the objective or model object or code expression is excluded

or justified.

 Filter Objectives by Using Simulink Design Verifier Filter Explorer

6-47

6 Detecting Design Errors

6-48

Task Action
Navigate to a model object associated with a rule.

Note This step is valid only for model objective
analysis.

1 Select the rule.
2 Click View in model. The model object is

highlighted in blue.

Delete a rule. 1 Select the rule.
2 Click Remove rule.

Save the current rules to a file. 1 Click Apply.
2 Specify a file name and folder for the filter

file and click Save.
Rename a filter file 1 Click Save as.

2 Specify a file name and folder for the filter
file and click Save.

Load an existing filter file. 1 Click Load filter.
2 Navigate to the filter file and click Open.

Highlight the model and update the current
analysis report with the current filter files.

1 Apply or Revert any changes you have
made.

The model is highlighted with the updated
filter rules.

2 In the Results Summary window or in the
Results inspector window, click HTML or
PDF.

Create an empty filter file. Click New filter
.

Remove a filter from Filter Explorer. Right-click the corresponding node under
Applied filters and select Remove
.

Create a filter file to justify all Unsatisfiable,
Falsified, and Dead Logic objectives in the
active sldvData

1 Click Create justification rules for
violations and dead logic from the active
sldvData

2 Click Save as
3 Specify a file name and folder for the filter

file and click Save

Limitations
Simulink Design Verifier does not support filtering objectives associated with property proving
analysis.

 Filter Objectives by Using Simulink Design Verifier Filter Explorer

6-49

See Also

More About
• “Design Verifier Pane” on page 15-9
• “Create, Edit, and View Coverage Filter Rules” (Simulink Coverage)
• “Review Results” on page 13-35

6 Detecting Design Errors

6-50

Detect Integer Overflow Errors

This example shows how to detect integer overflow errors in a model by using design error detection
analysis. Simulink® Design Verifier™ identifies the model constructs that may result in integer
overflows and then either proves that the integer overflow cannot occur during simulation or
generates test cases that demonstrates the integer overflow error.

In this example, you will perform design error detection analysis on a model, then generate a report
that shows which integer overflow objectives were valid and which objectives resulted in errors.

Step 1: Open the Model

At the command prompt, enter:

open_system('sldvdemo_design_error_detection');

Step 2: Perform Design Error Detection Analysis

The model is preconfigured with the Integer overflow option enabled in the Configuration
Parameters dialog box, on the Design Verifier > Design Error Detection pane.

On the Design Verifier tab, click Detect Design Errors.

The software analyzes the model for integer overflow errors. After the analysis completes, the Results
Summary window reports that five objectives are valid and two objectives are falsified.

 Detect Integer Overflow Errors

6-51

Step 3: Review Analysis Results

To highlight the analysis results on the model, in the Results Summary window, click Highlight
analysis results on model. The valid objectives are highlighted in green and the falsified objectives
are highlighted in red.

6 Detecting Design Errors

6-52

Double-click the Controller subsystem. Click the Sum block that is highlighted in red. The Results
Inspector window displays the integer overflow objectives.

To view the test case that results in the error, click View test case. The harness model opens and the
Signal Builder block displays the test case that results in the error.

Step 4: Fix the Integer Overflow Error

For both the Sum blocks that generated the integer overflow, enable the Saturate on integer
overflow option. Alternatively, you can double-click the Toggle Saturation on overflow button in
the Simulink Editor.

To confirm that the integer overflow error was resolved, on the Design Verifier tab, click Detect
Design Errors. After the analysis completes, the software reports that all the objectives are valid.

Related Topics

• “Detect Integer Overflow and Division-by-Zero Errors” on page 6-19
• “Understand the Analysis Results” on page 6-4

 Detect Integer Overflow Errors

6-53

Detect Out of Bound Array Access Example Model

This example shows how to detect out of bound array access errors and review the analysis results. In
the sldvdemo_array_bounds example model, the ComputeIndex MATLAB Function block uses the
input signal values to determine range of indices with minimum minIdx and maximum maxIdx. The
ArrayOp_Matlab, ArrayOp_MAL, and ArrayOp_SF blocks use the set of integer indices between
minIdx and maxIdx to access array elements and perform array operations.

Step 1: Open the Model

At the command prompt, enter:

open_system('sldvdemo_array_bounds');

Step 2: Perform Design Error Detection Analysis

The analysis options in the model are preconfigured for out of bound array access error detection. To
view these options, in the Simulink Editor, double-click the View Options button.

To perform design error detection analysis, in the Simulink Editor, double-click the Run button. The
Simulink® Design Verifier™ Results Summary window opens that displays the progress of the
analysis. When the analysis completes, the example model is highlighted with the analysis results.

6 Detecting Design Errors

6-54

Step 3: Review Analysis Results

To view the analysis results inside the chart, double-click the ArrayOp_SF Chart block that is
highlighted in red.

Simulink Design Verifier detects that the index out of bound errors occurs in array u in state Diff.

Step 4: Create Harness and Simulate Test Cases

Click the first View test case link. Simulink Design Verifier creates and opens a harness model that
contains test cases, that demonstrate out of bound array access errors. In the Signal Builder dialog
box, click Start simulation to simulate the harness model with Test Case 2.

The simulation stops before entering the state Diff. The Stateflow® Debugger opens. The following
error is shown:

 Detect Out of Bound Array Access Example Model

6-55

Attempted to access index 4 of u with smaller dimension sizes. The valid
index range is 0 to 3. This error will stop the simulation. State 'Diff' in
Chart 'sldvdemo_array_bounds_harness/Test Unit (copied from
sldvdemo_array_bounds)/ArrayOp_SF': y = u[maxIdx] - u[minIdx];

Keep the Stateflow® Debugger open at this breakpoint. In the sldvdemo_array_bounds_harness
model, hold your cursor over the Diff state to see the data values at this simulation breakpoint.

Using Test Case 2 input signal values, the ComputeIndex MATLAB Function block determines the
range of array indices to be 1:4. One-based indexing is consistent with MATLAB syntax, so these
indices are valid for the ArrayOp_Matlab MATLAB Function block and the ArrayOp_MAL Stateflow®
chart.

The ArrayOp_SF Stateflow® chart uses C as the action language, which does not support one-based
indexing. Thus, 1:4 is not a valid index range for array access in the chart. The valid index range for
array access in the chart is 0:3, as reported by the error message. When either maxIdx or minIdx
evaluates to 4, an out of bound array access error occurs in the ArrayOp_SF Chart block. For more
information on zero-based indexing support, see “Differences Between MATLAB and C as Action
Language Syntax” (Stateflow).

6 Detecting Design Errors

6-56

Detect Design Errors in C/C++ Custom Code

To detect division by zero and out of bound array access errors in a model with C/C++ custom code
in model blocks or Stateflow® charts, use design error detection analysis. Simulink Design Verifier
identifies the code that results in errors and then either proves that the errors are valid or generates
test cases that replicate the error.

This example shows how to detect division by zero errors in a model that consists of C/C++ code in a
Stateflow® chart.

Step 1: Open the Model

The example model sldvexCustomCodeErrorDetectionExample contains a Stateflow® chart that
calls C/C++ custom code that uses input and output buses.

open_system('sldvexCustomCodeErrorDetectionExample');

Step 2: Perform Design Error Detection Analysis

To perform design error detection analysis, on the Design Verifier tab, click Detect Design Errors.
After the analysis completes, the Results Summary window indicates that one objective is falsified.

 Detect Design Errors in C/C++ Custom Code

6-57

Step 3: Review the Analysis Results

On the Design Verifier tab, in the Review Results section, click Highlight in Model. To view the
C/C++ run-time error objectives that resulted in the error, click on the Simulink® Editor. The Results
Inspector window displays the division by zero objectives.

Note: When you click View test case for the Error - needs simulation objective, Simulink® Design
Verifier™ displays the test case that replicates the error. If you simulate the test case, MATLAB® may
crash during custom code analysis.

To view the HTML report, on the Design Verifier tab, click HTML Report. The Design Error
Detection Objectives Status section in the report describes the falsified objective.

Step 4: Fix Design Errors

In the example model, right-click the Saturation block that is greyed out and Uncomment the block.
Reanalyze the model, by clicking Detect Design Errors. The results show that the C/C++ run-time
objective is valid.

Step 5: Clean Up

To complete the example, close the model.

close_system('sldvexCustomCodeErrorDetectionExample', 0);

Related Topics

• “Design Error Detection Objectives Status” on page 13-43
• “Design Verifier Pane: Design Error Detection” on page 15-42

6 Detecting Design Errors

6-58

Exclude and Justify Objectives for Design Error Detection

This example shows how to exclude a model object from Simulink® Design Verifier™ analysis by
using a coverage filter file. After performing analysis, you can justify objectives by using Analysis
Filter viewer, update the filter file, you can justify objectives by using Analysis Filter explorer,
update the filter file, you can justify objectives by using Simulink® Design Verifier™ Filter Explorer,
update the filter file, and review the analysis results.

Step 1: Open the Model

The example model sldvexControllerFilterObjectives is a controller model that operates
according to the controller algorithm.

open_system('sldvexControllerFilterObjectives');

Step 2: Exclude a Model Object from Analysis

The model is preconfigured with the Ignore objectives based on filter option set to On and a
coverage filter file specified by sldvexControllerFilterObjectives_filter.cvf. The
coverage filter file consists of a rule that excludes the Abs block from the analysis. For more
information on coverage filter file, see “Creating and Using Coverage Filters” (Simulink Coverage).

 Exclude and Justify Objectives for Design Error Detection

6-59

On the Apps tab, under Model Verification, Validation, and Test, click Design Verifier. Then,
click Detect Design Errors. After the analysis completes, the Results Summary window reports that
5 objectives were processed, out of which, 3 were valid and 2 were falsified. The summary shows that
1 objective was excluded from analysis.

Step 3: Open the Analysis Filter Viewer

On the Results Summary window, click Open filter viewer. The Analysis Filter viewer opens that
displays the name, type, and rationale for the excluded

Step 3: Open the Analysis Filter Explorer

On the Results Summary window, click Open filter explorer. The Analysis Filter explorer opens
that displays the name, type, and rationale for the excluded

Step 3: Open the Simulink Design Verifier Filter Explorer

On the Results Summary window, click Open filter explorer. The Filter Explorer opens.

6 Detecting Design Errors

6-60

Click on the applied filter's node to view the names, type, and rationale for the excluded objectives
specified in the coverage filter file.

Step 4: Justify Objectives

(a) Close the Filter Explorer.

(b) On the Results Summary window, click Highlight analysis results on model. The model is
highlighted with the analysis results. The excluded model objects are highlighted in steel blue and the
model objects that result in errors are highlighted in red.

(b) To view the excluded objectives, click Abs block and click View. The Analysis Filter viewer
opens. The Analysis Filter explorer opens. The Filter Explorer opens and displays the relevant filter
rule.

(c) Click the Divide block. The Results Inspector window displays a summary of the objectives.

 Exclude and Justify Objectives for Design Error Detection

6-61

(d) To justify the division by zero objective, click Justify. The Analysis Filter viewer is updated with
a rule that justifies this objective. Optionally, you can update the Mode or Rationale for the
objectives. (d) To justify the division by zero objective, click Justify. The Analysis Filter explorer is
updated with a rule that justifies this objective. Optionally, you can update the Mode or Rationale
for the objectives. (d) To justify the division by zero objective, click on the Applied filters node in
Filter Explorer and click Justify in the Results Inspector window. The Filter Explorer opens and
queries about where to add the justification rule. You may choose to add it to the existing filter file or
create a new filter file. Create a new file.

6 Detecting Design Errors

6-62

Step 5: Apply the Filter File and View Results

On the Analysis Filter viewer, click Apply. The model is highlighted with the updated filter. The
Divide block is highlighted in green because all the objectives of the block are valid.

To save the updated filter file, in the Analysis Filter viewer, click Save Filter, enter the name of file,
and click OK. On the Analysis Filter explorer, click Apply. The model is highlighted with the
updated filter. The Divide block is highlighted in green because all the objectives of the block are
valid.

To save the updated filter file, in the Analysis Filter explorer, click Save Filter, enter the name of
file, and click OK. On the Filter Explorer, click Apply. You will be prompted to provide a file name for
the new filter. Enter the desired name and click Save. The model is highlighted with the applied
filters. The Divide block is highlighted in green because all the objectives of the block are valid or
justified.

Note: After applying the filter, the highlighting of the model objects is as follows:

• If all the objectives of a block are excluded or justified, it is highlighted in steel blue.

• If a block has valid and excluded or justified objectives, it is highlighted in green.

• If a block has falsified and excluded or justified objectives, it is highlighted in red.

 Exclude and Justify Objectives for Design Error Detection

6-63

For a detailed analysis report, in the Results Summary window, click HTML or PDF. The Design
Error Detection Objectives Status chapter reports the excluded and justified objectives along with the
valid and falsified objectives.

Related Topics

• “Filter Objectives by Using Simulink Design Verifier Filter Explorer” on page 6-46
• “Detect Integer Overflow and Division-by-Zero Errors” on page 6-19

6 Detecting Design Errors

6-64

Detect Integer Overflow in a Model with Complex Inputs

This example shows how to detect integer overflow errors in a model that consists of complex type
inputs.

Step 1: Open the Model

The sldvexComplexInputs model contains SensorA, SensorB, and SensorC complex inputs and a
Control input. The SensorA and SensorB inports are constraint to Maximum output value equal to
100.

open_system('sldvexComplexInputs');

Step2: Perform Design Error Detection Analysis

On the Apps tab, in the Model Verification, Validation, and Test group, select Design Verifier.

To detect design errors, click Detect Design Errors. After the analysis completes, the Results
Summary window displays that one objective is valid and one objective is falsified.

 Detect Integer Overflow in a Model with Complex Inputs

6-65

Step 3: Review Analysis Results

In the Results Summary window, click Highlight analysis results on model. The Sum block whose
output results in integer overflow error is highlighted in red.

To view the analysis report, click HTML or PDF in the Results Summary window. The Design Error
Detection Objectives Status chapter lists the description of the valid and falsified objectives.

6 Detecting Design Errors

6-66

The Design Errors chapter contains the test case inputs that results in integer overflow.

See also

• “Detect Integer Overflow Errors” on page 6-51
• “Understand the Analysis Results” on page 6-4

 Detect Integer Overflow in a Model with Complex Inputs

6-67

Debug Integer Overflow Design Error Detection Using Model
Slicer

This example shows how to use Model Slicer to debug integer overflow design errors in a Simulink®
model.

Prerequisites

This example uses the following products to demonstrate debugging the Design Error Detection
violations:

• Simulink Design Verifier™
• Simulink Check™ (Model Slicer)

Example

1. Open model sldvdemo_design_error_detection.

open_system('sldvdemo_design_error_detection');

2. Open Simulink Design Verifier by clicking on Apps > Design Verifier.

3. In the Design Verifier tab, click Detect Design Errors. Simulink Design Verifier analyzes the
model and displays the results in Results Summary window.

6 Detecting Design Errors

6-68

The model highlights the subsystem where the failed objectives are located.

4. Open Controller subsystem and select either of the blocks that are highlighted in red.

 Debug Integer Overflow Design Error Detection Using Model Slicer

6-69

5. In the Results window, click Debug to debug the violation using Model Slicer. Alternatively, in the
Design Verifier tab, click Review Results > Debug using Slicer to debug the violation using Model
Slicer.

On clicking either of the entry points for debugging, the following setup is done on the model:

• The selected block with a failed objective is added as a starting point for Model Slicer.
• The model is highlighted with the slice responsible for the failing objective.
• The design model is simulated and paused at the time of violation.

6. Debug and analyze the model by inspecting the port labels.

Tip: Click on the output signal line of the Sum block to enable the port value label for the block.

6 Detecting Design Errors

6-70

You can observe that the sum of the input variables should result in a non-zero number.

7. Investigate the input and output data types of the sum block.

Here, the datatype conversion results in the integer overflow. The datatype for inputs is ufix16_En8,
which have a maximum value of 255.9961, whereas the datatype for output block is sfix16_En8,
which has a maximum of 127.9961. In the counterexample the value is between these two values. The
overflow happens when the sum block (without saturation) first casts the input values down to its
output type and then does the arithmetic operation.

Verification

To confirm that the integer overflow error was resolved, on the Design Verifier tab, click Detect
Design Errors. After the analysis completes, the software reports that all the objectives are valid.

 Debug Integer Overflow Design Error Detection Using Model Slicer

6-71

Additional Capabilities

You can use the workflow demostrated in this example to debug the other Design Error Detection
violations using Model Slicer. Following are the design errors supported:

• Division by zero
• Integer Overflow
• Non-Finate and NaN (Not a Number) floating-point values
• Specified minimum and maximum value violations
• Datastore access violations
• Specified block input range violations

6 Detecting Design Errors

6-72

Analyzing the Results for a Dead Logic Analysis

This example demonstrates how to isolate potential causes of dead logic using the
sldvexCommonCausesOfDeadLogic model. Dead logic detection finds unreachable objectives in the
model that cause the model element to remain inactive.

Workflow

The sldvexCommonCausesOfDeadLogic model demonstrates some of the common patterns that
often lead to dead logic in a model. The six subsystems in the model represent a different pattern.
These subsystems are:

1 Conditional execution of a subsystem
2 Short-circuiting of a logical operator block during analysis
3 Parameter values treated as constants
4 Library-linked blocks
5 Upstream blocks
6 Restrictions on signal ranges

Section 1 : Run a Dead Logic Analysis

Follow these steps to run the dead logic analysis:

1: Open the model sldvexCommonCausesOfDeadLogic.

open_system('sldvexCommonCausesOfDeadLogic');

 Analyzing the Results for a Dead Logic Analysis

6-73

6 Detecting Design Errors

6-74

2: In the Apps pane, open Design Verifier.

3: On the Design Verifier tab, click Error Detection Settings.

4: In the Configuration Parameters dialog box:

a. Enable the Dead logic (partial) option.

b. Clear the Run exhaustive analysis option, if it is selected.

c. Set Coverage objectives to be analyzed to Condition Decision option. The available options
from the drop-down menu are Decision, Condition Decision, and MCDC.

5: In the Design Verifier tab, Click Detect Design Errors.

Section 2: Analyze and Review the Results

The software analyzes the model for dead logic and displays the results in the Results Summary
window. The results indicate that 19 of the 44 objectives are dead logic.

 Analyzing the Results for a Dead Logic Analysis

6-75

Section 3: Highlight Analysis Results in the Subsystem Blocks

This section explains the common patterns that lead to dead logic in the
sldvexCommonCausesOfDeadLogic model. In the Results Summary window, click on Highlight
analysis results on model. The subsystems with dead logic are highlighted in red. These
subsystems are:

1 ConditionallyExecuteInputs
2 ShortCircuiting
3 Parameters
4 Library

6 Detecting Design Errors

6-76

5 CascadingDeadLogic
6 ConditionGreaterThan0

The subsystems in the sldvexCommonCausesOfDeadLogic model explain these patterns. Each
subsystem block highlighted in red has a dead logic red. Consider each subsystem one by one to
analyze and highlight the results.

1. Conditional Execution of a Subsystem

If your model includes Switch or Multiport Switch blocks and the conditional input branch
execution parameter is set to On, the conditional execution can often cause unexpected dead logic.
Open the ConditionallyExecuteInputs subsystem and click the AND block highlighted in red. The
Results window summarizes the dead logic.

In this subsystem, the Conditional input branch execution parameter is set to On. The AND Logical
Operator block is conditionally executed, which causes the dead logic for the subsystem.

2. Short-Circuiting of a Logical Operator Block During Analysis

Simulink Design Verifier treats logic blocks as if they are short-circuiting when analyzing for dead
logic. Open the ShortCircuiting subsystem, and click the AND block highlighted in red. The Results
window summarizes the dead logic.

In this model, if In3 is false, the software ignores the third input due to the short-circuiting. This is
suggested as a potential explanation for the dead logic in the Results window.

 Analyzing the Results for a Dead Logic Analysis

6-77

3. Parameter Values Treated as Constants

If your model contains parameters, Simulink Design Verifier treats the values as constants by default,
which might cause dead logic in the model. In these cases, consider configuring these parameters to
be tuned during analysis. Open the ShortCircuiting subsystem and click the Switch block highlighted
in red. The Results window summarizes the dead logic.

Here, all of the parameters are set to zero. This causes the dead logic for the Less Than block.

Suggestion

You can use Model Slicer to find the parameters which could have an impact on a particular block by
following these steps:

a. Create an object of SLSlicerAPI.ParameterDependence using Model Slicer.

slicerObj = slslicer('sldvexCommonCausesOfDeadLogic');
pd = slicerObj.parameterDependence;

b. Find the parameters affecting the Product block.

params = parametersAffectingBlock(pd, 'sldvexCommonCausesOfDeadLogic/Parameters/Product');

6 Detecting Design Errors

6-78

The image above displays the parameters returned by the function parametersAffectingBlock
which have an impact on the Product block. The list of parameters returned by the function can be
considered for tuning.

c. Perform clean-up to exit compile state of the model.

slicerObj.terminate;

4. Library-Linked Blocks

The ProtectedDivide library subsystem has protection for division by zero. Library blocks may be
written with defensive conditions that are redundant in some of the locations where they are used. In
some cases, this may cause dead logic. Open the Library block, and click the ProtectedDivide
subsystem highlighted in red. In this case, the inputs to the ProtectedDivide library subsystem can
never experience a division by zero. This causes the guarding logic to be dead. The Equal block
shows the dead logic. The Results window summarizes the dead logic.

 Analyzing the Results for a Dead Logic Analysis

6-79

Consider justifying the dead logic that arises from those library blocks.

5. Upstream Blocks

When a particular block has dead logic, this often leads to a cascading effect that causes downstream
blocks to also have dead logic. Open the CascadingDeadLogic subsystem and click the Less Than
block highlighted in red. The Results window summarizes the dead logic.

6 Detecting Design Errors

6-80

The dead logic in the Less Than block causes the dead logic in the corresponding downstream
blocks. It is therefore often helpful to review the upstream dead logic before reviewing any
downstream dead logic.

6. Restrictions on Signal Ranges

Root-level Inport blocks with minimum and maximum values as constraints and Test Condition
blocks in the test generation may cause dead logic. For example, consider the ConditionGreaterThan0
Switch block, where the second Inport block has a minimum and maximum range of 1 and 100,
respectively. This causes the Switch block in this subsystem to have dead logic, because the
constrained range means the signal will always be greater than 0.

 Analyzing the Results for a Dead Logic Analysis

6-81

Section 4: View the Analysis Report

In the Results summary window, click HTML to view the detailed analysis report. The report
summarizes all of the dead logic results in the model.

6 Detecting Design Errors

6-82

To perform an exhaustive analysis for dead logic, in the Configuration Parameters Window in the
Design Error Detection pane, select Run exhaustive analysis. The software stores the detailed
analysis results in the DeadLogic field in the Simulink Design Verifier data files. You can use the
data file to further analyze the results.

Related Topics

• “Common Causes for Dead Logic” on page 6-15

 Analyzing the Results for a Dead Logic Analysis

6-83

Generating Test Cases

• “What Is Test Case Generation?” on page 7-3
• “Workflow for Test Case Generation” on page 7-5
• “Generate Test Cases for Model Decision Coverage” on page 7-6
• “Generate Test Cases for a Subsystem” on page 7-18
• “Generate Test Cases for a Reusable Library Subsystem” on page 7-21
• “Use Test Generation Advisor to Identify Analyzable Components” on page 7-24
• “Generate Test Cases for Embedded Coder Generated Code” on page 7-28
• “Model Coverage Objectives for Test Generation” on page 7-30
• “Enhance Model Coverage of Older Release Models” on page 7-32
• “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-42
• “Analyze Model for Enhanced MCDC Analysis” on page 7-44
• “Basic Workflow for Enhanced MCDC Analysis” on page 7-47
• “Author Custom Test Objective Workflow” on page 7-52
• “What Is a Specification Model?” on page 7-60
• “Test Generation Examples” on page 7-66
• “Test Generation for Custom Code in MATLAB Function Block” on page 7-67
• “Use Specification Models for Requirements-Based Testing” on page 7-69
• “Flip Flop Test Generation” on page 7-80
• “Model Coverage Test Generation” on page 7-81
• “Test Objective Block” on page 7-82
• “Test Condition Block” on page 7-83
• “Cruise Control Test Generation” on page 7-84
• “Fuel Rate Controller Logic” on page 7-85
• “Extend an Existing Test Suite” on page 7-86
• “Defining and Extending Existing Tests Cases” on page 7-91
• “Using Existing Coverage Data During Subsystem Analysis” on page 7-97
• “Creating and Executing Test Cases” on page 7-100
• “Using Specified Input Minimum and Maximum Values as Constraints” on page 7-107
• “Configuring S-Function for Test Case Generation” on page 7-109
• “Code Coverage Test Generation” on page 7-111
• “Test Generation on Model with C Caller Block” on page 7-119
• “Debug Enhanced Modified Condition Decision Coverage Using Model Slicer” on page 7-121
• “Test Generation for Custom Code in a Stateflow Chart” on page 7-124
• “Generate Test Cases for Model Blocks” on page 7-126
• “Use Observer Reference Block for Test Case Generation” on page 7-130

7

• “Inspect Test Generation Objectives by Using Model Slicer” on page 7-135
• “Generate Tests for Model Block Component by Using Default Simulation” on page 7-138
• “Add Test Cases Using Excel File” on page 7-142
• “Achieve Missing Coverage in Custom Code” on page 7-146
• “Achieve Missing Coverage in Generated Code of RLS” on page 7-149

7 Generating Test Cases

7-2

What Is Test Case Generation?

The Simulink Design Verifier software can generate test cases that satisfy coverage objectives for
your model, including:

• “Decision” on page 7-30
• “Condition” on page 7-30
• “MCDC” on page 7-31
• “Enhanced MCDC” on page 7-31

Test cases help you confirm model performance by demonstrating how the blocks in the model
execute in different modes. When generating test cases, the software performs a formal analysis of
your model. After completing the analysis, the software provides several ways for you to review the
results.

Note If your model does not have conditions, decisions, or custom test objectives, then Simulink
Design Verifier generates a test case that represents a basic simulation of your model. The test inputs
satisfy minimum or maximum constraints on input ports and intermediate signal values satisfy
constraints specified by the Test Condition blocks in the model.

Test Case Blocks
For customizing test cases for your Simulink models, Simulink Design Verifier provides two blocks:

• The Test Objective block defines the values of a signal that a test case must satisfy.
• The Test Condition block constrains the values of a signal during analysis.

Test Case Functions
To customize test cases for a Simulink model or Stateflow chart, Simulink Design Verifier provides
two MATLAB functions. You can use these functions in a MATLAB Function block. Both functions are
active in generated code and in Simulink Design Verifier.

• sldv.test — Specifies a test objective.
• sldv.condition — Specifies a test condition.

These functions:

• Identify mathematical relationships for testing in a form that can be more natural than using block
parameters.

• Support specifying multiple objectives, assumptions, or conditions without complicating the
model.

• Provide access to the power of MATLAB.
• Support separation of verification and model design.

For an example of how to use these functions, see the sldv.test or sldv.condition reference
page.

 What Is Test Case Generation?

7-3

Note Simulink Design Verifier blocks and functions are saved with a model. If you open the model on
a MATLAB installation that does not have a Simulink Design Verifier license, you can see the blocks
and functions, but they do not produce results.

See Also

More About
• “Workflow for Test Case Generation” on page 7-5

7 Generating Test Cases

7-4

Workflow for Test Case Generation

To generate test cases for your model, use the following workflow.

Task Description For an example, see
1 Verify that your model is compatible for

use with Simulink Design Verifier.
“Check Compatibility of the Example
Model” on page 7-7

2 Optionally, use the Test Generation
Advisor to select model components
(atomic subsystems and model blocks) for
test generation. Before test generation,
you can use the results to better
understand your model, particularly large
models, complex models, or models for
which you are uncertain of the test
generation compatibility.

“Use Test Generation Advisor to Identify
Analyzable Components” on page 7-24

3 If you have Stateflow objects in your
model, in the Configuration Parameters
dialog box, on the Diagnostics >
Stateflow pane, set Unreachable
execution path to error.

4 Optionally, instrument your model with
blocks or MATLAB functions that specify
test objectives and test conditions.

“Customize Test Generation” on page 7-
14

5 Specify options that control how Simulink
Design Verifier generates test cases for
your model.

“Configure Test Generation Options” on
page 7-8

6 Execute the Simulink Design Verifier
analysis.

“Analyze the Example Model” on page 7-
8 and “Reanalyze the Example Model”
on page 7-16

7 Review the analysis results. “Review Analysis Results” on page 7-8

See Also

More About
• “Flip Flop Test Generation” on page 7-80
• “Cruise Control Test Generation” on page 7-84
• “Fuel Rate Controller Logic” on page 7-85

 Workflow for Test Case Generation

7-5

Generate Test Cases for Model Decision Coverage
In this section...
“Construct the Example Model” on page 7-6
“Check Compatibility of the Example Model” on page 7-7
“Configure Test Generation Options” on page 7-8
“Analyze the Example Model” on page 7-8
“Review Analysis Results” on page 7-8
“Customize Test Generation” on page 7-14
“Reanalyze the Example Model” on page 7-16
“Analyze Contradictory Models” on page 7-16

Construct the Example Model
Construct a model for this example:

1 Create a Simulink model.
2 Copy the following blocks into your empty model window:

• From the Sources library, an Inport block to initiate the input signal whose value Simulink
Design Verifier controls.

• From the Sources library, two Constant blocks to serve as Switch block data inputs.
• From the Signal Routing library, a Switch block to provide simple logic.
• From the Sinks library, an Outport block to receive the output signal.

3 In your model, double-click one of the Constant blocks and specify its Constant value parameter
as 2.

4 Connect the blocks so that your model appears similar to the following diagram.

5 On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Design Verifier.
6 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode

settings, click Settings.
7 In the Configuration Parameters dialog box, select Solver pane. In the Solver selection:

7 Generating Test Cases

7-6

• Set the Type option to Fixed-step.
• Set the Solver option to Discrete (no continuous states).

Simulink Design Verifier analyzes only models that use a fixed-step solver.
8 Click OK to save your changes and close the Configuration Parameters dialog box.
9 Save your model with the name ex_generate_test_cases_example.

Check Compatibility of the Example Model
Every time Simulink Design Verifier analyzes a model, before the analysis begins, the software
performs a compatibility check. If your model is not compatible, the software cannot analyze it.

Before you start the analysis, you can also make sure that your model is compatible with Simulink
Design Verifier software:

1 Open the ex_generate_test_cases_example model.
2 On the Design Verifier tab, click Check Compatibility.

The software displays the log window, which states whether or not your model is compatible for
analysis.

The model you just created is compatible.

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible, your model contains at
least one object that Simulink Design Verifier does not support. You can analyze a partially
compatible model, but, by default, the unsupported objects are stubbed out. The results of the
analysis can be incomplete.

For detailed information about automatic stubbing, see “Handle Incompatibilities with Automatic
Stubbing” on page 2-7.

 Generate Test Cases for Model Decision Coverage

7-7

Configure Test Generation Options
Configure Simulink Design Verifier to generate test cases that achieve 100% decision coverage for
the ex_generate_test_cases_example model:

1 Open the ex_generate_test_cases_example model.
2 On the Design Verifier tab, in the Mode section, select Test Generation.
3 Click Test Generation Settings.
4 In the Configuration Parameters dialog box, on the Test Generation pane, set the Model

coverage objectives parameter to Decision.

For this example, the analysis generates test cases that record only decision coverage.

The Test suite optimization parameter is set by default to Auto. If you want to generate fewer
but longer test cases, select LongTestcases for the Test suite optimization parameter.

5 Click OK to save your changes and close the Configuration Parameters dialog box.
6 Save the ex_generate_test_cases_example model.

Analyze the Example Model
On the Design Verifier tab, click Generate Tests. The Simulink Design Verifier analyzes your model
to generate test cases.

During the analysis, the Results Summary window shows the progress of the analysis. It displays
information such as the number of test objectives processed and which objectives are satisfied.

Review Analysis Results
When the software completes its analysis, the Results Summary window displays these options for
reviewing the results.

7 Generating Test Cases

7-8

The following sections describe how you can review the analysis results:

• “Review Analysis Results on the Model” on page 7-9
• “Review Detailed Analysis Report” on page 7-11
• “Review Harness Model” on page 7-12
• “Simulate Tests and Produce a Model Coverage Report” on page 7-12
• “View sldvData File” on page 7-14
• “Review Analysis Results in the Results Summary Window” on page 7-14

Review Analysis Results on the Model

Highlight the analysis results on the example model:

1 In the Results Summary window for the ex_generate_test_cases_example analysis, click
Highlight analysis results on model.

 Generate Test Cases for Model Decision Coverage

7-9

The Switch block is highlighted in green, which indicates that the Switch block has test cases
that satisfy its test objectives.

The Simulink Design Verifier Results window opens. As you click objects in the model, this
window changes to display detailed analysis results for that object. By default, the Simulink
Design Verifier Results window is always the topmost visible window. To allow the window to
move behind other window, click and clear Always on top.

2 Click the highlighted Switch block.

The Simulink Design Verifier Results window indicates that the analysis generated test cases for
both test objectives:

• trigger > threshold
• trigger < threshold

7 Generating Test Cases

7-10

For more information about highlighted analysis results on a model, see “Highlight Results on the
Model” on page 13-2.

Review Detailed Analysis Report

Create a detailed HTML analysis report:

1 In the Simulink Design Verifier Results Summary window, in Detailed analysis report, click
HTML.

The HTML report opens in a browser window.
2 The report includes the following Table of Contents. Click a hyperlink to navigate to a section in

the report.

3 In the Table of Contents, click Summary to display the report's Summary chapter.

The Summary chapter lists information about the model and the status of the objectives—
satisfied or not.

4 In the Table of Contents, click Analysis Information to display the Analysis Information
chapter.

The Analysis Information chapter provides information about:

• The model that you analyzed.
• The options that you specified for the analysis.
• Approximations the software performed during the analysis.

5 In the Table of Contents, click Test Objectives Status to display the report's Test
Objectives Status chapter.

This table indicates that the analysis satisfied both test objectives associated with the Switch
block in the ex_generate_test_cases_example model, for which it generated two test cases.

 Generate Test Cases for Model Decision Coverage

7-11

6 Under the table Test Case column, click 2 to display the Test Case 2 section.

This section provides details about a test case that the analysis generated to achieve an objective
in your model. This test case achieves test objective 1, when the Switch block passes its third
input to its output port. Specifically, the software determines that a value of –1 for the Switch
block control signal causes the block to pass its third input as the block output.

For more information about the HTML reports, see “Review Results” on page 13-35.

Review Harness Model

To create a harness model with test cases that satisfy the test objectives in your model, in the
Simulink Design Verifier Results Summary window, click Create harness model.

The software creates a harness model named ex_generate_test_cases_example_harness.

The Signal Builder block named Inputs contains the test cases. Double-click the Inputs block to see
the test cases. From the Signal Builder block, you can simulate the model using the test cases and
produce a model coverage report, as described in “Simulate Tests and Produce a Model Coverage
Report” on page 7-12.

For more information about the harness model, see “Manage Simulink Design Verifier Harness
Models” on page 13-13.

If Analysis Generates Many Test Cases

If you have a large model, the analysis might produce a harness model that contains a large number
of test cases.

To generate fewer test cases:

1 Set the Test suite optimization parameter to LongTestcases.
2 Rerun the analysis.

In the LongTestcases optimization, the analysis generates fewer but longer test cases that each
satisfy multiple test objectives.

Simulate Tests and Produce a Model Coverage Report

To simulate the harness model using the generated test cases in the harness model:

1 In the harness model, double-click the Inputs block to open the Signal Builder dialog box.

7 Generating Test Cases

7-12

2
In the Signal Builder dialog box, click Run all .

The software simulates the harness model using both test cases, collects model coverage
information, and displays a coverage report. The coverage report indicates that the test cases
record 100% decision coverage for the ex_generate_test_cases_example model.

You can also simulate the model without creating a harness model. In the Simulink Design Verifier log
window, click Simulate tests and produce a model coverage report.

For more information about model coverage, see “Top-Level Model Coverage Report” (Simulink
Coverage).

 Generate Test Cases for Model Decision Coverage

7-13

View sldvData File

The Simulink Design Verifier data file is a MAT-file that contains a structure named sldvData. This
structure stores all the data that the analysis gathers and produces during the analysis. You can use
the data file to conduct your own analysis or to generate a custom report.

To view the data file, click the data file name in the log window, in this example,
ex_generate_test_cases_example_sldvdata.mat. When you click the file name, a copy of the
sldvData object is instantiated in the MATLAB workspace so that you can review and manipulate
the data.

For more information about Simulink Design Verifier data files, see “Manage Simulink Design Verifier
Data Files” on page 13-7.

Review Analysis Results in the Results Summary Window

As long as your model remains open, you can view the results of your most recent Simulink Design
Verifier analysis in the Results Summary window.

On the Design Verifier tab, in the Review Results section, click Load Earlier Results or Results
Summary to view the results.

For any Simulink Design Verifier analysis, from the Results Summary window, you can perform these
tasks.

Task For more information
Highlight the analysis results on the model. “Highlight Results on the Model” on page 13-2
Generate a detailed analysis report. “Review Results” on page 13-35
Create the harness model, or if the harness model
already exists, open it.

If no test cases were generated during the
analysis, this option is not available.

“Manage Simulink Design Verifier Harness
Models” on page 13-13

View the data file. “Manage Simulink Design Verifier Data Files” on
page 13-7

View the log file. “View Log Files” on page 13-56

After you close your model, you can no longer view analysis results.

Customize Test Generation
You can use the Test Condition block to constrain signals in your model to certain values during the
analysis.

1 At the MATLAB command prompt, enter sldvlib to display the Simulink Design Verifier library.
2 Open the Objectives and Constraints sublibrary.
3 Copy the Test Condition block to your model by dragging it from the Simulink Design Verifier

library to your model window.
4 In the model window, insert the Test Condition block between the Inport and Switch blocks.

7 Generating Test Cases

7-14

5 Double-click the Test Condition block to access its attributes.

The Test Condition block parameters dialog box opens.
6 In the Values box, enter [-0.1, 0.1]. When generating test cases for this model, the analysis

constrains the signal values, entering the Switch block control port to the specified range.

7 Click OK to save your changes and close the Test Condition block parameters dialog box.
8 Save your model as ex_generate_test_cases_with_tc_block and keep it open.

 Generate Test Cases for Model Decision Coverage

7-15

Reanalyze the Example Model
Analyze the ex_generate_test_cases_with_tc_block model with the Test Condition block. To
observe how the Test Condition block affects test generation, compare the result of this analysis to
the result that you obtained in “Analyze Example Model” on page 5-20.

1 On the Design Verifier tab, click Generate Tests.

The Simulink Design Verifier software displays a log window and begins analyzing your model to
generate test cases. When the software completes the analysis, the Results Summary window
displays the options for reviewing the results.

2 In the Results Summary window, click HTML Report.
3 To begin reviewing the report, in the Table of Contents, click Summary.

The Summary chapter indicates that Simulink Design Verifier satisfied two test objectives in the
model.

4 In the Table of Contents, click Analysis Information. Scroll to the bottom of this chapter,
to the Constraints section.

This section lists the Test Condition block that you added to constrain the value of the Switch
block control signal to the interval [–0.1, 0.1].

5 In the Table of Contents, click Test Objectives Status.

This table indicates that Simulink Design Verifier satisfied both test objectives for the Switch
block through the two test cases generated.

6 Under the table Test Case column, click 1.

This section provides details about a test case that the software generated to achieve an
objective in your model. This test case achieves test objective 1, when the Switch block passes its
third input to its output port. Although the Test Condition block restricts the domain of input
signals to the interval [–0.1, 0.1], the software determines that a value of –0.1 for the Switch
block control signal satisfies this objective.

7 To confirm that the test case achieves 100% decision coverage, open the harness model.
8 Double-click the Inputs block to open the Signal Builder dialog box.
9

In the Signal Builder dialog box, click Run all .

The Simulink software simulates the harness model using both test cases, collects model
coverage information, and displays a coverage report. The Summary section of the report
indicates that Simulink Design Verifier generated test cases that achieve complete decision
coverage for your example model.

Analyze Contradictory Models
If the analysis produces the error The model is contradictory in its current
configuration, the software detected a contradiction in your model and cannot analyze the model.

You can have a contradiction if your model has Test Objective blocks with incorrect parameters. For
example, a contradiction can be an objective that states that a signal must be between 0 and 5 when
the signal is the constant 10.

7 Generating Test Cases

7-16

If the software detects a contradiction, all previous results are invalidated and the software reports
that some of the objectives cannot be satisfied.

See Also

More About
• Model Coverage Test Generation on page 7-81

 Generate Test Cases for Model Decision Coverage

7-17

Generate Test Cases for a Subsystem

You can analyze a subsystem within a model. This technique is good for large models, where you want
to review the analysis in smaller, manageable reports. Following two methods help you to generate
test cases for subsystem in different modes:

• “Generate Test Cases for Subsystems for Normal Mode” on page 7-18
• “Generate Test Cases for Subsystems for Software-in-the-Loop Mode” on page 7-19

Generate Test Cases for Subsystems for Normal Mode
This example shows how to analyze the Controller subsystem in the sldvdemo_cruise_control
model.

1 Open the example model:

sldvdemo_cruise_control
2 Right-click the Controller subsystem, and select Design Verifier > Enable ‘Treat as Atomic

Unit’ to Analyze.

The Function Block Parameters dialog box for the Controller subsystem opens.
3 Select Treat as atomic unit.

An atomic subsystem executes as a unit relative to the parent model. Subsystem block execution
does not interleave with parent block execution. You can extract atomic subsystems for use as
standalone models.

To analyze a subsystem with Simulink Design Verifier, set the Treat as atomic unit parameter.

After you set the parameter, other parameters become available, but you can ignore them.
4 To close the dialog box, click OK.
5 On the Simulation tab, in the File section, select Save > Save As and save the Cruise Control

Test Generation model with a new name.
6 To start the subsystem analysis and generate test cases, right-click the Controller subsystem,

and select Design Verifier > Generate Tests for Subsystem.
7 The Simulink Design Verifier software analyzes the subsystem. When the analysis is complete,

view the analysis results for the Controller subsystem by clicking one of the following options:

• Highlight analysis results on model
• View tests in Simulation Data Inspector
• Detailed analysis report
• Create harness model
• Export test cases to Simulink Test
• Simulate tests and produce a model coverage report

Note After processing a certain number of objectives, if the analysis stops, or if the analysis
times out, you can use the Test Generation Advisor to better understand which subsystems are

7 Generating Test Cases

7-18

causing the problem. For more information, see “Use Test Generation Advisor to Identify
Analyzable Components” on page 7-24.

8 Review the results of the subsystem analysis and compare the results to the results of the full-
model analysis as described in “Analyze a Model” on page 1-4:

• The subsystem analysis analyzes the Controller as a standalone model.
• The Controller subsystem contains all the test objectives in the Cruise Control Test

Generation model. Both the analyses generate the same test cases.

Generate Test Cases for Subsystems for Software-in-the-Loop Mode
This example shows how to generate test cases for atomic subsystems in software-in-the-loop (SIL)
mode by using the sldvdemo_cruise_control_ATS model.

1 Open the example model: sldvdemo_cruise_control_ATS

model = 'sldvdemo_cruise_control_ATS';
open_system(model);

2 In the Configuration Parameters window, click Code Generation and set System Target File
to ert.tlc. Alternatively, enter:

set_param(model,'SystemTargetFile','ert.tlc');
3 Click Hardware Implementation, then set Device vendor and Device type to the vendor and

type of your SIL system. For example, for a 64-bit Linux machine, set Device vendor to Intel
and Device type to x-86-64 (Linux). Alternatively, enter:

if ismac
 lProdHWDeviceType = 'Intel->x86-64 (Mac OS X)';
 elseif isunix
 lProdHWDeviceType = 'Intel->x86-64 (Linux 64)';
 else
 lProdHWDeviceType = 'Intel->x86-64 (Windows64)';
 end
set_param(model, 'ProdHWDeviceType', lProdHWDeviceType);

4 Generate the code for the target. For subsystem analysis in SIL mode, code needs to be
generated before invoking test generation.

a If the test generation target is Code Generated as Top model, generate the code for the
target by entering:

slbuild(model,'StandaloneCoderTarget');
b If the test generation target is Code Generated as Model Reference, generate the code

for the target by entering:

slbuild(model,'ModelReferenceCoderTargetOnly');

Note

• If there is a mismatch of the test generation target and the generated code interface target,
then test generation returns an error.

• If you generate a code for both targets, the test generation returns an error.

 Generate Test Cases for a Subsystem

7-19

5 Set up the function packaging of the subsystem by right-clicking PI Controller > Block
Parameters (Subsystem) > Code Generation > Function Packaging and set as Reusable
function or Nonreusable function.

Alternatively enter:

ssPath = [model '/PI Controller'];
set_param(ssPath, 'RTWSystemCode', 'Reusable function'); % For Resuable function
set_param(ssPath, 'RTWSystemCode', 'Nonreusable function'); % For Nonresuable function

6 In the Apps tab, click Design Verifier. Then, in the Design Verifier tab, set Target to Code
Generated as Top Model. Generate tests by using one of these methods:

• Right click the PI Controller block, then click Design Verifier > Generate Tests for
Subsystems.

• Select the PI Controller block by unpinning it from the toolstrip. Then click Generate Tests.
• Create a harness for the subsystem and then invoke test generation by right-clicking the PI

Controller block, then clicking Test Harness > Create for PI Controller.

Select the harness name and click OK.

Open the new harness. Then click Design Verifier and click Generate Tests.

Alternatively, you can use the API to generate the tests by entering:

opts = sldvoptions;
opts.TestgenTarget = Sldv.utils.Options.TestgenTargetGeneratedCodeStr;
[status, fileNames] = sldvrun(ssPath,opts,true);

7 Review the results of the subsystem analysis and compare the results to the results of the full-
model analysis as described in “Generate Test Cases for Subsystems for Normal Mode” on page
7-18.

7 Generating Test Cases

7-20

Generate Test Cases for a Reusable Library Subsystem
A reusable library subsystem (RLS) is a subsystem that you define and include in a library and
configure for reuse across models. For more information on how to configure an RLS for analysis, see
“Generate Reusable Code for Subsystems Shared Across Models” (Embedded Coder). You must test
the configured RLS by creating a harness from the library and not from an instance in a design
model.

This example uses sldvdemo_cruisecontrol model, where PI controller is the RLS block. You
can create a harness from the instance of this RLS block as shown. Test generation of RLS can be
invoked on a harness RLS block created from the library and not from its instance.

When you create the test harness from the library as shown, the test generation for the RLS code
from this harness is supported by the design model.

This example shows how to analyse RLS code in the Software-in-the-Loop mode.

Generate Test Cases for RLS in Software-in-the-Loop Mode

This example shows how to generate test cases for RLS in the software-in-the-loop (SIL) mode.

1. Open the example model: 'mRLS'

 Generate Test Cases for a Reusable Library Subsystem

7-21

model = 'mRLS';
open_system(model);

2. Unlock the library model. In the Configuration Parameters window, click Code Generation and set
System Target File to ert.tlc. Alternatively, enter the following command:

set_param(model,'Lock','off');
set_param(model,'SystemTargetFile','ert.tlc');

3. Click Hardware Implementation, then set Device vendor and Device type to the vendor and
type of your SIL system. For example, for a 64-bit Linux machine, set Device vendor to Intel and
Device type to x-86-64 (Linux). Alternatively, enter the following code:

if ismac
 lProdHWDeviceType = 'Intel->x86-64 (Mac OS X)';
 elseif isunix
 lProdHWDeviceType = 'Intel->x86-64 (Linux 64)';
 else
 lProdHWDeviceType = 'Intel->x86-64 (Windows64)';
 end
set_param(model, 'ProdHWDeviceType', lProdHWDeviceType);

4. Use the device settings to set up the function interface. For more information on how to set the
function interface from within a library, see Configure Function Interfaces from Within a Library.

5. Generate the top-model code before generating tests for the RLS. Before you generate the code,
set up the code generation target environment. For more information on setting up the target
environment, see SIL Testing a Reusable Library Subsystem.

orig = Simulink.fileGenControl('get','CodeGenFolderStructure');
Simulink.fileGenControl('set','CodeGenFolderStructure',...
Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder);

slbuild('mRLS');

Starting build procedure for: Controller_CodeSpecification1
Generating code and artifacts to 'Target environment subfolder' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp65d2e03e\sldv-ex41550386\IntelWin64\Controller_CodeSpecification1
Invoking Target Language Compiler on Controller_CodeSpecification1.rtw
Using System Target File: B:\matlab\rtw\c\ert\ert.tlc
Loading TLC function libraries
.......
Initial pass through model to cache user defined code
.
Caching model source code
..
Writing header file Controller_Lp0dbbft.c
Writing header file Controller_CodeSpecification1_types.h
Writing header file Controller_CodeSpecification1.h
Writing header file rtwtypes.h
.
Writing header file Controller_Lp0dbbft.h
Writing source file Controller_CodeSpecification1.c
Writing header file Controller_CodeSpecification1_private.h
Writing source file ert_main.c
TLC code generation complete (took 8.15s).
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)

7 Generating Test Cases

7-22

Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp65d2e03e\sldv-ex41550386\IntelWin64_shared\rtwshared.mk' ...
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp65d2e03e\sldv-ex41550386\IntelWin64\Controller_CodeSpecification1\Controller_CodeSpecification1.mk' ...
Successful completion of code generation for: Controller_CodeSpecification1

The following files will be copied from IntelWin64_shared to C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp65d2e03e\sldv-ex41550386\IntelWin64\mRLS\R2023a:

 Controller_Lp0dbbft.c
 Controller_Lp0dbbft.h
 shared_file.dmr

Files copied from IntelWin64_shared to C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp65d2e03e\sldv-ex41550386\IntelWin64\mRLS\R2023a.

6. If the library model is locked, unlock the library model to create a Simulink test harness for the
subsystem block.

Create the harness for the subsystem block for a particular function interface. In this example, create
the harness for the function interface Double.

7. Open the harness model and select the appropriate target and then start test generation.

Note: For RLS you can generate subsystem code from the library that gets compiled into a static
library and can be reused by components. Test generation on the harness, created from the library
and if you set the target as Code Generated as Model Reference you will receive an error message
as this is not supported.

See Also

More About
• “Generate Reusable Code for Subsystems Shared Across Models” (Embedded Coder)
• “Test Library Blocks” (Simulink Test)

 Generate Test Cases for a Reusable Library Subsystem

7-23

Use Test Generation Advisor to Identify Analyzable
Components

In this section...
“Test Generation Advisor” on page 7-24
“Test Generation Advisor Requirements” on page 7-25
“Identify Analyzable Components” on page 7-25
“Analyze and Generate Tests for Model Components” on page 7-25
“Manually Select Components for Testing” on page 7-27

Test Generation Advisor
You can use the Test Generation Advisor to select model components (atomic subsystems and model
blocks) for test generation. The Test Generation Advisor summarizes test generation compatibility,
condition and decision objectives, and dead logic for the model and model components.

The Test Generation Advisor performs a high-level analysis and fast dead logic detection. You can use
the results to better understand your model before test generation, particularly for large models,
complex models, or models for which you are uncertain of the test generation compatibility. For
example, you can:

• Identify components that are incompatible with test case generation.
• Identify complex components that may be time-consuming to analyze.
• Determine instances of dead logic.
• Get a snapshot of the component hierarchy.
• Get recommended test generation parameters.

7 Generating Test Cases

7-24

The Test Generation Advisor classifies components as analyzable, complex, or incompatible.

• Analyzable components are compatible with Simulink Design Verifier. The preliminary analysis
indicates that Simulink Design Verifier might achieve high component coverage.

• Complex components are also compatible with Simulink Design Verifier. However, the preliminary
analysis indicates that Simulink Design Verifier might require more time and resources to achieve
high component coverage due to component complexity or other factors. For more information,
see “Sources of Model Complexity” on page 14-2.

• You cannot generate tests for incompatible components. For more information, see “Check Model
Compatibility” on page 3-2.

The results summary displays specific information about the model and each component:

• Status: The compatibility or complexity
• Objectives: The number of condition and decision objectives
• Dead Logic Detected: The number of instances of dead logic decided during the analysis. This

might not include every instance of dead logic.
• Objectives Decided: The percentage of condition and decision objectives determined by test

cases and dead logic.

Test Generation Advisor Requirements
For analysis, your model must compile. Also, if you change the model name, you must reload the
model and reopen the Test Generation Advisor.

Identify Analyzable Components
To analyze your model using the Test Generation Advisor, follow this high-level workflow:

1 Open your model.
2 On the Design Verifier tab, in the Mode section, select Test Generation, then click Advisor.
3 Your model compiles, and the Test Generation Advisor opens. It displays the model hierarchy and

summary table.
4 Enter a time value for Seconds per component, which limits the analysis time per component.

This value does not include time for other operations such as compilation.
5 Run the analysis by clicking the Start Analysis button . Track the analysis using the progress

indicator.
6 Determine incompatibilities, complexities and characteristics from the component hierarchy tree

and the results summary.
7 Trace from the summary to the model using the component hyperlinks.

Analyze and Generate Tests for Model Components
This example demonstrates analysis and test generation using the Test Generation Advisor. The
example model has analyzable and incompatible subsystems.

1 At the command line, enter fuelsys_docreq to open the fuelsys_docreq model.

 Use Test Generation Advisor to Identify Analyzable Components

7-25

2 Save a copy of the model in a writable location on the MATLAB path.
3 On the Design Verifier tab, in the Mode section, select Test Generation, then click Advisor.

4 In the Seconds per component text box, enter 25.
5 Click the Start Analysis button to begin the model analysis.
6 After the analysis is complete, the component tree displays results for the overall model and each

component.

7 Generating Test Cases

7-26

7 Highlight the control logic subsystem in the component hierarchy. The analysis was partial,
in that it determined 87% of the objectives for control logic by test cases and dead logic. To
load the test generation summary, click the Show test generation results summary link.

At the bottom of the summary, the table lists recommended test generation parameters.

8 Click the Component name hyperlink. Simulink traces to the control logic Stateflow chart.
9 Generate the full set of tests for the subsystem. In the Test Generation Advisor summary for

control logic, click Extract this component and generate tests.

Manually Select Components for Testing
If you know which model components that you want to test, you can manually select these
components. Break down the model into components of 100–1000 objectives each. Use the
sldvextract function to extract components into a new model. You can then analyze the individual
components, starting with the lowest-level subsystems.

See Also

More About
• “Model Coverage Objectives for Test Generation” on page 7-30
• “Generate Test Cases for Model Decision Coverage” on page 7-6

 Use Test Generation Advisor to Identify Analyzable Components

7-27

Generate Test Cases for Embedded Coder Generated Code
In this section...
“Generate Test Cases for Generated Code from the Simulink Model Toolstrip” on page 7-28
“Generate Test Cases for Generated Code by Using the Simulink Design Verifier API” on page 7-29
“Generate Test Cases for Generated Code from the Simulink Test Test Manager” on page 7-29

When you use Embedded Coder to generate code from a model set to software-in-the-loop (SIL)
mode, you can use Simulink Coverage to record coverage metrics on the generated code. However,
the same tests that enable you to achieve 100% model coverage might not produce 100% coverage
for the generated code. Some differences between the output code and the model can cause gaps in
the code coverage compared to the model coverage:

• Extra custom code files
• Shared utility files
• Code transformations, such as:

• Expression folding
• Simplified or expanded expressions
• New decision points due to lookup tables

You can use Simulink Design Verifier to generate test cases to increase coverage for generate code.
You generate test cases for generated code from the block diagram, by using the Simulink Design
Verifier API, or from the Simulink Test Test Manager. Before you generate test cases, you need to
record coverage results at least once.

Generate Test Cases for Generated Code from the Simulink Model
Toolstrip
After you Enable SIL Code Coverage for a Model (Simulink Coverage), simulate the model, and
record code coverage data, you use Simulink Design Verifier to generate additional test cases for the
generated code:

1 On the Design Verifier tab, in the Mode section, select Test Generation.

• To generate tests for code generated as top model, select Target > Code Generated as Top
Model, then click Generate Tests.

• To generate tests for code generated as model reference, select Target > Code Generated
as Model Reference, then click Generate Tests.

Simulink Design Verifier test generation proceeds according to the test generation mode that you
choose.

To learn more about the differences between code generated as top model and code generated as
model reference, see:

• “Configure and Run SIL Simulation” (Embedded Coder)
• “Code Interfaces for SIL and PIL” (Embedded Coder)

7 Generating Test Cases

7-28

• “Choose a SIL or PIL Approach” (Embedded Coder)

Generate Test Cases for Generated Code by Using the Simulink Design
Verifier API
For an example of how to programmatically generate test cases for generated code, see “Code
Coverage Test Generation” on page 7-111.

Generate Test Cases for Generated Code from the Simulink Test Test
Manager
If you use the Simulink Test Test Manager to record code coverage for a model set to SIL mode, you
can incrementally increase coverage for the generated code directly from the Test Manager. For more
information, see “Incrementally Increase Test Coverage Using Test Case Generation” on page 16-9.

See Also

More About
• “Support Limitations and Considerations for S-Functions and C/C++ Code” on page 3-28

 Generate Test Cases for Embedded Coder Generated Code

7-29

Model Coverage Objectives for Test Generation

In this section...
“Decision” on page 7-30
“Condition” on page 7-30
“MCDC” on page 7-31
“Enhanced MCDC” on page 7-31
“Relational Boundary” on page 7-31

Test cases are generated to drive your model to satisfy condition, decision, modified condition/
decision (MCDC), and custom coverage objectives. But, if your model does not have any of these
objectives, then Simulink Design Verifier generates a test case that represents a basic simulation of
your model. The test inputs satisfy minimum or maximum constraints on input ports and intermediate
signal values satisfy constraints specified by the Test Condition blocks in the model.

Decision
Decision coverage in Simulink Design Verifier examines blocks and Stateflow states that represent
decision points in a model. For instance, the Switch block involves the decision about whether the
control input is greater than a threshold value. For more information, see “Model Objects That
Receive Coverage” (Simulink Coverage).

To enable decision coverage, under Design Verifier > Test Generation, for Model coverage
objectives, select one of the following:

• Decision
• Condition Decision
• MCDC

For each decision in your model, Simulink Design Verifier generates test cases that satisfy the
coverage objective. For more information, see “Decision Coverage (DC)” (Simulink Coverage).

Condition
Condition coverage examines blocks that output the logical combination of their inputs and Stateflow
transitions. For more information, see “Model Objects That Receive Coverage” (Simulink Coverage).

To enable condition coverage, under Design Verifier > Test Generation, for Model coverage
objectives, select one of the following:

• Condition Decision
• MCDC

For each input to a logical block and each condition in a transition, Simulink Design Verifier
generates test cases that satisfy the coverage objective. For more information, see “Condition
Coverage (CC)” (Simulink Coverage). .

7 Generating Test Cases

7-30

MCDC
Modified condition decision coverage examines blocks that output the logical combination of their
inputs and Stateflow transitions. For more information, see “Model Objects That Receive Coverage”
(Simulink Coverage).

To enable MCDC coverage, under Design Verifier > Test Generation, for Model coverage
objectives, select MCDC.

For each input to a logical block and each condition in a transition, Simulink Design Verifier
generates test cases that satisfy the coverage objective. For more information, see “MCDC Coverage
for Stateflow Charts” (Simulink Coverage).

For information on how MCDC test generation in Simulink Design Verifier can deviate from MCDC
coverage recorded by Simulink Coverage, see “Modified Condition and Decision Coverage in Simulink
Design Verifier” on page 9-21.

Enhanced MCDC
Enhanced MCDC is an extension of modified condition decision coverage. For a test block, enhanced
MCDC generates test cases that avoid masking effects from downstream blocks, so that the test block
has an effect on the output.

To enable enhanced MCDC coverage, under Design Verifier > Test Generation, for Model
coverage objectives, select Enhanced MCDC. For more information, see “Enhanced MCDC
Coverage in Simulink Design Verifier” on page 7-42.

Relational Boundary
Relational boundary coverage examines blocks that have an explicit or implicit relational operation
and Stateflow transitions. For more information, see “Model Objects That Receive Coverage”
(Simulink Coverage). Test generation for relational boundary coverage is not supported for If and Fcn
blocks.

To enable relational boundary coverage, under Design Verifier > Test Generation, select Include
relational boundary objectives.

For each relational operation in the model, Simulink Design Verifier generates test cases that satisfy
the coverage objective. For more information, see “Relational Boundary Coverage” (Simulink
Coverage).

Note In case your model does not have conditions, decisions, or custom test objectives, then
Simulink Design Verifier will generate a test case that represents a basic simulation of your model.
The test inputs will satisfy min/max constraints on input ports and intermediate signal values will
satisfy constraints specified by the Test Condition blocks in the model.

 Model Coverage Objectives for Test Generation

7-31

Enhance Model Coverage of Older Release Models
To enhance the model coverage of a model that you created in an older release, use a test generation
workflow or a code generation workflow. You can leverage the latest release capabilities of Simulink
Design Verifier to generate the test cases for a Model-Based Design.

These workflows enhance model coverage.

• “Enhance Model Coverage by Generating Test Cases for Older Release Model” on page 7-33

• “Enhance Model Coverage by Using Generated Code from Older Release” on page 7-37

7 Generating Test Cases

7-32

Enhance Model Coverage by Generating Test Cases for Older Release
Model

This example shows how to upgrade model coverage of a model created in R2015b. You use test
generation for supported S-functions available in the latest release.

The example model sldvexSFunctionHandlingExample contains the handwritten S-Function,
which implements a lookup table algorithm. The handwritten S-Function is in the file
sldvexSFunctionHandlingSFcn.c. The user source code for the lookup table is in the file
sldvexSFunctionHandlingSource.c.

1. In MATLAB R2015b, open the sldvexSFunctionHandlingExample model.

open_system('sldvexSFunctionHandlingExample');

 Enhance Model Coverage of Older Release Models

7-33

2. To simulate the model and generate the coverage report, in the Simulink Editor, click the Run
button. See “View Coverage Results in Simulink Canvas” (Simulink Coverage) .

After the simulation, the coverage report indicates that full coverage is not achieved for
sldvexSFunctionHandlingExample model.

3. In MATLAB R2018b or later releases, open the sldvexSFunctionHandlingExample model. The
example model sldvexSFunctionHandlingExample is available in R2015b and later releases, so
you can use the same model for test generation workflow.

open_system('sldvexSFunctionHandlingExample');

7 Generating Test Cases

7-34

To avoid any potential changes in the model, create a copy of the older release model in the current
working folder, and then open the model in R2018b or later releases. To upgrade and improve models
that you use in the current release, you can use the upgradeadvisor function. See
“Programmatically Analyze and Upgrade Model”.

4. Compile the S-function to be compatible with Simulink Design Verifier for test case generation by
using slcovmex (Simulink Coverage). For more information, see “Configuring S-Function for Test
Case Generation” on page 7-109.

slcovmex('-sldv', ...
 '-output', 'sldvexSFunctionHandlingSFcn',...
 'sldvexSFunctionHandlingSource.c','sldvexSFunctionHandlingSFcn.c');

mex C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp5f4630b4_5f10_43a2_a702_c33a560effc4\tpd5aa63d5_e585_484f_9d6b_c30b9a36d31d.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp5f4630b4_5f10_43a2_a702_c33a560effc4\tpf438578a_232d_4501_8ba3_f761489f48d6.c B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output sldvexSFunctionHandlingSFcn
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex sldvexSFunctionHandlingSource.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp5f4630b4_5f10_43a2_a702_c33a560effc4\sldvexSFunctionHandlingSFcn.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp5f4630b4_5f10_43a2_a702_c33a560effc4\tp7286d516_56b4_4509_8600_1f653d345208.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp5f4630b4_5f10_43a2_a702_c33a560effc4\tp23439a06_7971_45e2_b2c5_7754a401c1b9.c B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output sldvexSFunctionHandlingSFcn
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.

5. Create an opts option for the sldvexSFunctionHandlingExample model.

opts = sldvoptions;
opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'Condition';
opts.SaveHarnessModel = 'off';
opts.SaveReport = 'off';
opts.SFcnSupport = 'on';

6. To generate test cases by using the specified opts options, use sldvrun to analyze the model.

[status, fileNames] = sldvrun('sldvexSFunctionHandlingExample', opts);

03-Mar-2023 23:40:52
Checking compatibility for test generation: model 'sldvexSFunctionHandlingExample'
Compiling model...done
Building model representation...done

03-Mar-2023 23:41:24

'sldvexSFunctionHandlingExample' is compatible for test generation with Simulink Design Verifier.

Generating tests using model representation from 03-Mar-2023 23:41:24...

Generating output files:

03-Mar-2023 23:41:47
Results generation completed.

 Data file:
 C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp65d2e03e\sldv-ex67693772\sldv_output\sldvexSFunctionHandlingExample\sldvexSFunctionHandlingExample_sldvdata.mat

After analysis, the software generates a Simulink Design Verifier data file and stores it in the default
location <current_folder>\sldv_output
\sldvexSFunctionHandlingExample_sldvdata.mat.

7. In R2015b, open the model.

 Enhance Model Coverage of Older Release Models

7-35

open_system('sldvexSFunctionHandlingExample');

8. Load the sldvData file created in R2018b or later releases.

a. On the Design Verifier tab, click Load Earlier Results and browse to the sldvData MAT-file
generated in R2018b or later releases.

b. Click Open.

9. In the Simulink Design Verifier Results Summary window, click Simulate tests and produce a
model coverage report. The report indicates that 100% coverage is achieved for
sldvexSFunctionHandlingExample model.

For more information, see “Manage Simulink Design Verifier Data Files” on page 13-7 and
“Simulate Tests and Produce Model Coverage Report” on page 1-15.

7 Generating Test Cases

7-36

Enhance Model Coverage by Using Generated Code from Older
Release
This example shows how to upgrade the model coverage of a model created in R2015b by using code
generation workflow.

For this workflow, you must have Simulink Coder™ and Embedded Coder.

The example model sldvCrossReleaseExample contains the handwritten S-Function, which
implements a relational boundary algorithm. The handwritten S-Function is in the file rel_sfcn.c. The
user source code is in the file rel_comp.c.

To inline the S-function, use the rel_sfcn.tlcfile. For more information, see “Inline S-Functions
with TLC” (Embedded Coder).

1 Copy the example model sldvCrossReleaseExample and S-Function files, rel_sfcn.c,
rel_comp.c, and rel_sfcn.tlc in the current working folder. Copy the header files rel_comp.h into
the current working folder. You use the example model and supporting files in R2015b for a
“Cross-Release Code Integration” (Embedded Coder) workflow.

Note The example model sldvCrossReleaseExample is created for example purpose. To
perform code generation workflow by using the example model, export
sldvCrossReleaseExample model to 15b. Save the model as
sldvCrossReleaseExample_15b in the current working folder. For more information, see
“Export Model to Previous Version of Simulink”.

2 In MATLAB R2015b, open sldvCrossReleaseExample_15b model from the current working
folder.

open_system('sldvCrossReleaseExample_15b');

3 Compile the S-function by using the function legacy_code.

def = legacy_code('initialize');
 def.SFunctionName = 'rel_sfcn';
 def.OutputFcnSpec = 'uint8 y1 = relational_bound(uint8 u1)';
 def.HeaderFiles = {'rel_comp.h'};
 def.SourceFiles = {'rel_comp.c'};
 def.IncPaths = {pwd};
 def.SrcPaths = {pwd};
 def.Options.supportCoverageAndDesignVerifier = true;

 Enhance Model Coverage of Older Release Models

7-37

 legacy_code('sfcn_cmex_generate', def);
 legacy_code('compile', def);

4 To simulate the model and generate the coverage report, in the Simulink Editor, click the Run
button. See “View Coverage Results in Simulink Canvas” (Simulink Coverage).

After the simulation, the coverage report indicates that 50% coverage is achieved for
sldvCrossReleaseExample_15b model.

5 To generate code using Embedded Coder, from the Apps tab, select Embedded Coder. For more
information, see “Generate Code Using Embedded Coder” (Embedded Coder).

In the C Code tab, click Generate Code.

The model is preconfigured with these code generation settings.

set_param(sldvCrossReleaseExample_15b,'SystemTargetFile','ert.tlc');
set_param(sldvCrossReleaseExample_15b,'PortableWordSizes','on');
set_param(sldvCrossReleaseExample_15b,'SupportNonFinite','off');
set_param(sldvCrossReleaseExample_15b,'GenCodeOnly','on');
set_param(sldvCrossReleaseExample_15b,'SolverMode','SingleTasking');
set_param(sldvCrossReleaseExample_15b,'ProdEqTarget','on');

The software generates C code for the model and saves the files in the default folder location
<current_folder>\sldvCrossReleaseExample_15b_ert_rtw.

6 Save the configuration set of the model sldvCrossReleaseExample_15b to a MAT-file. This
ConfigSet is used to set the configuration set of the model in R2018b and later releases.

config_set = getActiveConfigSet('sldvCrossReleaseExample_15b');
copiedConfig = config_set.copy;
save('copiedConfig.mat','copiedConfig');

7 In MATLAB R2018b or later releases, import the components exported from R2015b.

a Before you import components in current release, rename or delete rtwtypes.h file
available in the folder <current_folder>\sldvCrossReleaseExample_15b_ert_rtw.
During cross-release import, MATLAB tries to regenerate a file with same name. If you do
not delete or rename the file rtwtypes.h, MATLAB displays an error.

b Import the generated component code from R2015b as software-in-the-loop (SIL) block.
 crossReleaseImport('sldvCrossReleaseExample_15b_ert_rtw',...
'sldvCrossReleaseExample_15b', 'SimulationMode','SIL');

The crossReleaseImport function creates an untitled model that contains software-in-the-
loop (SIL) block sldvCrossReleaseExample_15b_R2015b_sil.

7 Generating Test Cases

7-38

8 Add Inport and Outport ports to the sldvCrossReleaseExample_15b_R2015b_sil block and
save the model as sldvCrossReleaseExample_sil_18b.

9 Apply the model configuration set similar to R2015b model.
load('copiedConfig.mat');
attachConfigSet('sldvCrossReleaseExample_sil_18b', copiedConfig, true);
setActiveConfigSet('sldvCrossReleaseExample_sil_18b', copiedConfig.Name);

10 Set the simulation mode to Software-in-the-Loop (SIL). To simulate the model, in the
Simulink Editor, click the Run button.

11 To generate test cases for Embedded Coder generated code, on the Design Verifier tab, select
Target > Code Generated as Top Model and click Generate Tests. For more information, see
“Generate Test Cases for Embedded Coder Generated Code” on page 7-28.

After Simulink Design Verifier analysis, the software generates the test cases and saves the
sldvData in folder at default location <current_folder>\sldv_output
\sldvCrossReleaseExample_sil_18b.

12 In R2015b, open the model.

open_system('sldvCrossReleaseExample_15b');
13 Update the sldvData.ModelInfomation.Name field in sldvData same as the model name in

older release. For example, sldvCrossReleaseExample_15b.slx.
14 Create a harness model by using the sldvData created in R2018b or later releases. This data

consists of test cases generated from Embedded Coder generated code. In the dataFile, type
the location of the sldvData generated for sldvCrossReleaseExample_sil_18b model.

sldvmakeharness('sldvCrossReleaseExample_15b.slx','dataFile')

 Enhance Model Coverage of Older Release Models

7-39

15
To simulate the model by using all the test cases, click the Run all button .

The software simulates all the test cases and generates a coverage report. The report indicates
that 100% coverage is achieved for sldvCrossReleaseExample_15b model.

7 Generating Test Cases

7-40

See Also

More About
• “Generate Test Cases for Embedded Coder Generated Code” on page 7-28
• “Cross-Release Code Integration” (Embedded Coder)
• “Manage Simulink Design Verifier Data Files” on page 13-7
• “Manage Simulink Design Verifier Harness Models” on page 13-13

 Enhance Model Coverage of Older Release Models

7-41

Enhanced MCDC Coverage in Simulink Design Verifier
Enhanced Modified Condition Decision Coverage (MCDC) is an extension of modified condition
decision coverage. For a test block, enhanced MCDC generates test cases that avoid masking effects
from downstream blocks, so that the test block has an effect on the output.

To detect the effect of a test block by using the enhanced MCDC coverage objective, you can consider
a standard model coverage objective of a test block or you can author your own custom test
objectives for analysis. For more information, see:

• Use Model Coverage Objectives for Enhanced MCDC Coverage on page 7-42
• Author Custom Test Objectives for Enhanced MCDC Coverage on page 7-43

To generate test cases by using enhanced MCDC model coverage objectives, and then analyzing the
results, see Basic Workflow for Enhanced MCDC Analysis on page 7-47.

Use Model Coverage Objectives for Enhanced MCDC Coverage
For a given test block, you can detect the effect on a model coverage objective from the downstream
blocks. When you generate test cases by using enhanced MCDC model coverage objectives, the
generated test cases avoid the masking effect from the downstream blocks. The model coverage
objective is detectable at a detection site.

Consider this model that consists of a cascade of Switch, Min, and Max blocks.

The test cases generated for enhanced MCDC coverage ensure that the decision objective of the
“Switch” (Simulink Coverage) test block is not masked by the downstream Min and Max blocks. The
generated test cases ensure that these nonmasking conditions for Min and Max blocks are satisfied:

1 F < D, ensures that the Min block does not mask the Switch output.
2 G > E, ensures that the Max block does not mask the Min output.

The decision objective of the Switch block and the nonmasking conditions of the Min and Max blocks
are satisfied along the path and are detected at the detection site (Out1). For example, the path
starts from the output signal of the Switch block, propagates along the Min block, and ends at the
output signal of the Max block (highlighted in the example model).

Enhanced MCDC criteria ensure better quality test cases because the test case detects the effect of a
model coverage objective of the test block at the detection site. To analyze a model for enhanced
MCDC analysis, see example “Analyze Model for Enhanced MCDC Analysis” on page 7-44.

7 Generating Test Cases

7-42

Author Custom Test Objectives for Enhanced MCDC Coverage
Enhanced MCDC considers the default coverage objectives of a test block that are detectable at the
detection site. To check the detectability status of a custom test objective, you can author the test
objective of a model object, and then perform enhanced MCDC analysis.

Consider this model that consists of a Product block and a Min block. The Product block does not
have a coverage objective.

You can author a custom test objective for the Product block to render the output value less than 0
and detect the effect of the custom test objective at a detection site.

For more information, see Author Custom Test Objective Workflow on page 7-52.

See Also

More About
• “Model Coverage Objectives for Test Generation” on page 7-30
• “Design Verifier Pane: Test Generation” on page 15-30

 Enhanced MCDC Coverage in Simulink Design Verifier

7-43

Analyze Model for Enhanced MCDC Analysis

This example shows how to generate test cases for enhanced Modified Condition Decision Coverage
(MCDC) objectives. You generate test cases for enhanced MCDC coverage objectives and review
analysis results. The sldvEnhancedMCDCExample model consists of Switch, Min, and Max blocks.

1. Open the model sldvEnhancedMCDCExample:

sldvEnhancedMCDCExample;

2. To configure the model for Enhanced MCDC objectives, in the Configuration Parameters dialog
box, on the Design Verifier > Test generation pane, set Model coverage objectives to Enhanced
MCDC. Click OK.

3. To generate test cases, on the Design Verifier tab, click Generate Tests.

After the analysis is completed, the Results Summary window displays the processed objectives and
options to review the results.

4. To highlight the analysis results, click Highlight analysis results on model.

To analyze whether the model coverage objectives of the Switch test block are detectable, click the
Switch block.

The results show that the decision objectives of the Switch block are detectable.

7 Generating Test Cases

7-44

5. Click View test case. The harness model opens and the Signal Builder block displays Test case
4.

You can also view the test cases from the detailed analysis report.

 Analyze Model for Enhanced MCDC Analysis

7-45

The test case inputs A, B, and C result in F = -1 and G = -1. The value of E = -128 results in H =
-1, so the impact of the test objective is detected at the detection site Out1. The impact of the model
coverage objective of the test block is not masked along the path and is detectable at Out1.

6. To view the detailed analysis report, click HTML in the Results Summary. The Test Objectives
Status section lists the satisfied objectives. The coverage objective that is detectable at the detection
site is summarized in the table.

The Objectives field in the Simulink Design Verifier data files lists the detectability status and the
detection sites for the model coverage objectives. For more information, see “Manage Simulink
Design Verifier Data Files” on page 13-7.

See Also

• “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-42

7 Generating Test Cases

7-46

Basic Workflow for Enhanced MCDC Analysis
To generate test cases for enhanced Modified Condition Decision Coverage (MCDC) coverage
objectives:

1 On the Design Verifier tab, in the Mode section, select Test Generation.
2 Click Test Generation Settings.
3 In the Configuration Parameters dialog box, on the Design Verifier > Test Generation pane, set

Model coverage objectives to Enhanced MCDC. Click OK.
4 Click Generate Tests.

Note Enhanced MCDC analysis is not supported when you “Generate Test Cases for Embedded
Coder Generated Code” on page 7-28. The software considers MCDC coverage objectives for test
generation analysis.

Simulink Design Verifier analyzes the model for Enhanced MCDC coverage objectives.

After the analysis is complete:

• The software highlights the model with the analysis results.
• The Results Inspector window displays the summary of the model coverage objectives including

the detectability status.

The Results Inspector window displays these detectability statuses for a model coverage objective:

• Detectable
• Not Detectable
• Undecided

The table lists the possible combinations of the objective status and the detectability statuses.

 Basic Workflow for Enhanced MCDC Analysis

7-47

Objective Status Detectability Status Test Case Description
Satisfied Detectable The test case satisfies the

model coverage objective and
is detectable at the detection
site.

Satisfied - Needs Simulation Detectable The test case satisfies the
model coverage objective and
is detectable at the detection
site.

To confirm the satisfied
status, you must run
additional simulations of test
cases. For more information,
see “Objectives Satisfied -
Needs Simulation” on page
13-46.

Satisfied Not detectable The test case satisfies the
model coverage objective.
However, the test objective is
not detectable at any
detection site.

Satisfied Undecided The test case satisfies the
model coverage objective. The
software is unable to show the
effect of model coverage
objective on the downstream
blocks.

Unsatisfiable Not Detectable The test objective is
unsatisfiable and not
detectable at any detection
site.

Undecided Undecided The test objective is
undecided and the software is
unable to show its effect on
the downstream blocks.

• The Simulink Design Verifier data file stores the detectability status and detection site for model
coverage objectives. For more information see, “Manage Simulink Design Verifier Data Files” on
page 13-7.

Configure Detection Sites using Test-pointed Logged Signals
If you mark any signal as test-pointed logged signal, Enhanced MCDC analysis will prioritize such
signals as detection sites for test blocks wherever possible. For example, consider the model shown
below:

7 Generating Test Cases

7-48

If you make the output of Min block as the test-pointed logged signal, the detection site for the switch
block is min block's outport. Otherwise, it would be saturation block's outport.

portHandle_MinBlk = get_param('model/Min', 'PortHandles’);
set_param(portHandle_MinBlk.Outport, 'TestPoint', 'on’);
set_param(portHandle_MinBlk.Outport, 'DataLogging', 'on’);

For more information on test points, see “Configure Signals as Test Points”. For signal logging, refer
to “Configure Signals for Logging”.

Configure Advanced Options for Enhanced MCDC Analysis
To analyze a model with stricter nonmasking conditions, enable the “Use strict propagation
conditions” on page 15-37 option. This option is available in the Configuration Parameters dialog
box, on the Design Verifier > Test Generation pane, in Advanced parameters.

The software evaluates stricter nonmasking conditions to analyze the effect on the test block from the
downstream blocks. For example:

• If your model consists of Atomic Subsystem with the Function packaging option set to Auto or
Inline.

Consider a model that consists of Switch and Atomic Subsystem blocks. The Function packaging
option is set to Auto and you enable the “Use strict propagation conditions” on page 15-37
option. The effect of the Switch test block is detectable at the detection point Out1.

 Basic Workflow for Enhanced MCDC Analysis

7-49

When you analyze the model with the “Use strict propagation conditions” on page 15-37 option
set to Off, the software analyzes the model until the effect of the Switch test block reaches the
Atomic Subsystem. The Atomic Subsystem is the detection point.

• If your model consists of blocks such as Gain or Product with the Saturate on integer overflow
option set to On.

Inspect Enhanced MCDC Objectives using Model Slicer
Model Slicer supports the following objective statuses for test case generation:

• Satisfied
• Satisfied - needs simulation
• Satisfied by existing test cases
• Undecided with test case
• Undecided due to the runtime error

You can analyze enhanced MCDC objectives and their impact on the model by using Model Slicer. In
the Results window, use the Inspect link to the right of the satisfied and detectable objectives.

Alternatively, you can click on the Inspect Using Slicer button in the Design Verifier tab.

After launching Model Slicer, the tool sets the input based on the test case values that are relevant to
the objective generated by Simulink Design Verifier and steps to the time of observation logged in

7 Generating Test Cases

7-50

sldvData. Model Slicer then adds the model object being observed as the starting point and shows
its impact on the detection point by highlighting the slice.

When you set the model coverage objective to enhanced MCDC in the Configuration parameter
window, you can analyze its detectability along with inspecting the objective. In this case, the Slicer
Configuration window allows you to switch to different modes using the slicer Configuration list.

See Also

More About
• “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-42
• “Debug Enhanced Modified Condition Decision Coverage Using Model Slicer” on page 7-121
• “Create and Run Back-to-Back Tests Using Enhanced MCDC” on page 8-18

 Basic Workflow for Enhanced MCDC Analysis

7-51

Author Custom Test Objective Workflow
Enhanced Modified Condition Decision Coverage (MCDC) considers the default coverage objectives
of a test block that are detectable at the detection site. To check the detectability status of a custom
test objective, you can author the test objective of a model object, and perform Enhanced MCDC
analysis.

Consider this model that consists of a Product block and a Min block. You can author a custom test
objective for the Product block to render the output value less than 0 and detect the effect of the
custom test objective at a detection site.

Steps for Authoring Custom Test Objectives
This workflow describes the steps for authoring custom test objectives for a block.

Step 1: Create a library of atomic masked subsystem to author the custom test objectives. The
masked subsystem consists of these blocks:

• Block under consideration, for example, a Product block.
• Logic to encode the custom test objective, for example, a MATLAB Function block.
• Simulink Design Verifier Test Objective blocks.

7 Generating Test Cases

7-52

Step 2: In the masked subsystem:

• Add isEnabledForDetectability parameter and set the parameter to On.
• Add the detectBlock parameter with the name of the block under consideration.
• Set the Evaluate attribute of the detectBlock parameter to Off.

Step 3: Define the block replacement rule to replace the block under consideration with a masked
subsystem.

To author custom test objectives, use blkrep_rule_product_customTestObjective.m block
replacement rule example file. In the block replacement file, you update the rule.BlockType and
rule.ReplacementPath based on your model blocks. For more information, see “Block
Replacements for Unsupported Blocks” on page 4-7.

Step 4: Configure your model with the block replacement rule. In the Configuration Parameters
dialog box, in Design Verifier > Block Replacements pane, enter the List of block replacement
rules.

Step 5: Select Enhanced MCDC for Model coverage objectives and perform test generation
analysis.

Analyze Custom Test Objectives in Model for Enhanced MCDC

This example shows how to author custom test objectives for the Product block in the
sldvCustomTestObjectiveExample model. Then, it shows how you can detect the effect of the
test objective at a detection site.

1. Open the sldvCustomTestObjectiveExample model:

open_system('sldvCustomTestObjectiveExample');

Library of atomic masked subsystem: The blkReplacementlib_customTestObjective library
consists of the custProduct masked subsystem. The logic to encode the custom test objective is
defined in the MATLAB Function block. The getCustomTestObjectives MATLAB Function block
consists of two custom conditions for the Test Objective blocks.

 Author Custom Test Objective Workflow

7-53

The custProduct masked subsystem is preconfigured with these parameters. For more information,
see “Mask Editor Overview”.

7 Generating Test Cases

7-54

Block replacement rule to replace the block under consideration with a masked subsystem:
The sldvCustomTestObjectiveExample model is preconfigured with the block replacement
options. The block replacement rule is defined in the
blkrep_rule_product_customTestObjective file that replaces the Product block with the
custProduct masked subsystem.

 Author Custom Test Objective Workflow

7-55

2. To configure the model for enhanced MCDC objectives, on the Design Verifier tab, click Test
Generation Settings. In the Configuration Parameters dialog box, in Design Verifier > Test
Generation pane, for Model coverage objectives, select Enhanced MCDC. Click OK.

3. To generate test cases, click Generate Tests.

The software analyzes the replacement model for test generation.

7 Generating Test Cases

7-56

4. Click Highlight analysis results on model. To analyze the detectability of the Product block,
click the Product block.

 Author Custom Test Objective Workflow

7-57

The results show that the test objectives of the Product block are detectable. The test case is
generated.

Note: The software is unable to confirm the objectives status through validation results for the
objectives introduced by block replacement. Therefore, the test objective status is reported as
satisfied - needs simulation. For more information on validation, see “How Simulink Design Verifier
Reports Approximations Through Validation Results” on page 2-23.

5. Click View test case. The harness model opens and the Signal Builder block displays the test case.

6. To view the detailed analysis report, click HTML in the Results Summary. The Block Replacement
Summary provides details about the replaced blocks.

The Test Objectives Status section lists the objectives. The test objective that is detectable at the
detection site is summarized in the table.

7 Generating Test Cases

7-58

See Also

More About
• “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-42
• “Block Replacements for Unsupported Blocks” on page 4-7

 Author Custom Test Objective Workflow

7-59

What Is a Specification Model?
When you systematically verify a model against requirements, you generate test cases for each
requirement. These tests validate the model, which you can use to generate production code and
build confidence that your model satisfies requirements. To create tests that satisfy your
requirements, you can construct a specification model. A specification model is an executable entity
that you can use to perform requirements-based testing by using Simulink Design Verifier and
Requirements Toolbox.

If you have a set of requirements written in natural language text, you can express them as formal
requirements by using a Requirements Table block. After defining the requirements in one or more
blocks, the blocks and the signals become the specification model. Unlike the model that you want to
test, known as the design model, the specification model only specifies what to do, not how to do it.

You can use a specification model to:

• Validate the set of requirements in a systematic and quantitative manner.
• Automate requirements-based testing.
• Identify issues with your design model and requirements.

Use Specification Models in Requirements-Based Testing
To create and deploy a specification model, follow these steps:

1 Author the requirements — Write your requirements in natural language text that describes the
behavior of the system under design. Author them directly in the Requirements Editor or
import them. For more information on importing requirements, see “Import Requirements from
Third-Party Applications” (Requirements Toolbox).

2 Construct the specification model — Design the specification model as an formal representation
of the requirements by using at least one Requirements Table block.

3 Link the requirements — Each requirement that you create in the Requirements Table block
creates an equivalent requirement in the Requirements Editor. See “Configure Properties of
Formal Requirements” (Requirements Toolbox). Link the high-level requirements to the formal
requirements from the specification model.

4 Analyze the formal requirements for completeness and consistency — Identifying incomplete and
inconsistent requirement sets can be difficult to do manually. The Requirements Table block
allows you to automatically analyze the requirements for these issues. See “Identify Inconsistent
and Incomplete Formal Requirement Sets” (Requirements Toolbox).

5 Generate tests for the specification model — Generate at least one test per requirement that
demonstrates its conformance to that requirement. For more information on generating tests, see
“Generate Test Cases for a Subsystem” on page 7-18. Simulink Design Verifier automatically
creates test objectives from the requirements defined in Requirements Table blocks.

6 Interface the specification model with the design model — The specification and design models
often do not use identical input and output signals. Convert the test cases that you generate in
step 5 by developing an interface between both models.

7 Develop the design model — Develop the design model by using the requirements. Link the
requirements to the design model.

8 Verify the design and analyze the coverage — Run the tests generated in step 5 on the design
model and verify whether the results agree with the specification model and requirements.

7 Generating Test Cases

7-60

Generate a coverage report to identify the missing coverage and refine the requirements, if
required.

This flow chart illustrates this process.

Construct a Specification Model
Consider the autopilot controller model described in “Use Specification Models for Requirements-
Based Testing” on page 7-69. In this example, you develop requirements that contain logical and
temporal conditions that define outputs.

Identify the Specification Model Interface

List the input and output signals for the specification model that are related to the requirements that
you want to test. Ignore the signals that the requirements do not specify and that do not affect the
tested outputs. In this example, the requirements specify five inputs and two outputs. The
specification model input signals are:

1 Autopilot Engage Switch — A switch that enables or disables the autopilot controller
2 Heading Engage Switch — A switch that specifies the mode of the autopilot controller when the

autopilot switch is engaged
3 Roll Reference Target Turn Knob — A knob that feeds the desired roll angle value to the autopilot

controller
4 Heading Reference Turn Knob — A knob that gives the set-point value for heading mode
5 Aircraft Roll Angle — The current roll angle of the aircraft

The output signals are:

1 Aileron Command — The output to the aileron actuator
2 Roll Reference Command — The output on the display window that indicates the set-point value

for the aileron actuator

 What Is a Specification Model?

7-61

Identify Preconditions, Postconditions, and Actions for Each Requirement

For the requirements that you want to verify, transform the textual requirements into logical
expressions that can be represented as preconditions, postconditions, and actions. You define formal
requirements as a combination of Preconditions, Postconditions, and Actions:

• Precondition — A condition that must be true for a specified duration before evaluating the rest of
the requirement

• Postcondition — A condition that must be true if the associated precondition is true for the
specified duration

• Action — A behavior that must be performed if the associated precondition is true for the specified
duration

You may find that some requirements can use a postcondition or an action interchangeably, or both
postconditions and actions. Specify which you want to use based on the configuration of your design
model.

For example consider this high level requirement that specifies the modes of the autopilot controller:

The autopilot controller mode is determined by the following:

• The autopilot controller is OFF when the autopilot engage switch is not
engaged.

• The autopilot controller is ROLL_HOLD_MODE when the autopilot engage switch
is engaged and the heading engage switch is not engaged.

• The autopilot controller is HDG_HOLD_MODE when the autopilot engage switch
and the heading engage switch are both engaged.

You can write these requirements as these logical expressions:

Requirement Precondition Action
1 AP_Engage_Switch ==

false
Mode = Off

2 AP_Engage_Switch == true
&& HDG_Engage_Switch ==
false

Mode = ROLL_HOLD_MODE

3 AP_Eng_Switch == true &&
HDG_Engage_Switch ==
true

Mode = HDG_Hold_Mode

Repeat this process for the remaining requirements.

Identify Design Values Representations in Requirements

Your requirements may specify ranges of values that your design model must satisfy, or you may want
to parameterize the values that you evaluate in each requirement. These values cannot always be
described easily with literal values. You can use the Requirements Table block to represent values in
the expressions as constant or parameter data. See “Define Data in Requirements Table Blocks”
(Requirements Toolbox). You can change data throughout simulation. In addition to assigning
numerical values to data, the block supports other data types, such as strings, enumerations, or
ranges. Use the representation of values that fits your needs.

7 Generating Test Cases

7-62

In the autopilot controller model, the requirements specify threshold values for the aircraft roll angle.
This graphic illustrates the numerical and verbal equivalents of the thresholds.

Create the Requirements Table Blocks

After identifying the signal representations, values, and the expressions that you want to use in the
formal requirements, write the logical expression of the precondition, postconditions, and actions in
the Precondition Postcondition, and Action columns for each requirement respectively. If your
requirements have children or dependencies, you can include those relationships in the block. See
“Establish Hierarchy in Requirements Table Blocks” (Requirements Toolbox).

Each requirement that you create in the Requirements Table block creates an equivalent requirement
in the Requirements Editor. Update additional textual properties of the requirements, such as the
description, in the editor. See “Configure Properties of Formal Requirements” (Requirements
Toolbox).

In the autopilot controller model, the specification model includes two Requirements Table blocks.
AP_Mode_Determination defines the formal requirements for the autopilot controller mode.

 What Is a Specification Model?

7-63

The other Requirements Table block, Cmd_Determination, describes the desired output of the
aileron command and the roll reference command.

Final Specification Model

After connecting the Requirements Table blocks to the inputs, outputs, and each other, the final
specification model is:

7 Generating Test Cases

7-64

Prepare the Specification Model for Test Generation

Simulink Design Verifier automatically creates test objectives from the requirements defined in
Requirements Table blocks. If you need to constrain the values of the test objectives, you can specify
them either in the signal source, or by including them in the Assumptions table of the block. See
“Add Assumptions to Requirements” (Requirements Toolbox). To prepare the specification model for
test generation, set the model coverage objectives. In the Design Verifier tab, in the Prepare
section, click Test Generation Settings. In the Configuration Parameters window, expand the
Design Verifier list and click Test Generation. Set Model coverage objectives to the option that
best captures the desired coverage.

Iterate Through the Steps
As you develop the specification model and test your design model, you typically need to update the
requirements, specification model, and design model. This process is iterative. Continue iterating
until you reach the desired test outcomes, such desired model outputs and test coverage.

See Also
Requirements Table

Related Examples
• “Use a Requirements Table Block to Create Formal Requirements” (Requirements Toolbox)
• “Use Specification Models for Requirements-Based Testing” on page 7-69
• “Export Tests from Models That Contain Requirements Table Blocks with Simulink Design

Verifier” on page 13-30

 What Is a Specification Model?

7-65

Test Generation Examples
These test generation examples help you understand and use the test generation capabilities.

Test Generation Capabilities Related Examples
Generate tests for model coverage analysis “Cruise Control Test Generation” on page 7-84

“Fuel Rate Controller Logic” on page 7-85
“Flip Flop Test Generation” on page 7-80
“Model Coverage Test Generation” on page 7-81

Functional Requirements Testing “Test Condition Block” on page 7-83
“Test Objective Block” on page 7-82

Generate tests for code coverage analysis “Configuring S-Function for Test Case
Generation” on page 7-109
“Code Coverage Test Generation” on page 7-111
“Test Generation on Model with C Caller Block”
on page 7-119
“Test Generation for Custom Code in a Stateflow
Chart” on page 7-124

Extend existing test cases “Defining and Extending Existing Tests Cases” on
page 7-91
“Extend an Existing Test Suite” on page 7-86
“Creating and Executing Test Cases” on page 7-
100
“Extend Existing Test Cases After Applying
Parameter Configurations” on page 5-46

Achieve missing coverage “Achieve Missing Coverage in Referenced Model”
on page 9-3
“Achieve Missing Coverage in Closed-Loop
Simulation Model” on page 9-11
“Using Existing Coverage Data During Subsystem
Analysis” on page 7-97

Integrate with other products “Export Test Cases to Simulink Test” on page 13-
27

7 Generating Test Cases

7-66

Test Generation for Custom Code in MATLAB Function Block
Simulink Design Verifier analysis supports models that call custom code from MATLAB function
blocks by using coder.ceval. For such design models, you can generate test cases for model
coverage or perform design error detection to find dead logic or detect design errors.

The table summarizes various coder.ceval use-cases that Simulink Design Verifier supports:

Supported coder.ceval use-cases:

coder.ceval usage Custom code sources Analysis
Basic calls - with or without
arguments

Source files mentioned in
Simulink target in
Configuration Parameters.

Supported

Layout - rowMajor, columnMajor
Passing references using
coder.ref, coder.wref,
coder.rref
Any layout -global - Unsupported
- Source file mentioned by using

coder.updateBuildInfo
Unsupported

Generating Tests for Custom code in MATLAB function block
This example demonstrates test generation workflow for model by using coder.ceval.

Consider a model with MATLAB function block calling the custom code by using coder.ceval.

1 Create the required source files as mentioned in coder.ceval.

The C-function checkIfSignalsInRange, represents custom code. The function returns 1 if
both the signals are in acceptable range else, the function returns 0. The MATLAB function block
checkIfSignalsINRangeWrapper, receives sensor inputs and invokes the C-function.

C file:
#include <stdio.h>
#include <stdlib.h>
#include "checkIfSignalsInRange.h"
int checkIfSignalsInRange(double sig1, double sig2) {
 double acceptableMin = 15;
 double acceptableMax = 150;
 if (((sig1 > acceptableMin) && (sig1 < acceptableMax)) && ((sig2 > acceptableMin) && (sig2 < acceptableMax))) {
 return 1;
 }
 return 0;
}
Header file:
int checkIfSignalsInRange(double sig1, double sig2);

MATLAB function Block:
function result = checkIfSignalsINRangeWrapper(sig1,sig2)
result = 0;
% Check if both the signals are within acceptable range
result = coder.ceval('checkIfSignalsInRange',sig1,sig2);

 Test Generation for Custom Code in MATLAB Function Block

7-67

2 Navigate to Simulation Target in Configuration Parameters. In the Code information tab
add the required files.

3 Set the Enable custom code analysis option in the Import settings tab.
4 Set the model coverage objectives to Decision and invoke test generation analysis in

Configuration Parameters.

Results

The model has three decision objectives, one for MATLAB function block execution and two for
custom code. The two decision objectives correspond in making the outcome of if condition once
true and once false. The generated test and report is as follows:

From the report it is inferred that in Step 1 both signals are in acceptable range and in Step 2 the
signals are out of range.

7 Generating Test Cases

7-68

Use Specification Models for Requirements-Based Testing

This example shows how to use a specification model to model and test formal requirements on a
model of an aircraft autopilot controller. The specification model uses two Requirements Table blocks
to model the required inputs and outputs of the aircraft autopilot controller model. You generate tests
from the specification model, and then run those tests on the aircraft autopilot controller model. The
model that you test is the design model.

For more information on how to define and configure Requirements Table blocks, see “Use a
Requirements Table Block to Create Formal Requirements” (Requirements Toolbox) and “Configure
Properties of Formal Requirements” (Requirements Toolbox).

View the High-Level Requirements

Open the requirements set, AP_Controller_Reqs, in the Requirements Editor.

slreq.open("AP_Controller_Reqs");

The high-level requirements specify the outputs of the model and the autopilot controller mode. Each
requirement description uses high-level language that you can use to explicitly define the logic
needed in the formal requirements.

 Use Specification Models for Requirements-Based Testing

7-69

View the First Iteration of the Specification Model

Open the specification model, spec_model_partial.

spec_model = "spec_model_partial";
open_system(spec_model);

The model contains two Requirements Table blocks that define the formal requirements that translate
the high-level requirements into testable logical expressions. The block AP_Mode_Determination
specifies the formal requirements for the autopilot controller mode, and the block
Cmd_Determination specifies the outputs of the controller.

To view the formal requirements, inspect each Requirements Table block.

Requirements Table Block for Controller Mode

Open AP_Mode_Determination. The block specifies the formal requirements for the autopilot
controller mode. To determine the output data Mode, AP_Mode_Determination specifies three
requirements by using two input data:

• AP_Engage_Switch — The autopilot engage switch
• HDG_Engage_Switch — The heading engage switch

Each requirement uses a combination of the inputs to specify a unique output value for Mode.

7 Generating Test Cases

7-70

Requirements Table Block for Controller Commands

Open Cmd_Determination. Cmd_Determination specifies the requirements for the aileron
command and roll reference command. Cmd_Determination uses four input data:

• Mode — The AP_Mode_Determination output, Mode
• Roll_Ref_TK — The setting of the roll reference target knob
• Roll_Angle_Phi — The actual aircraft roll angle
• HDG_Ref_TK — The setting of the heading reference target knob

The block uses these input data to determine the controller output data:

• Roll_Ref_Cmd — Roll reference command
• Ail_Cmd — Aileron command

In this example, the expressions use constant data to define the ranges of values for Roll_Ref_TK
and Roll_Angle_Phi. You can also parameterize the values or use literal values. See “Define Data
in Requirements Table Blocks” (Requirements Toolbox). To view these values, open the Symbols
pane. In the Modeling tab, in the Design Data section, click Symbols Pane.

In addition to requirements, Cmd_Determination also defines the assumptions for the design. See
“Add Assumptions to Requirements” (Requirements Toolbox). In this example, the assumptions
constrain the values for the roll angle and the roll reference target knob based on their physical
limitations. The roll angle cannot exceed 180 or fall below -180 degrees, and the roll reference
target knob cannot exceed 30 or fall below -30. In the table, click the Assumptions tab.

 Use Specification Models for Requirements-Based Testing

7-71

You can also specify data range limitations in the Minimum and Maximum properties of the data or
explicitly specify the range from the signal with blocks.

Generate Tests

Simulink® Design Verifier™ automatically creates test objectives from the requirements defined in
Requirements Table blocks. To generate tests, use the Configuration Parameter window or specify the
tests programmatically. See “Model Coverage Objectives for Test Generation” on page 7-30. Select
different coverage objectives to determine if you want to minimize the number of tests generated, or
if you want to improve test granularity and traceability.

In this example, generate tests with decision coverage and save the output to a MAT-file.

opts = sldvoptions;
opts.Mode = "TestGeneration";
opts.ModelCoverageObjectives = "Decision";
[~,files] = sldvrun(spec_model,opts,true);

Simulink Design Verifier generates the test objectives and the tests from the requirements, however
the requirements satisfy only seven of the test objectives.

7 Generating Test Cases

7-72

To satisfy the test objectives, you must revise the specification model. In general, avoid generating
tests from a specification model without confirming that the formal requirements are complete,
consistent, and correspond to the high-level requirements. Otherwise, the tests that you generate are
less likely to satisfy the test objectives.

clear("files")

Investigate and Update the Specification Model

Investigate the specification model and update the formal requirements. In this example, the
requirement set in Cmd_Determination is missing the formal requirement that corresponds to the
third bullet of requirement 3.

 Use Specification Models for Requirements-Based Testing

7-73

Open Cmd_Determination in the model spec_model_final to view the updated requirement set.
The additional requirement has the index 2.2.4.

spec_model = "spec_model_final";
load_system(spec_model);
open_system(spec_model + "/Cmd_Determination");

Finding issues in your requirement set can be challenging to do manually. You can use Simulink
Design Verifier to analyze the requirement set and identify inconsistencies and incompletenesses. For
more information, see “Analyze the Block” (Requirements Toolbox).

Link High-Level and Formal Requirements

Loading the specification model loads the formal requirements in the Requirements Editor. Closing
the specification model also closes the associated requirement set. When developing your formal
requirements, link formal requirements to the corresponding high-level requirement to track the

7 Generating Test Cases

7-74

requirements in the specification model. In this example, linking the requirements does not affect test
generation or test results.

To link the first formal requirement to the corresponding high-level requirement:

1 In spec_model_final, expand the requirement set named Table1.
2 Right-click the formal requirement with the Index of 1 and select Select for Linking with

Requirement.
3 Expand the AP_Controller_Reqs requirement set.
4 Right-click the requirement with an ID of 1 and click Create a link from "1: Autopilot mode is

OFF" to "1: High Level: Autopilot Con...".

The link type defaults to Related to. For more information on link types, see “Link Types”
(Requirements Toolbox).

Generate Tests from the Updated Model

Generate the tests from the updated specification model by using the options defined previously.

opts = sldvoptions;
opts.Mode = "TestGeneration";
opts.ModelCoverageObjectives = "Decision";
[~,files] = sldvrun(spec_model,opts,true);

In this version of the specification model, the test objectives are satisfied.

 Use Specification Models for Requirements-Based Testing

7-75

Run the Tests on the Design Model

After you create tests that satisfy the test objectives, you can run the tests on the design model. In
this example, the design model is the model for the aircraft autopilot controller,
sldvexRollApController.

Before you run tests on the design model, you must interface the specification model with the design
model. Typically, the specification model does not produce or use the same signals as the design
model. These differences can be simple or abstract. For example, the design model might use
different input and output signal types than the specification model, or you may want to compare a
scalar output from the design model against a range in the specification model. As a result, you need
to construct an interface between the design model and the specification model.

Interface the Design Model with the Specification Model

In this example, the specification model spec_model_final and design model
sldvexRollApController inputs can interface directly, but one of the outputs is different.
spec_model_final represents the aileron command as a range of values, but the aileron command
value produced by sldvexRollApController is a scalar double. The interface uses a MATLAB
Function block to compare the aileron command values. The interface then verifies both outputs with
Assertion blocks. Open the model, spec_model_test_interface, to view the interface.

test_interface = "spec_model_test_interface";
open_system(test_interface);

7 Generating Test Cases

7-76

The MATLAB Function block compares the two signals by using this code:

function y = fcn(design_val, spec_val)
switch spec_val
 case Ail_Cmd.All
 y = true;
 case Ail_Cmd.Zero
 y = (design_val == 0);
 otherwise
 y = false;
end

Run the Updated Tests on the Design Model

To test and verify the design model, create a harness model that contains the:

1 Specification model
2 Design model

 Use Specification Models for Requirements-Based Testing

7-77

3 Test interface and verification model

In the harness model, attach the models together. Then run the tests on the design model and verify
the outputs correspond to the requirements in the harness model.

To view the harness model, open the model, sldvexDesignHarnessFinal.

harness_model = "sldvexDesignHarnessFinal";
open_system(harness_model);

Like with the interface model, not all design model inputs may directly correspond to specification
model inputs. In this example, the harness model prepares the design model for testing with the five
inputs specified by the specification model.

Run the updated tests on the design model from within the harness model. Use the sldvruntest
function to run the tests and save the results. If you have Simulink Coverage™, you can view the
results of the tests from the output of sldvruntest in a coverage report. View the coverage report
by using the cvhtml (Simulink Coverage) function.

cvopts = sldvruntestopts;
cvopts.coverageEnabled = true;
[finalData, finalCov] = sldvruntest(...
 harness_model,files.DataFile,cvopts);
cvhtml("finalCov",finalCov);

The coverage report shows that full coverage is achieved on the design model,
sldvexRollApController.

7 Generating Test Cases

7-78

bdclose("all");
slreq.clear;

See Also
Requirements Table

Related Examples
• “What Is a Specification Model?” on page 7-60
• “Add Assumptions to Requirements” (Requirements Toolbox)
• “Export Tests from Models That Contain Requirements Table Blocks with Simulink Design

Verifier” on page 13-30

 Use Specification Models for Requirements-Based Testing

7-79

Flip Flop Test Generation

This example shows how to generate test cases that achieve complete model coverage for a flip-flop.
The outcome of each model coverage point in this example model is a test objective. If you configure
Simulink Design Verifier to generate the fewest test cases, it will satisfy as many objectives as
possible in each test case.

open_system('sldvdemo_flipflop');

7 Generating Test Cases

7-80

Model Coverage Test Generation

This example shows how to generate test cases that achieve complete model coverage for a
debouncer. The outcome of each model coverage point in this example model is a test objective. If you
configure Simulink Design Verifier to generate the fewest test cases, it will satisfy as many objectives
as possible in each test case.

open_system('sldvdemo_debounce_modelcov');

 Model Coverage Test Generation

7-81

Test Objective Block

This example shows the use of two custom Test Objective blocks. The block "True" forces the output
signal to be 2. The block "Edge" inside "Masked Objective" specifies that the output signal transition
from 2 to 1.

open_system('sldvdemo_debounce_testobjblks');

7 Generating Test Cases

7-82

Test Condition Block

This example shows how to constrain input values. The Test Condition block forces the input value to
be either 0 or 1.

open_system('sldvdemo_debounce_testconblk');

 Test Condition Block

7-83

Cruise Control Test Generation

This example shows how to generate test cases that achieve complete model coverage. By default,
Simulink® Design Verifier™ generates test cases that satisfy objectives in the fewest steps. One of
the test objectives forces the discrete integrator in the PI controller to exceed its upper limit. When
you run Simulink Design Verifier without constraints, the limit is exceeded in a single step by forcing
speed to be 500. The constraint on speed limits the values in test cases between 0 and 100. This
forces the test cases to take several samples to exceed the integrator limit.

open_system('sldvdemo_cruise_control');

7 Generating Test Cases

7-84

Fuel Rate Controller Logic

This example shows how to generate test cases that satisfy Decision, Condition, and MCDC coverage.
Simulink® Design Verifier™ automatically generates test data and proves properties of models. It
produces sequences of input values that satisfy a testing criteria or demonstrate a counterexample of
a proof. The configuration options associated with the model specify the objectives of the analysis.
When you analyze the model, Simulink Design Verifier uses exhaustive searching techniques to
generate input data. When successful, it generates test data and creates a new harness model
containing a Signal Builder block with the data values that satisfy the analysis objectives. NOTE: The
complexity of this model might prevent test generation from completing in the allotted time. You can
stop test generation and generate partial results, or you can extend the time limit by editing the
Simulink Design Verifier options.

open_system('sldvdemo_fuelsys_logic');

 Fuel Rate Controller Logic

7-85

Extend an Existing Test Suite

This example shows how to use Simulink® Design Verifier™ to extend an existing test suite to obtain
missing model coverage.

You analyze an example model and generate test suite to achieve full coverage. Then, modify the
model such that test cases no longer achieve full coverage. Finally, you analyze the modified model to
obtain missing coverage by using Simulink® Design Verifier™.

Generate an Initial Test Suite

Analyze the sldvdemo_cruise_control model and generate a test suite that achieves full model
coverage. To analyze the model to generate test cases that provide model coverage, use the sldvrun
function. Set the design verification parameters with sldvoptions.

open_system 'sldvdemo_cruise_control';
opts = sldvoptions;
opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'MCDC';
opts.SaveHarnessModel = 'off';
opts.SaveReport = 'off';
[status, files] = sldvrun('sldvdemo_cruise_control', opts, true);

7 Generating Test Cases

7-86

The test generation analysis result appears in the Simulink Design Verifier Results Summary window.

close_system('sldvdemo_cruise_control',0);

Verify Complete Coverage

The sldvruntest function simulates the model with the existing test suite. The cvhtml function
produces a coverage report that indicates the initial coverage of the sldvdemo_cruise_control
model.

open_system 'sldvdemo_cruise_control';
[outData, initialCov] = sldvruntest('sldvdemo_cruise_control', files.DataFile, [], true);
cvhtml('Initial coverage',initialCov);
close_system('sldvdemo_cruise_control',0);

 Extend an Existing Test Suite

7-87

Modify the Model

Load the modified sldvdemo_cruise_control_mod model. The controller target speed value is
limited to 70, by using a Saturation block.

load_system 'sldvdemo_cruise_control_mod';
load_system 'sldvdemo_cruise_control_mod/Controller';

7 Generating Test Cases

7-88

Measure the Coverage Achieved by the Existing Test Suite

The sldvruntest function simulates the modified sldvdemo_cruise_control_mod model with an
existing test suite and inputs identical to sldvdemo_cruise_control model. The cvhtml function
produces a coverage report that indicates the modified sldvdemo_cruise_control_mod model no
longer achieves full coverage.

[outData, startCov] = sldvruntest('sldvdemo_cruise_control_mod', files.DataFile, [], true);
cvhtml('Coverage with the original testsuite',startCov);

Extend an Existing Test Suite

To achieve full model coverage, the sldvgencov function analyzes the model and extends the
existing test suite.

[status, covData, files] = sldvgencov('sldvdemo_cruise_control_mod', opts, true, startCov);

Verify Complete Coverage

Verify that the new test suite achieves full coverage for the sldvdemo_cruise_control_mod
modified model. The sldvruntest function simulates the modified model with the extended test
suite. The cvhtml report shows the total coverage achieved by the
sldvdemo_cruise_control_mod model.

[additionalOut, additionalCov] = sldvruntest('sldvdemo_cruise_control_mod', files.DataFile, [], true);
totalCov = startCov + additionalCov;
cvhtml('With additional coverage',totalCov);

To complete the example, close the model.

 Extend an Existing Test Suite

7-89

close_system('sldvdemo_cruise_control_mod');

7 Generating Test Cases

7-90

Defining and Extending Existing Tests Cases

This example shows how Simulink® Design Verifier™ can extend test cases with additional time steps
to efficiently generate complete test suites.

The example starts with a model containing time-delay characteristics that make test generation
challenging. By creating a default test harness model and manually authoring one test, the critical
obstacle to efficient test generation is removed. Simulink Design Verifier takes as input the logged
values from the harness model and efficiently extends this test to create a complete test suite.

Model Characteristics That Motivate Test Case Extension

The sldvdemo_sbr_extend_design model includes the Stateflow® Chart SBR that uses temporal
logic so that very long test cases are required to make a transition from the KEY_OFF state to the
KEY_ON state. This type of time-delay characteristic is common in designs where a delay is used to
reject spurious behavior or to wait for a physical system or user to respond. In this design, satisfying
the temporal logic in this transition is a common obstacle to testing any of the states and transitions
within the KEY_ON state.

Fortunately, this type of time-delay characteristic is usually easy to identify and satisfy with a
manually authored test case.

open_system('sldvdemo_sbr_extend_design');
sf('Open',sldvdemo_ssid_to_sfid('sldvdemo_sbr_extend_design/SBR',11));

 Defining and Extending Existing Tests Cases

7-91

Creating a Harness Model and Defining Starting Tests

The Simulink Design Verifier function sldvmakeharness creates a harness model with a block that
generates input values to the test model included by way of a Model block.

You can modify the test data in a harness model by manually editing the data values using the Signal
Builder user interface. You can also add more test cases by creating new signal groups in the block.
Alternatively, you can use the signalbuilder command to programmatically accomplish the same
thing.

In this example, you specify a test case that keeps the system in the KEY_OFF state for 5 seconds:

[~, harnessModelFilePath] = sldvmakeharness('sldvdemo_sbr_extend_design',[],[],true);
[~, harnessModel] = fileparts(harnessModelFilePath);

startingTestTime = 0:0.5:5;
startingTestData = cell(3, 1);
lengthStartingTest = length(startingTestTime);
startingTestData{1} = zeros(1,lengthStartingTest);
startingTestData{2} = zeros(1,lengthStartingTest);
startingTestData{3} = ones(1,lengthStartingTest);

signalBuilderBlock = sldvdemo_signalbuilder_block(harnessModel);
signalbuilder(signalBuilderBlock,'Append',...
 startingTestTime, startingTestData,...

7 Generating Test Cases

7-92

 {'Inputs.Speed','Inputs.SeatBeltFasten','Inputs.KEY'},'Starting Test Case');

signalbuilder(signalBuilderBlock, 'ActiveGroup', 2);
open_system(signalBuilderBlock);

 Defining and Extending Existing Tests Cases

7-93

Logging Starting Tests

In order to leverage the starting test case defined above, you use the sldvlogsignals function to
capture the input values in the necessary logged data format.

The first input to sldvlogsignals is the path to a Model block, and the second input is the index of
signal group(s) within the harness model. When you invoke sldvlogsignals, the parent model that
contains the Model block is simulated.

The parent model is not restricted to Simulink Design Verifier harness models. Alternatively, you
might log data from a closed-loop simulation model that uses a Model block to include the controller
so that controller test cases more realistically reflect the continuous time behavior expected in the
closed-loop system.

7 Generating Test Cases

7-94

[~, modelBlock] = find_mdlrefs(harnessModel, false);
loggeddata = sldvlogsignals(modelBlock{1},2);

Extending Existing Tests During Test Generation

Before you can use existing test data during test generation, the data must be saved to a MAT-file.
You enable test case extension in the Test Generation pane of the Simulink Design Verifier
configuration parameters. Select Extend existing test cases, and specify the MAT file in the Data
file field.

Generated tests either extend one of the starting test cases with one or more new time steps or will
specify one or more time steps starting from the initial, or default, configuration.

save('existingtestcase.mat', 'loggeddata');

 Defining and Extending Existing Tests Cases

7-95

opts = sldvoptions;
opts.ExtendExistingTests = 'on';
opts.ExistingTestFile = 'existingtestcase.mat';
opts.SaveHarnessModel = 'off';
opts.SaveReport = 'off';

[~, fileNames] = sldvrun('sldvdemo_sbr_extend_design', opts, true);

Verifying Complete Coverage

The sldvruntest function verifies that the new test suite achieves complete model coverage. The
cvhtml function produces a coverage report that indicates 100% Decision coverage is achieved with
the generated test vectors.

[~, finalCov] = sldvruntest('sldvdemo_sbr_extend_design', fileNames.DataFile, [], true);
cvhtml('Final Coverage', finalCov);

Clean Up

To complete the demo, close all models and remove the saved logged data file.

close_system(harnessModel,0);
close_system('sldvdemo_sbr_extend_design');
delete('existingtestcase.mat');

7 Generating Test Cases

7-96

Using Existing Coverage Data During Subsystem Analysis

This example shows how Simulink® Design Verifier™ can target its analysis to a single subsystem
within a continuous-time closed-loop simulation and generate test cases for missing coverage in that
subsystem.

The example starts by measuring the coverage of a subsystem in a closed-loop simulation model.
Simulink Design Verifier finds new test cases that achieve the missing coverage of the subsystem.

Measure Coverage of the Subsystem

The sldvdemo_autotrans model is a closed-loop simulation model. The subsystem ShiftLogic is
a Stateflow® chart and represents the controller part of this model. Test cases designed in the Signal
Editor block ManeuversGUI drive the closed-loop simulation. You can use the cvtest and cvsim
functions to measure the model coverage achieved for this subsystem inside the closed-loop
simulation model. In this example, specifying the input to cvtest as a path to the subsystem rather
than to the model name results in measuring the coverage for the subsystem only. Also, the second
input to cvsim specifies the time interval to simulate the model and it is derived from the time range
of the current pane in the block ManeuversGUI.

The cvhtml function produces a report that indicates that 87% Decision, 67% Condition, and 33%
MCDC coverage is achieved by simulating the test case authored in the block ManeuversGUI.

open_system('sldvdemo_autotrans');
open_system('sldvdemo_autotrans/ManeuversGUI');

test = cvtest('sldvdemo_autotrans/ShiftLogic');
test.settings.decision = 1;
test.settings.condition = 1;
test.settings.mcdc = 1;

signalEditorBlock = sldvdemo_signaleditor_block('sldvdemo_autotrans');
signalEditorTime = sldvdemo_signaleditor_DataTime(signalEditorBlock);
simulationStopTime = signalEditorTime{1,1}(end);

existingCovData = cvsim(test,[0 simulationStopTime]);
cvhtml('Existing Coverage', existingCovData);

 Using Existing Coverage Data During Subsystem Analysis

7-97

Find Test Cases for Missing Coverage

To use existing coverage data during test generation, save existing coverage data to a .cvt coverage
data file. You can use existing coverage data by specifying the coverage data path in the Coverage
data file parameter and setting Ignore objectives satisfied in existing coverage data parameter
to on in the Test Generation pane of Simulink Design Verifier configuration parameters.

In this example, the first input to sldvrun specifies the subsystem to analyze. Instructing Simulink
Design Verifier to analyze a subsystem is beneficial when the controller part of a model needs to be
tested separately or when you want to divide the analysis of a large model into smaller, manageable
parts.

As you can see in the report, Simulink Design Verifier only finds test cases for the coverage objectives
that are not covered in the existing coverage file. Notice that 4 coverage objectives in the subsystem
ShiftLogic are proven to be unsatisfiable. This is expected because the logic inside the Stateflow
chart ShiftLogic uses temporal events and since this chart updates at every sample time, usage of
temporal conditions should be satisfactory. Also note that, dead code within a subsystem will always
be a dead code in the model containing that subsystem.

7 Generating Test Cases

7-98

To generate the harness model, Simulink Design Verifier extracts the contents of the subsystem
ShiftLogic into a Test Unit component fed by a Signal Editor block containing the generated test
cases.

cvsave('existingcov',existingCovData);

opts = sldvoptions;
opts.IgnoreCovSatisfied = 'on';
opts.CoverageDataFile = 'existingcov.cvt';
opts.ModelCoverageObjectives = 'MCDC';
opts.SaveHarnessModel = 'on';
opts.SaveReport = 'on';

[status, fileNames] = sldvrun('sldvdemo_autotrans/ShiftLogic',opts,true);
[~, harnessModel] = fileparts(fileNames.HarnessModel);
open_system(harnessModel);

Clean Up

To complete the demo, close all models and remove the saved coverage data file.

close_system('sldvdemo_autotrans');
close_system(fileNames.ExtractedModel,0);
close_system(fileNames.HarnessModel,0);
delete('existingcov.cvt');

 Using Existing Coverage Data During Subsystem Analysis

7-99

Creating and Executing Test Cases

This example shows how to use Simulink® Design Verifier™ functions to log input signals, create a
harness model, generate test cases for missing coverage, merge harness models, and execute test
cases.

The example starts by logging input signals to the component that implements the controller in its
parent model and creating harness model for the controller from that logged data. You use Simulink
Design Verifier to find a new test case that achieves the missing coverage. Then you merge the first
harness model with the harness model generated after the Simulink Design Verifier analysis. Finally,
you capture all test cases and execute the controller with those test cases in simulation mode and
Software-In-the-Loop (SIL) mode, and compare the results using CGV API.

Check Product Availability

This example requires a valid Stateflow® license. To demonstrate test execution in Software-In-the-
Loop (SIL) mode it also requires valid Simulink® Coder™ and Embedded Coder™ licenses.

if ~license('test','Stateflow')
 return;
end

canUseSIL = license('test','Real-Time_Workshop') && ...
 license('test','RTW_Embedded_Coder');

Logging Input Signals to the Component and Creating the Harness Model

The slvnvdemo_powerwindow model contains a power window controller and a low-order plant
model. The component slvnvdemo_powerwindow/power_window_control_system/control is
a Model block that references the model slvnvdemo_powerwindow_controller, which
implements the controller with a Stateflow® chart.

To create a harness model for the controller with the signals that simulate the controller in the plant
model, first log the input signals and then invoke harness generation with that logged data.

open_system('slvnvdemo_powerwindow');
load_system('slvnvdemo_powerwindow_controller');

loggedSignalsPlant = ...
 sldvlogsignals('slvnvdemo_powerwindow/power_window_control_system/control');

harnessModelFilePath = ...
 sldvmakeharness('slvnvdemo_powerwindow_controller',loggedSignalsPlant);
[~,harnessModel] = fileparts(harnessModelFilePath);

Starting serial model reference simulation build.
Successfully updated the model reference simulation target for: slvnvdemo_powerwindow_controller

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
slvnvdemo_powerwindow_controller Code generated and compiled. slvnvdemo_powerwindow_controller_msf.mexw64 does not exist.

7 Generating Test Cases

7-100

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 20.931s
Starting serial model reference simulation build.
Model reference simulation target for slvnvdemo_powerwindow_controller is up to date.

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 0.55583s
Starting serial model reference simulation build.
Successfully updated the model reference simulation target for: slvnvdemo_powerwindow_controller

Build Summary

Simulation targets built:

Model Action Rebuild Reason
==
slvnvdemo_powerwindow_controller Code generated and compiled.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 13.322s

 Creating and Executing Test Cases

7-101

7 Generating Test Cases

7-102

Measuring the Coverage with Logged Signals

Use the cvtest and cvsim functions to measure the model coverage achieved for the controller
model slvnvdemo_powerwindow_controller with the logged signals that are captured in the
harness model.

The cvhtml function produces a report that indicates that 40% Decision, 35% Condition, and 10%
MCDC coverage is achieved by simulating the test cases captured from the closed-loop model.

test = cvtest(harnessModel);
test.modelRefSettings.enable = 'On';
test.modelRefSettings.excludeTopModel = 1;

covDataFromLoggedSignals = cvsim(test);
cvhtml('Coverage with Logged Test Cases',covDataFromLoggedSignals);

Finding Test Cases for Missing Coverage

Before you can use existing coverage data during test generation, the data must be saved to a
coverage data file(.cvt). You can use the existing coverage data by specifying the coverage data path
in the Coverage data file parameter and setting the Ignore objectives satisfied in existing
coverage data parameter to on in the Test Generation pane of Simulink Design Verifier
configuration parameters.

As you can see in the report, Simulink Design Verifier restricts test generation to the coverage
objectives that are not covered in the existing coverage file. Notice that 8 coverage objectives in the
Stateflow chart control are proven to be unsatisfiable. This indicates unnecessary redundant logic
that cannot be tested.

cvsave('existingCovFromLoggedSignals',covDataFromLoggedSignals);

opts = sldvoptions;
opts.IgnoreCovSatisfied = 'on';
opts.CoverageDataFile = 'existingCovFromLoggedSignals.cvt';
opts.ModelCoverageObjectives = 'MCDC';
opts.TestSuiteOptimization = 'LongTestcases';
opts.SaveHarnessModel = 'on';
opts.ModelReferenceHarness = 'on';
opts.MaxProcessTime = 500;

[status, fileNames] = sldvrun('slvnvdemo_powerwindow_controller',opts,true);
[~, newHarnessModel] = fileparts(fileNames.HarnessModel);
open_system(newHarnessModel);

 Creating and Executing Test Cases

7-103

Merging Test Cases from Harness Models

Now use sldvmergeharness to combine generated test cases with logged test case. The command
takes a list of harness models as arguments.

sldvmergeharness(harnessModel, newHarnessModel);

Logging Test Cases of the Harness Model

In order to programmatically execute the model slvnvdemo_powerwindow_controller with the
test cases captured in the merged harness model, first use the sldvlogsignals function to obtain
the input values of all test cases in the necessary data format.

loggedSignalsMergedHarness = sldvlogsignals(harnessModel);
disp(loggedSignalsMergedHarness);

 LoggedTestUnitInfo: [1x1 struct]
 TestCases: [1x2 struct]

Execute the Model in Simulation Mode with CGV API

Use the sldvruncgvtest function to execute the model slvnvdemo_powerwindow_controller
in simulation mode, with test cases captured from the harness model.

runopts = sldvruntestopts('cgv');
disp(runopts);

runopts.cgvConn = 'sim';
cgvSim = sldvruncgvtest('slvnvdemo_powerwindow_controller',...
 loggedSignalsMergedHarness,runopts);

 testIdx: []
 allowCopyModel: 0
 cgvCompType: 'topmodel'
 cgvConn: 'sim'

7 Generating Test Cases

7-104

Starting execution:
 ComponentType: topmodel
 Connectivity: sim
 InputData:
 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex67947267\cgv_runtest\slvnvdemo_powerwindow_controller\slvnvdemo_powerwindow_controller_cgv_input_tc_1.mat
End CGV execution: status completed.
Starting execution:
 ComponentType: topmodel
 Connectivity: sim
 InputData:
 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex67947267\cgv_runtest\slvnvdemo_powerwindow_controller\slvnvdemo_powerwindow_controller_cgv_input_tc_2.mat
End CGV execution: status completed.

Execute the Model in Software-In-the-Loop (SIL) Mode with CGV API

Now use the sldvruncgvtest function to execute the model
slvnvdemo_powerwindow_controller in SIL mode, with the same test cases.

if canUseSIL
 runopts.cgvConn = 'sil';
else
 % When SIL is not possible, the example runs another simulation.
 runopts.cgvConn = 'sim';
end
cgvSil = sldvruncgvtest('slvnvdemo_powerwindow_controller',...
 loggedSignalsMergedHarness,runopts);

Starting execution:
 ComponentType: topmodel
 Connectivity: sil
 InputData:
 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex67947267\cgv_runtest\slvnvdemo_powerwindow_controller\slvnvdemo_powerwindow_controller_cgv_input_tc_1_1.mat
Starting build procedure for: slvnvdemo_powerwindow_controller
Successful completion of build procedure for: slvnvdemo_powerwindow_controller

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
slvnvdemo_powerwindow_controller Code generated and compiled. Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 10.463s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Starting SIL simulation for component: slvnvdemo_powerwindow_controller
Application stopped
Stopping SIL simulation for component: slvnvdemo_powerwindow_controller
End CGV execution: status completed.
Starting execution:
 ComponentType: topmodel
 Connectivity: sil
 InputData:
 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex67947267\cgv_runtest\slvnvdemo_powerwindow_controller\slvnvdemo_powerwindow_controller_cgv_input_tc_2_1.mat

 Creating and Executing Test Cases

7-105

Starting build procedure for: slvnvdemo_powerwindow_controller
Successful completion of build procedure for: slvnvdemo_powerwindow_controller

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
slvnvdemo_powerwindow_controller Code generated and compiled. Generated code was out of date.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 10.192s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Starting SIL simulation for component: slvnvdemo_powerwindow_controller
Application stopped
Stopping SIL simulation for component: slvnvdemo_powerwindow_controller
End CGV execution: status completed.

Compare Results of Simulation and SIL Modes

The sldvruncgvtest returns a cgv.CGV object after running tests. Use the CGV API to compare
the results of executions in simulation and SIL modes for each test case designed in the harness
model and show that they are equal.

for i=1:length(loggedSignalsMergedHarness.TestCases)
 simout = cgvSim.getOutputData(i);
 silout = cgvSil.getOutputData(i);

 [matchNames, ~, mismatchNames, ~] = ...
 cgv.CGV.compare(simout, silout);

 fprintf('\nTest Case(%d): %d Signals match, %d Signals mismatch', ...
 i, length(matchNames), length(mismatchNames));
end

Test Case(1): 4 Signals match, 0 Signals mismatch
Test Case(2): 4 Signals match, 0 Signals mismatch

Clean Up

To complete the example, close all models.

close_system(harnessModel,0);
close_system(newHarnessModel,0);
close_system('slvnvdemo_powerwindow',0);
close_system('slvnvdemo_powerwindow_controller',0);

7 Generating Test Cases

7-106

Using Specified Input Minimum and Maximum Values as
Constraints

This example shows how to use input port minimum and maximum values as analysis constraints by
Simulink® Design Verifier™ during both test generation and property proving.

This model is preconfigured to generate tests for MCDC. The specified minimum and maximum values
are displayed in square brackets. The constraints in this example prevent some of the coverage
objectives from being satisfied. When you generate tests without considering these constraints, all of
the coverage objectives are satisfied.

1. The Input1 and Input2 minimum and maximum values are captured directly on their respective
inport signal attributes.

2. The minimum and maximum values are specified on the Simulink.Signal objects associated with
signals a and b. Simulink Design Verifier uses the signal object's values as constraints. When multiple
minimum and maximum values are specified, e.g., on the inport and on the signal object, Simulink
Design Verifier considers their tightest range.

3. Simulink Design Verifier considers the minimum and maximum limit ranges specified on
Stateflow® data that is directly connected to the root-level input ports

4. For subsystem analysis, the subsystem root-level specified input minimum and maximum values are
considered. Observe that generating tests for the Subsystem uses the constraints specified on SSIn,
but ignores them for the system-level analysis.

open_system('sldvdemo_minmaxconstraints');

 Using Specified Input Minimum and Maximum Values as Constraints

7-107

7 Generating Test Cases

7-108

Configuring S-Function for Test Case Generation

This example shows how to compile an S-Function to be compatible with Simulink® Design Verifier™
for test case generation. Simulink Design Verifier supports S-Functions that are:

• Generated with the Legacy Code Tool, with
def.Options.supportCoverageAndDesignVerifier set to true,

• Generated with the SFunctionBuilder, with Enable support for Design Verifier selected on the
Build Info tab of the SFunctionBuilder dialog box, or

• Compiled with the function slcovmex, with the option -sldv passed.

Compile S-Function to be Compatible with Simulink Design Verifier

The handwritten S-Function is found in the file sldvexSFunctionHandlingSFcn.c, and the user source
code for the lookup table is found in the file sldvexSFunctionHandlingSource.c. Call the function
slcovmex to compile the C-MEX S-Function and make it compatible with Simulink Design Verifier.

slcovmex('-sldv', ...
 '-output', 'sldvexSFunctionHandlingSFcn',...
 ['-I', fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src')], ...
 fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src', 'sldvexSFunctionHandlingSource.c'),...
 fullfile(matlabroot, 'toolbox', 'sldv', 'sldvdemos', 'src', 'sldvexSFunctionHandlingSFcn.c') ...
);

mex -IB:\matlab\toolbox\sldv\sldvdemos\src C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tpac1a0bb4_6393_49e5_9e89_0c829dc9809d\tp8fcbb5ec_a971_49b5_a69e_026a613e8e3e.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tpac1a0bb4_6393_49e5_9e89_0c829dc9809d\tp520b302c_33f4_44ed_b097_13c680490e0b.c B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output sldvexSFunctionHandlingSFcn
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IB:\matlab\toolbox\sldv\sldvdemos\src B:\matlab\toolbox\sldv\sldvdemos\src\sldvexSFunctionHandlingSource.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tpac1a0bb4_6393_49e5_9e89_0c829dc9809d\sldvexSFunctionHandlingSFcn.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tpac1a0bb4_6393_49e5_9e89_0c829dc9809d\tp957d03d6_8838_4d9a_bcf3_4ec19dd91811.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tpac1a0bb4_6393_49e5_9e89_0c829dc9809d\tp4117ac17_1a62_4813_b72f_54f28c159b50.c B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output sldvexSFunctionHandlingSFcn
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.

Create Test Suite

The example model sldvexSFunctionHandlingExample example contains the handwritten S-Function,
which implements a lookup table algorithm. The S-Function block returns the interpolated value at
the first output port and returns the status of the interpolation at the second output port. The second
output port returns the value -1 if a lower saturation occurs, 1 if a upper saturation occurs, and 0
otherwise. Open the sldvexSFunctionHandlingExample model and configure the analysis options by
turning on S-Function support for test generation. On running the analysis, Simulink Design Verifier
returns a test suite that satisfies all coverage objectives.

open_system('sldvexSFunctionHandlingExample');

 Configuring S-Function for Test Case Generation

7-109

matlab:sldvexSFunctionHandlingExample

opts = sldvoptions;
opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'ConditionDecision';
opts.SaveHarnessModel = 'off';
opts.SaveReport = 'off';
opts.SFcnSupport = 'on';

[status, fileNames] = sldvrun('sldvexSFunctionHandlingExample', opts, true);

Verifying Complete Coverage

The sldvruntest function verifies that the test suite achieves complete model coverage. The
cvhtml function produces a coverage report that indicates 100% Condition and Decision coverage is
achieved with the generated test vectors.

[~, finalCov] = sldvruntest('sldvexSFunctionHandlingExample', fileNames.DataFile, [], true);
cvhtml('Final Coverage', finalCov);

Clean Up

To complete the demo, close all models.

close_system('sldvexSFunctionHandlingExample', 0);

7 Generating Test Cases

7-110

Code Coverage Test Generation

This example shows how to use Simulink® Design Verifier™ to generate test cases to obtain complete
code coverage.

You first collect code coverage for an example model configured for software-in-the-loop (SIL)
simulation mode. Then you use Simulink® Design Verifier™ to create a test suite that generates tests
cases. Finally, you execute the generated test cases in SIL simulation mode to verify the complete
coverage.

Check Product Availability

Make sure that you have Simulink® Coder™ and Embedded Coder™ software installed on your
machine.

if ~(license('test', 'Real-Time_Workshop') && ...
 license('test','RTW_Embedded_Coder'))
 return
end

Initial Setup

Make sure that an unedited version of the model is open.

model = 'sldvdemo_cruise_control';
close_system(model, 0)
open_system(model)

 Code Coverage Test Generation

7-111

Configure the Model for SIL based test generation

1. In the Configuration Parameters window, click Code Generation and set System Target File
to ert.tlc. Alternatively, enter:

set_param(model,'SystemTargetFile','ert.tlc');

2. Click Hardware Implementation, then set Device vendor and Device type to the vendor and
type of your SIL system. For example, for a 64-bit Linux machine, set Device vendor to Intel and
Device type to x-86-64(Windows). Alternatively, enter:

if ismac
 lProdHWDeviceType = 'Intel->x86-64 (Mac OS X)';
elseif isunix
 lProdHWDeviceType = 'Intel->x86-64 (Linux 64)';
else
 lProdHWDeviceType = 'Intel->x86-64 (Windows64)';
end

set_param(model, 'ProdHWDeviceType', lProdHWDeviceType);

7 Generating Test Cases

7-112

Find Test Cases for Coverage Computation

Analyze the sldvdemo_cruise_control model by using Simulink® Design Verifier™ to generate a
test suite that achieves increased code coverage. Set the Simulink® Design Verifier™ options to
generate test cases to achieve MCDC coverage for the top model.

opts = sldvoptions;
opts.TestgenTarget = 'GenCodeTopModel';
opts.Mode = 'TestGeneration';
[~, files] = sldvrun(model, opts, true);

Starting build procedure for: sldvdemo_cruise_control
Loading TLC function libraries
.......
Initial pass through model to cache user defined code
.
Caching model source code
..................................
Writing header file sldvdemo_cruise_control_types.h
Writing header file sldvdemo_cruise_control.h
Writing header file rtwtypes.h
.
Writing source file sldvdemo_cruise_control.c
Writing header file sldvdemo_cruise_control_private.h
Writing source file ert_main.c
TLC code generation complete (took 3.551s).

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>if "buildobj" == "" (nmake -f sldvdemo_cruise_control.mk all) else (nmake -f sldvdemo_cruise_control.mk buildobj)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"sldvdemo_cruise_control.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented\sldvdemo_cruise_control.c"
sldvdemo_cruise_control.c
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>exit /B 0
Successful completion of build procedure for: sldvdemo_cruise_control
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\coderassumptions\lib\sldvdemo_cruise_control_ca.mk' ...
Building 'sldvdemo_cruise_control_ca': nmake -f sldvdemo_cruise_control_ca.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\coderassumptions\lib>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\coderassumptions\lib>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\coderassumptions\lib>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\coderassumptions\lib>if "all" == "" (nmake -f sldvdemo_cruise_control_ca.mk all) else (nmake -f sldvdemo_cruise_control_ca.mk all)

 Code Coverage Test Generation

7-113

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DINTEGER_CODE=0 -DCA_CHECK_FLOATING_POINT_ENABLED=1 -DCA_CHECK_LONG_LONG_ENABLED=0 -DCA_CHECK_DYNAMIC_MEMORY=0 -DCA_CHECK_DAZ_ENABLED=1 @sldvdemo_cruise_control_ca_comp.rsp -Fo"coder_assumptions_hwimpl.obj" "B:\matlab\toolbox\rtw\targets\pil\c\coder_assumptions_hwimpl.c"
coder_assumptions_hwimpl.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DINTEGER_CODE=0 -DCA_CHECK_FLOATING_POINT_ENABLED=1 -DCA_CHECK_LONG_LONG_ENABLED=0 -DCA_CHECK_DYNAMIC_MEMORY=0 -DCA_CHECK_DAZ_ENABLED=1 @sldvdemo_cruise_control_ca_comp.rsp -Fo"coder_assumptions_flt.obj" "B:\matlab\toolbox\rtw\targets\pil\c\coder_assumptions_flt.c"
coder_assumptions_flt.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DINTEGER_CODE=0 -DCA_CHECK_FLOATING_POINT_ENABLED=1 -DCA_CHECK_LONG_LONG_ENABLED=0 -DCA_CHECK_DYNAMIC_MEMORY=0 -DCA_CHECK_DAZ_ENABLED=1 @sldvdemo_cruise_control_ca_comp.rsp -Fo"sldvdemo_cruise_control_ca.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\coderassumptions\sldvdemo_cruise_control_ca.c"
sldvdemo_cruise_control_ca.c
Creating static library ".\sldvdemo_cruise_control_ca.lib" ...
 lib /nologo -out:.\sldvdemo_cruise_control_ca.lib @sldvdemo_cruise_control_ca.rsp
Created: .\sldvdemo_cruise_control_ca.lib
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\coderassumptions\lib>exit /B 0
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil\sldvdemo_cruise_control.mk' ...
Building 'sldvdemo_cruise_control': nmake -f sldvdemo_cruise_control.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil>if "all" == "" (nmake -f sldvdemo_cruise_control.mk all) else (nmake -f sldvdemo_cruise_control.mk all)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"xil_interface_lib.obj" "B:\matlab\toolbox\rtw\targets\pil\c\xil_interface_lib.c"
xil_interface_lib.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"xil_data_stream.obj" "B:\matlab\toolbox\rtw\targets\pil\c\xil_data_stream.c"
xil_data_stream.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"xil_services.obj" "B:\matlab\toolbox\rtw\targets\pil\c\xil_services.c"
xil_services.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"xil_interface.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil\xil_interface.c"
xil_interface.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"xilcomms_rtiostream.obj" "B:\matlab\toolbox\rtw\targets\pil\c\xilcomms_rtiostream.c"
xilcomms_rtiostream.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"xil_rtiostream.obj" "B:\matlab\toolbox\rtw\targets\pil\c\xil_rtiostream.c"
xil_rtiostream.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"rtiostream_utils.obj" "B:\matlab\toolbox\coder\rtiostream\src\utils\rtiostream_utils.c"
rtiostream_utils.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"coder_assumptions_app.obj" "B:\matlab\toolbox\rtw\targets\pil\c\coder_assumptions_app.c"
coder_assumptions_app.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"coder_assumptions_data_stream.obj" "B:\matlab\toolbox\rtw\targets\pil\c\coder_assumptions_data_stream.c"
coder_assumptions_data_stream.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"coder_assumptions_rtiostream.obj" "B:\matlab\toolbox\rtw\targets\pil\c\coder_assumptions_rtiostream.c"
coder_assumptions_rtiostream.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"sil_main.obj" "B:\matlab\toolbox\rtw\targets\pil\c\sil_main.c"
sil_main.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"target_io.obj" "B:\matlab\toolbox\rtw\targets\pil\c\target_io.c"
target_io.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"rtiostream_tcpip.obj" "B:\matlab\toolbox\coder\rtiostream\src\rtiostreamtcpip\rtiostream_tcpip.c"
rtiostream_tcpip.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"xil_instrumentation.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil\xil_instrumentation.c"

7 Generating Test Cases

7-114

xil_instrumentation.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"codeinstr_data_stream.obj" "B:\matlab\toolbox\rtw\targets\pil\c\codeinstr_data_stream.c"
codeinstr_data_stream.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"codeinstr_rtiostream.obj" "B:\matlab\toolbox\rtw\targets\pil\c\codeinstr_rtiostream.c"
codeinstr_rtiostream.c
Creating standalone executable ".\sldvdemo_cruise_control.exe" ...
 link /RELEASE /INCREMENTAL:NO /NOLOGO kernel32.lib ws2_32.lib mswsock.lib advapi32.lib -out:.\sldvdemo_cruise_control.exe @sldvdemo_cruise_control.rsp @sldvdemo_cruise_control_ref.rsp C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\coderassumptions\lib\sldvdemo_cruise_control_ca.lib
Created: .\sldvdemo_cruise_control.exe
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil>exit /B 0
Starting SIL simulation for component: sldvdemo_cruise_control
Stopping SIL simulation for component: sldvdemo_cruise_control
Starting build procedure for: sldvdemo_cruise_control
Generating code and artifacts to 'Target environment subfolder' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control
Generated code for 'sldvdemo_cruise_control' is up to date because no structural, parameter or code replacement library changes were found.
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented\sldvdemo_cruise_control.mk' is up to date
Building 'sldvdemo_cruise_control': nmake -f sldvdemo_cruise_control.mk buildobj

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>if "buildobj" == "" (nmake -f sldvdemo_cruise_control.mk all) else (nmake -f sldvdemo_cruise_control.mk buildobj)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>exit /B 0
Successful completion of build procedure for: sldvdemo_cruise_control

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
sldvdemo_cruise_control Code compiled. Compilation artifacts were out of date.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 3.6671s
Preparing to start SIL simulation ...
Skipping makefile generation and compilation because C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil\sldvdemo_cruise_control.exe is up to date
Starting SIL simulation for component: sldvdemo_cruise_control
rtw.connectivity.HostLauncher: started executable with host process identifier 69688
rtw.connectivity.HostLauncher: stopped executable with host process identifier 69688
Stopping SIL simulation for component: sldvdemo_cruise_control
Completed code coverage analysis
Starting SIL simulation for component: sldvdemo_cruise_control
rtw.connectivity.HostLauncher: started executable with host process identifier 59908
rtw.connectivity.HostLauncher: stopped executable with host process identifier 59908

 Code Coverage Test Generation

7-115

Stopping SIL simulation for component: sldvdemo_cruise_control
Completed code coverage analysis
Starting SIL simulation for component: sldvdemo_cruise_control
rtw.connectivity.HostLauncher: started executable with host process identifier 41600
rtw.connectivity.HostLauncher: stopped executable with host process identifier 41600
Stopping SIL simulation for component: sldvdemo_cruise_control
Completed code coverage analysis
Starting SIL simulation for component: sldvdemo_cruise_control
rtw.connectivity.HostLauncher: started executable with host process identifier 50732
rtw.connectivity.HostLauncher: stopped executable with host process identifier 50732
Stopping SIL simulation for component: sldvdemo_cruise_control
Completed code coverage analysis

Note: When you run the script, the SIL test generation regenerates and recompiles the code.

7 Generating Test Cases

7-116

Verify Complete Coverage

The sldvruntest function simulates the model by using the generated test suite. The cvhtml
function produces a coverage report that indicates the final coverage of the
sldvdemo_cruise_control model.

[~, finalCov] = sldvruntest(model, files.DataFile, [], true);
cvhtml('sil_final_coverage', finalCov);
close_system(model, 0);

Starting build procedure for: sldvdemo_cruise_control
Generating code and artifacts to 'Target environment subfolder' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control
Generated code for 'sldvdemo_cruise_control' is up to date because no structural, parameter or code replacement library changes were found.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented\sldvdemo_cruise_control.mk' is up to date
Building 'sldvdemo_cruise_control': nmake -f sldvdemo_cruise_control.mk buildobj

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>if "buildobj" == "" (nmake -f sldvdemo_cruise_control.mk all) else (nmake -f sldvdemo_cruise_control.mk buildobj)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\instrumented>exit /B 0
Successful completion of build procedure for: sldvdemo_cruise_control

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
sldvdemo_cruise_control Code compiled. Compilation artifacts were out of date.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 2.7723s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil\sldvdemo_cruise_control.mk' is up to date
Building 'sldvdemo_cruise_control': nmake -f sldvdemo_cruise_control.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil>if "all" == "" (nmake -f sldvdemo_cruise_control.mk all) else (nmake -f sldvdemo_cruise_control.mk all)

 Code Coverage Test Generation

7-117

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"xil_interface.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil\xil_interface.c"
xil_interface.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DTERMFCN=1 -DONESTEPFCN=1 -DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DXIL_SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRTIOSTREAM_RX_BUFFER_BYTE_SIZE=50000 -DRTIOSTREAM_TX_BUFFER_BYTE_SIZE=50000 -DCODE_INSTRUMENTATION_ENABLED=1 -DMEM_UNIT_BYTES=1 -DMemUnit_T=uint8_T -DMODEL=sldvdemo_cruise_control -DNUMST=1 -DNCSTATES=0 -DHAVESTDIO -DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 @sldvdemo_cruise_control_comp.rsp -Fo"xil_instrumentation.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil\xil_instrumentation.c"
xil_instrumentation.c
Creating standalone executable ".\sldvdemo_cruise_control.exe" ...
 link /RELEASE /INCREMENTAL:NO /NOLOGO kernel32.lib ws2_32.lib mswsock.lib advapi32.lib -out:.\sldvdemo_cruise_control.exe @sldvdemo_cruise_control.rsp @sldvdemo_cruise_control_ref.rsp C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\coderassumptions\lib\sldvdemo_cruise_control_ca.lib
Created: .\sldvdemo_cruise_control.exe
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex15502968\IntelWin64\sldvdemo_cruise_control\sil>exit /B 0
Starting SIL simulation for component: sldvdemo_cruise_control
rtw.connectivity.HostLauncher: started executable with host process identifier 35056
rtw.connectivity.HostLauncher: stopped executable with host process identifier 35056
Stopping SIL simulation for component: sldvdemo_cruise_control
Completed code coverage analysis
Starting SIL simulation for component: sldvdemo_cruise_control
rtw.connectivity.HostLauncher: started executable with host process identifier 44648
rtw.connectivity.HostLauncher: stopped executable with host process identifier 44648
Stopping SIL simulation for component: sldvdemo_cruise_control
Completed code coverage analysis
Starting SIL simulation for component: sldvdemo_cruise_control
rtw.connectivity.HostLauncher: started executable with host process identifier 18760
rtw.connectivity.HostLauncher: stopped executable with host process identifier 18760
Stopping SIL simulation for component: sldvdemo_cruise_control
Completed code coverage analysis
Starting SIL simulation for component: sldvdemo_cruise_control
rtw.connectivity.HostLauncher: started executable with host process identifier 66788
rtw.connectivity.HostLauncher: stopped executable with host process identifier 66788
Stopping SIL simulation for component: sldvdemo_cruise_control
Completed code coverage analysis

Note: When you run the script, the SIL test generation regenerates and recompiles the code.

7 Generating Test Cases

7-118

Test Generation on Model with C Caller Block

This example shows how to use test generation on a model with a C Caller block and custom C code

Open the model containing the C Caller block and custom code
open_system('sldvexCCallerBlockExample');

Generate tests to ensure coverage of the model

Use the sldvrun function to run Simulink ® Design Verifier ™ analysis.

opts = sldvoptions;
opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'ConditionDecision';
opts.SaveHarnessModel = 'off';
opts.SaveReport = 'off';

[status, fileNames] = sldvrun('sldvexCCallerBlockExample', opts);

27-Feb-2023 10:36:01
Checking compatibility for test generation: model 'sldvexCCallerBlockExample'
Compiling model...done
Building model representation...done

27-Feb-2023 10:36:27

'sldvexCCallerBlockExample' is compatible for test generation with Simulink Design Verifier.

Generating tests using model representation from 27-Feb-2023 10:36:27...

..........

 Test Generation on Model with C Caller Block

7-119

27-Feb-2023 10:36:44

Completed normally.

Generating output files:

27-Feb-2023 10:36:46
Results generation completed.

 Data file:
 /home/lucyzeng/Documents/MATLAB/ExampleManager/lucyzeng.BR2023ad.j2194193.1/sldv-ex07804984/sldv_output/sldvexCCallerBlockExample/sldvexCCallerBlockExample_sldvdata.mat

Verify the coverage

Use the sldvruntest function to verify that the test suite achieves complete model coverage.

[~, finalCov] = sldvruntest('sldvexCCallerBlockExample', fileNames.DataFile, [], true);
cvhtml('Final Coverage', finalCov);

Clean Up

To complete the example, close all models.

close_system('sldvexCCallerBlockExample', 0);

7 Generating Test Cases

7-120

Debug Enhanced Modified Condition Decision Coverage Using
Model Slicer

This example shows how to find the Simulink® Design Verifier™ generated objectives related to a
specific model object using Model Slicer. Once the objectives are identified, Model Slicer highlights
the slice at the step when the objective is observable.

This example uses the following products to demonstrate debugging enhanced Modified Condition
Decision Coverage (MCDC):

• Simulink Design Verifier
• Model Slicer

Enhanced MCDC analyzes the detectability of each objective in the model and generates non-masking
test cases for each objective. It coordinates the effect of downstream blocks to avoid masking effects.
It also calculates detection sites for each detectable objective where the effect of the objective can be
observed. This data is available in the sldvdemo_cruise_control_sldvdata.mat file generated
by the analysis. These detection sites can be added to the equivalence criteria of back-to-back testing.

This example uses the following slicer configuration:

• Starting point is set as the model object to be observed.
• Exclusion point is set as the detection point relevant to the objective generated by Simulink

Design Verifier.
• Signal propagation is set to downstream (forward slice).

Step 1: Prepare the Model

1. Open the model.

model = 'sldvdemo_cruise_control';
open_system(model);

2. Load the data file generated by Simulink Design Verifier (sldvData) for test generation using
Enhanced MCDC.

load('sldvdemo_cruise_control_sldvdata.mat');

3. Choose the model object for which the objective must be highlighted and find its SID.

modelObjIdentifier = 'sldvdemo_cruise_control/Controller/Switch3';
modelobjSID = Simulink.ID.getSID(modelObjIdentifier);

Step 2: Setting Up Model Slicer

1. Enable FastRestart for the model.

set_param(model,'FastRestart','on');

Enabling FastRestart will simulate the model and collect the simulation data at various time stamps.
This will allow us to use Step Back and Step Forward options.

2. Create and activate Model Slicer object.

 Debug Enhanced Modified Condition Decision Coverage Using Model Slicer

7-121

https://www.mathworks.com/help/slcheck/functional-dependency-isolation.html

slicerObject = slslicer(model);
activate(slicerObject);

3. Set the signal propogation to downstream.

slicerObject.Configuration.SignalPropagation = 'downstream';

Step 3: Find Objectives Related to the Model Object

1. Access sldvData with an object of SldvDataExplorer class.

sldvObj = SldvDataExplorer(sldvData);

Note: The class SldvDataExplorer is a helper class. You can edit it as per your requirements.

2. Find all objectives related to the model object and the details of the objectives.

[objectives, tableOfObjectives] = sldvObj.getObjectivesForModelObj(modelobjSID);
disp(tableOfObjectives);

 ObjectiveNum Type Description Detectability Status TestCaseId
 ____________ __________ ___ _____________ ___________ __________

 1 "Decision" "logical trigger input false (output is from 3rd input port)" "Detectable" "Satisfied" 1
 2 "Decision" "logical trigger input true (output is from 1st input port)" "Detectable" "Satisfied" 1

The follwing details of the objectives are saved in tableOfObjectives table:

• ObjectiveNum - Objective number.
• Type - MCDC/Decision/Condition.
• Description - Description of the objective as generated by Simulink Design Verifier.
• Detectability - The detectability status of an objective.
• Status - The status of an objective.
• TestCaseId - Integer that represents the index of a test case or counterexample that addresses an

objective.

Step 4: Highlighting the Objectives

For this example, we will highlight the first objective from the table.

1. Obtain the simulation input object with the input values set according to the test case that
corresponds to the objective.

[simIn, atStep, ~] = sldvObj.getSimInObjForObjective(objectives(1));

2. Allow rollback in the model so it is possible to step backwards in the model and set the number of
simulation rollback steps to 1.

simIn = simIn.setModelParameter('EnableRollBack','on');
simIn = simIn.setModelParameter('NumberOfSteps', 1);

3. Apply Simulink input object to model.

slicerObject.applySimInToModel(simIn);

4. Find all the detection sites for the selected objective.

7 Generating Test Cases

7-122

objectDetectionSites = sldvObj.getObjectDetectionSites(objectives(1));

5. Add all detection sites as exclusion points.

for n = 1:length(objectDetectionSites)
 detectionSite = objectDetectionSites(n).modelObj;
 slicerObject.addExclusionPoint(detectionSite);
end

6. Add the model object as an starting point.

slicerObject.addStartingPoint(modelobjSID);

7. Step to the point in the testcase where the objective is observable.

for q = 1:atStep
 slicerObject.stepForward();
end

Now you can observe that the slice is highlighted.

Cleanup

Perform the following actions to cleanup the model:

1. Clear the slicer object.

2. Clear the Simulink input object.

clear slicerObject simIn

3. Reset the FastRestart parameter of the model.

set_param(model,'FastRestart','off');

See Also

• “Use Model Coverage Objectives for Enhanced MCDC Coverage” on page 7-42

 Debug Enhanced Modified Condition Decision Coverage Using Model Slicer

7-123

Test Generation for Custom Code in a Stateflow Chart

This example shows how to use test generation on a model with custom code in a Stateflow® chart.

Open the Model Containing Custom Code in a Stateflow Chart

open_system('sldvexSFCustomCodeExample');

Generate Tests to Ensure Coverage of the Model

Use the sldvrun function to run the Simulink® Design Verifier™ analysis.

opts = sldvoptions;
opts.Mode = 'TestGeneration';
opts.ModelCoverageObjectives = 'ConditionDecision';
opts.SaveHarnessModel = 'off';
opts.SaveReport = 'off';

[status, fileNames] = sldvrun('sldvexSFCustomCodeExample', opts);

27-Feb-2023 10:49:57
Checking compatibility for test generation: model 'sldvexSFCustomCodeExample'
Compiling model...done
Building model representation...done

27-Feb-2023 10:50:13

'sldvexSFCustomCodeExample' is compatible for test generation with Simulink Design Verifier.

Generating tests using model representation from 27-Feb-2023 10:50:13...

..........

7 Generating Test Cases

7-124

27-Feb-2023 10:50:29

Completed normally.

Generating output files:

27-Feb-2023 10:50:30
Results generation completed.

 Data file:
 /home/lucyzeng/Documents/MATLAB/ExampleManager/lucyzeng.BR2023ad.j2194193.1/sldv-ex18712703/sldv_output/sldvexSFCustomCodeExample/sldvexSFCustomCodeExample_sldvdata.mat

Verify the Coverage

Use the sldvruntest function to verify that the test suite achieves complete model coverage.

[~, finalCov] = sldvruntest('sldvexSFCustomCodeExample', fileNames.DataFile, [], true);
cvhtml('Final Coverage', finalCov);

Clean Up

To complete the example, close all models.

close_system('sldvexSFCustomCodeExample', 0);

 Test Generation for Custom Code in a Stateflow Chart

7-125

Generate Test Cases for Model Blocks

This example shows how to generate a test case for Model block that models a power window
controller in Simulink® Design Verifier™.

Step 1: Open the Model

The top-level model represents a power window verification system. The model contains a model
reference that represents a power window controller model and that specifies the controller behavior
and the modeled requirements.

To open the model of the top-level verification system, enter:

open_system('sldvdemo_powerwindow_vs');

7 Generating Test Cases

7-126

The model reference points to the model sldvdemo_powerwindowController, which responds to
the driver and passenger commands by giving the commands for moving the window up or down. The
model also responds if the window encounters an obstacle or if it reaches the end of the window
frame in either direction.

 Generate Test Cases for Model Blocks

7-127

Step 2: Specify Analysis Options

Specify the analysis options for test case generation:

1. On the Design Verifier tab, change the mode to Test Generation.

2. Click Test Generation Settings.

3. From Test Generation pane in the Configuration Parameters dialog box, set Model coverage
objectives to MCDC.

4. Click OK.

Step 3: Perform Analysis and Review Results

Perform test case generation on the Model block:

1. Right-click the Model block and select Design Verifier > Generate Tests for Referenced
Model. Alternatively, in the Design Verifier pane, in the Analyze section, click the unpin button,
then select the Model block. Then click Generate Tests.

2. Simulink Design Verifier generates test cases for the Model block. The Results window shows that
the test generation completed normally.

7 Generating Test Cases

7-128

3. To access the deatiled analysis report, click HTML in the Results window. The analysis report
shows that 170 objectives are satisfied and eight objectives are unsatifiable out of the 178 objectives
processed.

Step 4: Clean Up

To complete the example, close the opened model.

close_system('sldvdemo_powerwindow_vs',0);

Related Topics

• “What Is Test Case Generation?” on page 7-3

 Generate Test Cases for Model Blocks

7-129

Use Observer Reference Block for Test Case Generation

This example shows how to generate test cases for two custom Test Objective blocks using Observer
Reference block and use model representation to reanalyze the design model. For more information,
see “Isolate Verification Logic with Observers” on page 12-29. To reanalyze the model, you update
the verification logic and set the Rebuild model representation option to If change is
detected. For more information, see “Model Representation for Analysis” on page 2-28.

Step 1: Open the Model and Replace Verification Subsystem

In the Test Objective block, the block "True" forces the output signal to be 2. The block "Edge" inside
"Masked Objective" specifies that the output signal transitions from 2 to 1. To open the model, enter:

open_system('sldvdemo_debounce_testobjblks');

To replace the Verification Subsystem Masked Objective in the model by the Observer Reference
block, follow these steps:

(a) Right-click on the Masked Objective in the sldvdemo_debounce_testobjblks model. In the
context menu, click Observers > Move selected block to Observer > New Observer.

(b) Click Yes on move 'Verify Output' to Observer dialog box that appears after step (a).

(c) An Observer Reference block is added to your system model, and an Observer model
sldvdemo_debounce_testobjblks_Observer1 is created and opened.

7 Generating Test Cases

7-130

(d) Save the file sldvdemo_debounce_validprop_Observer1 in a writable folder on the MATLAB
path.

(e) Double-click on the Observer port to open the Manage Observer configuration window. The signal
Switch 1 is automatically mapped to the Observer Port block in the
sldvdemo_debounce_testobjblks_Observer1.

(f) Select the input signal to the Masked Objective subsystem in the
sldvdemo_debounce_testobjblks and click on Test Point in the Signal pane to make sure that
Simulink Design Verifier successfully build the model representation for analysis.

Step 2: Perform Test Generation Analysis

To perform the test generation analysis, follow these steps:

On the Design Verifier tab, click Generate Test.

After the analysis completes, the Results Summary window displays that both objectives are satisfied
with the test case.

 Use Observer Reference Block for Test Case Generation

7-131

To view the detailed analysis report, in the Results Summary window, click HTML. In the report, the
Test Objectives Status chapter lists the status of the objectives for Design Model and Observers
Model(s) in separate subsections.

Step 3: Modify Observer model and reanalyze without rebuilding design model
representation

To generate the test case for the functional requirement, the debounced signal transitions from 1 to
2 without rebuilding the model representation for design model. To enable the reuse of design model
representation, follow these steps:

(a) On the Design Verifier tab, click Test Generation Settings > Settings.

(b) In the Configurations Parameters dialog box, on the Design Verifier pane, in Advanced
parameters, set the Rebuild model representation option to If change is detected and Click
OK.

(c) To update the model parameters, follow these steps:

1. In the sldvdemo_debounce_testobjblks_Observer1 window, double-click to open the
Masked Objective subsystem and change the value of constant In1 from 1 to 2 and relational
operator from > to <.

2. Save the changes in a writable MATLAB path.

7 Generating Test Cases

7-132

(d) Perform Test Case Generation Analysis and Review Results. On the Design Verifier tab, click
Generate Tests. The software validates the cached design model representation, detects no change
in design model and reuses the representation for analysis.

After the analysis completes, the Results Summary window display that only one test objective is
satisfied.

To view the detailed analysis report, in the Results Summary window, click HTML.

 Use Observer Reference Block for Test Case Generation

7-133

Note: If you create a new model, by default, the Rebuild model representation option is set to If
change is detected. The software validates the cache model representation, detects no change,
and reuses the model representation for analysis.

Related Topics

• “Access Model Data Wirelessly by Using Observers” (Simulink Test).
• Verification Subsystem.

7 Generating Test Cases

7-134

Inspect Test Generation Objectives by Using Model Slicer

This example shows how to use Model Slicer to inspect test generation objectives in a Simulink
model. The Simulink® Design Verifier™ analysis generates test cases and propagates the test cases
to a Model block. You can see or inspect the values in the Model block at the time step at which the
objective is observable and highlight the path and values using Model Slicer.

Prepare the Model

Open the model.

model = 'sldvdemo_cruise_control';
open_system(model);

Generate Test Objectives

1. Open Simulink Design Verifier by clicking on Apps > Design Verifier.

2. In the Design Verifier tab, click Generate Tests. Simulink Design Verifier analyzes the model and
displays the results in Simulink Design Verifier Results Summary window.

3. In the model, the analysis highlights the Controller subsystem where the objectives are located.

 Inspect Test Generation Objectives by Using Model Slicer

7-135

4. Open the Controller subsystem and click the PI Controller subsystem. Alternatively, you can
select any of the blocks highlighted in green color. The objectives appear in the Results window.

Inspect Test Objectives using Model Slicer

1. In the Results window, click Inspect to launch Model Slicer and analyze the objective.
Alternatively, in the Design Verifier tab, in Review Results section, click Review Results > Inspect
Using Slicer.

As part of the model setup, Model Slicer:

7 Generating Test Cases

7-136

• Uses the selected block as a starting point
• Highlights the slice that represents the objective
• Simulates the model and pauses it at the time of observation

You can analyze the model by inspecting the port labels or observe the values of the test case
propagated to the objective block and the path it takes.

Note that when you set the model coverage objective to enhanced MCDC, you can also inspect the
objective detectability. In this case, the Model Slicer configuration allows you to switch to different
modes by using the Slice Configuration list. For more information, see “Inspect Enhanced MCDC
Objectives using Model Slicer” on page 7-50.

Related Links

• “Basic Workflow for Enhanced MCDC Analysis” on page 7-47

 Inspect Test Generation Objectives by Using Model Slicer

7-137

Generate Tests for Model Block Component by Using Default
Simulation

This example shows how to use Simulink® Design Verifier™ to generate test cases for a Model block
by using a default top model simulation.

This example contains Model block that acts as a controller. The top model is configured for plant-in-
loop simulation. You can generate test cases for a controller by using the top model simulation.

Set Up the Default Plant-in-Loop Controller Simulation

The model contains a power window controller and a low-order plant model. sldvexPowerWindow/
power_window_control_system/control is a Model block that references the model
sldvexPowerWindowController, which implements the controller with a Stateflow® chart.

open_system('sldvexPowerWindow');

This model contains a Signal Editor block at the top level. The simulation is set up as a plant-in-loop
controller simulation.

7 Generating Test Cases

7-138

Simulate the Top Model and Generate Test Cases for the Controller

1. In the Apps pane, open Design Verifier.

2. In the Analyze section, click the Remember Selection icon to unpin the current selection.

3. Select the Model block sldvexPowerWindow/power_window_control_system/control.

4. In the Design Verifier tab, expand Generate Test and click Simulate Top Model And Generate
Tests.

 Generate Tests for Model Block Component by Using Default Simulation

7-139

View Test Generation Results

Design Verifier runs the default simulation to log inputs for the Model block sldvexPowerWindow/
power_window_control_system/control. Then Design Verifier runs a test extension on logged
inputs to generate additional test cases for the controller.

7 Generating Test Cases

7-140

Clean Up

Close the model.

close_system('sldvexPowerWindow');

 Generate Tests for Model Block Component by Using Default Simulation

7-141

Add Test Cases Using Excel File

This example shows how to create test cases incrementally by using Simulink® Design Verifier™
supported Excel® file.

Simulink® Design Verifier™ generates test cases to satisfy testing criteria, such as model objectives.
Owing to support limitations and model complexity, occasionally it can generate test cases that do not
cover all model objectives. Use this example to understand how to:

• Create test cases in Excel file format.
• Write a new test case manually in an Excel file.
• Create additional test cases by using test extension with Excel file.

Generate Test Cases by Using Design Verifier

Open the model and create test cases.

model = 'sldvexSpreadsheetTopoff';
open_system(model);
[~, files] = sldvrun(model);

Checking compatibility for test generation: model 'sldvexSpreadsheetTopoff'
Compiling model...done
Building model representation...done

'sldvexSpreadsheetTopoff' is partially compatible for test generation with Simulink Design Verifier.

The model can be analyzed by Simulink Design Verifier.
It contains unsupported elements that will be stubbed out during analysis. The results of the analysis might be incomplete.
See the Diagnostic Viewer for more details on the unsupported elements.

Generating tests using model representation from 22-Jul-2022 20:02:02...

Generating output files:

Results generation completed.

 Data file:
 C:\Users\pdasbasu\OneDrive - MathWorks\Documents\MATLAB\ExampleManager\pdasbasu.BR2022bd.j2010237\sldv-ex79932255\sldv_output\sldvexSpreadsheetTopoff\sldvexSpreadsheetTopoff_sldvdata6.mat

Save Design Verifier Test Cases to Excel File

Simulink Design Verifier creates test cases in the MAT-file format by default. Save the test cases
generated in the previous section in an Excel file by using any of these methods:

• Click Save to spreadsheet button in Results.
• Click Save to spreadsheet link in the results window, or results inspector.
• Use sldvgenspreadsheet function.

For this example, use the sldvgenspreadsheet function to save the test cases.

excelFilePath = sldvgenspreadsheet(model, files.DataFile);

Note: Importing or exporting to an Excel file is not supported for an array of bus signals. For more
information, see Microsoft Excel Import, Export, and Logging Format.

7 Generating Test Cases

7-142

https://www.mathworks.com/help/simulink/ug/simulation-data-inspector-import-file-format.html

Identify Missing Coverage Objectives

Simulate the model by using all test cases from the Excel file and create a coverage report.
sldvruntest supports test cases from a spreadsheet as simulation input.

runOpts = sldvruntestopts;
runOpts.coverageEnabled = true; % Enable coverage
[~, initialCov] = sldvruntest(model, excelFilePath, runOpts); % Use test cases from Excel file for simulation
cvhtml('Initial coverage', initialCov);

Observe that the value of Switch block logical trigger input is never false in the coverage
report.

Write Test Case to Satisfy Coverage Objective

Determine the cause of missing the coverage objective. In this example, the model contains
unsupported block Sqrt, which limits Simulink Design Verifier analysis.

To make the value of trigger input of Switch block false, observe that the value of inport In3 should
be greater than 100. Add a new sheet in the Excel file with the test case.

 Add Test Cases Using Excel File

7-143

Verify whether the new test case satisfies the required coverage objective.

excelFilePath = 'WithNewTestCase.xlsx';
runOpts = sldvruntestopts;
runOpts.testIdx = 2; % Simulate only the newly added test case
runOpts.coverageEnabled = true;
[~, newTestCov] = sldvruntest(model, excelFilePath, runOpts);
cvhtml('New test coverage', newTestCov);

Run Test Extension by Using Excel file

Simulink Design Verifier test extension workflow generates new test cases by extending the existing
test cases. This helps to satisfy additional coverage objectives by extending your new test case.

opts = sldvoptions(model);
opts.ExistingTestFile = excelFilePath; % Use Excel file with new test cases as input for test extension
opts.ExtendExistingTests = 'on'; % Enable test extension
[~, files] = sldvrun(model, opts);

Checking compatibility for test generation: model 'sldvexSpreadsheetTopoff'
Compiling model...done
Building model representation...done

'sldvexSpreadsheetTopoff' is partially compatible for test generation with Simulink Design Verifier.

The model can be analyzed by Simulink Design Verifier.
It contains unsupported elements that will be stubbed out during analysis. The results of the analysis might be incomplete.
See the Diagnostic Viewer for more details on the unsupported elements.

Loading initial test data...done

Generating tests using model representation from 22-Jul-2022 20:02:34...

Generating output files:

Results generation completed.

 Data file:
 C:\Users\pdasbasu\OneDrive - MathWorks\Documents\MATLAB\ExampleManager\pdasbasu.BR2022bd.j2010237\sldv-ex79932255\sldv_output\sldvexSpreadsheetTopoff\sldvexSpreadsheetTopoff_sldvdata7.mat

Verify Complete Coverage

Simulate the model using the new test cases and verify that you now have complete coverage.

runOpts = sldvruntestopts;
runOpts.coverageEnabled = true; % Enable coverage
[~, finalCov] = sldvruntest(model, files.DataFile, runOpts);
cvhtml('Final coverage', finalCov);
close_system(model, 0);

7 Generating Test Cases

7-144

If the new test cases still yield partial coverage, you can write a new test case in an Excel file and
then run test extension workflow till complete coverage is achieved.

 Add Test Cases Using Excel File

7-145

Achieve Missing Coverage in Custom Code

This example shows you how to test for missing coverage in custom code. You can use these steps to
also test for missing coverage in external C code. If you simulate a model with custom code through C
Caller block, C Caller Library, or coder.ceval function, then coverage of the custom code is reported.
If the code does not achieve full coverage, you can use Simulink® Design Verifier™ to generate test
cases that achieve full coverage. You can then use Simulink® Test Manager™ to perform unit testing
by generating test cases only for the custom code.

1. Open the test file.

testFile = 'dTest_TopOffCoverage_mFuncWithPointers.mldatx';
sltest.testmanager.load(testFile);
sltest.testmanager.view;

2. Simulate the test file and observe the coverage value in the Aggregated Coverage Results window.

3. As the coverage of the custom code is not 100%, click Add Tests for Missing Coverage.

4. Simulink Design Verifier generates additional test cases. The custom code file,
hFuncWithPointers.c contains two functions: getValue and getValuePointer.

Function 1: The function getValue has vector and scalar inputs. The dimensions are specified for the
vector inputs.

The inputs of the harness constructed from this code contain the proper dimensions of the signals.
Therefore, Simulink Design Verifier may not be able to generate correct test cases for the code.

The harness generated for this code is as shown:

7 Generating Test Cases

7-146

The analysis result is as shown here:

Function 2: The function getValuePointer also has vector and scalar inputs. The dimensions are not
specified for the vector inputs.

The inputs of the harness constructed from this code contain the dimensions of the signals to be
inherited. Simulink Design Verifier cannot generate correct test cases for the code.

5. Add new test cases for the function getValue as shown:

 Achieve Missing Coverage in Custom Code

7-147

From the warning message, you will get a list of functions for which Simulink Design Verifier is not
invoked, and the list of corresponding harness names which you need to update manually, to achieve
additional coverage. In this example, for the function getValuePointer no additional test case is
generated, and hFuncWithPointers_Lib_getValuePointer_harnessTopOff.slx is the corresponding
harness that you need to update.

6. To manually add additional test cases for the function, getValuePointer, update the port
specification of the C Caller block getValuePointer of the generated library model
hFuncWithPointers_Lib. Open the block parameter of the C Caller block getValuePointer, and
update the required port dimension and save the model.

7. Add a new test suite for the updated harness, in the existing test file.

8. Simulate the test suite and generate additional test cases by using Add Tests for Missing
Coverage. You have now generated test cases for missing coverage in custom code.

7 Generating Test Cases

7-148

Achieve Missing Coverage in Generated Code of RLS

This example shows you how to use use Simulink® Design Verifier™ to generate test cases that
achieve full coverage. If you simulate a harness of a reusable library susbsystem (RLS) in the
software-in-the-loop (SIL) simulation mode, then coverage of the generated code of the RLS is
reported. Using Simulink® Test Manager™, you can easily achieve full coverage by using the
following steps:

Generate the top-model code before invoking simulation on the harness of the RLS. Before generating
the code, you need to set up the code generation target environment. For more information on how to
set up the code generation environment, see “Generate Test Cases for RLS in Software-in-the-Loop
Mode” on page 7-21. After code generation, open the test file.

1. Open the test file.

orig = Simulink.fileGenControl('get','CodeGenFolderStructure');
Simulink.fileGenControl('set','CodeGenFolderStructure', Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder) ;
load_system('mRLS');
slbuild('mRLS');

testFile = 'dTest_TopOffCoverage_Controller.mldatx';
sltest.testmanager.load(testFile);
sltest.testmanager.view;

Starting build procedure for: Controller_CodeSpecification1
Generating code and artifacts to 'Target environment subfolder' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex58892879\IntelWin64\Controller_CodeSpecification1
Invoking Target Language Compiler on Controller_CodeSpecification1.rtw
Using System Target File: B:\matlab\rtw\c\ert\ert.tlc
Loading TLC function libraries
.......
Initial pass through model to cache user defined code
.
Caching model source code
..
Writing header file Controller_Lp0dbbft.c
Writing header file Controller_CodeSpecification1_types.h
Writing header file Controller_CodeSpecification1.h
Writing header file rtwtypes.h
.
Writing header file Controller_Lp0dbbft.h
Writing source file Controller_CodeSpecification1.c
Writing header file Controller_CodeSpecification1_private.h
Writing source file ert_main.c
TLC code generation complete (took 5.586s).
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex58892879\IntelWin64_shared\rtwshared.mk' ...
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex58892879\IntelWin64\Controller_CodeSpecification1\Controller_CodeSpecification1.mk' ...
Successful completion of code generation for: Controller_CodeSpecification1

The following files will be copied from IntelWin64_shared to C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex58892879\IntelWin64\mRLS\R2023a:

 Controller_Lp0dbbft.c
 Controller_Lp0dbbft.h

 Achieve Missing Coverage in Generated Code of RLS

7-149

 shared_file.dmr

Files copied from IntelWin64_shared to C:\TEMP\Bdoc23a_2213998_3568\ib570499\28\tp27a1e6fc\sldv-ex58892879\IntelWin64\mRLS\R2023a.

2. Simulate the test file and observe the coverage value.

3. Click Add Tests for Missing Coverages as coverage of the generated code for the RLS is not 100%.

This workflow invokes Simulink® Design Verifier™ to generate additional testcases.

7 Generating Test Cases

7-150

New test cases are added to the test file.

4. Simulate the overall test file and check if you now have full coverage for the generated code for the
RLS.

 Achieve Missing Coverage in Generated Code of RLS

7-151

Extending Existing Test Cases

• “When to Extend Existing Test Cases” on page 8-2
• “Extend Test Cases for Model with Temporal Logic” on page 8-4
• “Extend Test Cases for Closed-Loop System” on page 8-10
• “Extend Test Cases for Modified Model” on page 8-15
• “Create and Run Back-to-Back Tests Using Enhanced MCDC” on page 8-18

8

When to Extend Existing Test Cases

In this section...
“Common Workflow for Extending Existing Test Cases” on page 8-2
“Considerations for Starting Test Cases” on page 8-3

The Simulink Design Verifier software can analyze your model using previously generated test cases
that you specify. You can use this feature in the following situations:

• You encounter delays trying to analyze your model, or you see incomplete results. This can happen
if your model has any of the following characteristics:

• Temporal logic
• Large counters
• Model objects that are difficult to test due to complex or nonlinear logic

Analyzing the model and considering the existing test cases allows you to focus the analysis on
those parts of the model that are difficult to analyze. You can combine the generated test cases to
create a complete test suite for the full model.

For an example of extending existing test cases for a model that uses temporal logic, see “Extend
Test Cases for Model with Temporal Logic” on page 8-4.

• You have a closed-loop simulation model that uses a Model block to include the controller. First,
log the data from the Model block and then analyze the model referenced by the Model block.
Using this technique, the test cases for the controller can realistically reflect the continuous time
behavior expected in the closed-loop system.

For an example of extending existing test cases for a closed-loop system, see “Extend Test Cases
for Closed-Loop System” on page 8-10.

• You change an existing model for which you have already generated test cases. In this situation,
you can reanalyze the model, omitting the analysis results from the original version of the model.
The combined test cases give you a complete test suite for the new model.

For an example of extending existing test cases for modified models, see “Extend Test Cases for
Modified Model” on page 8-15.

• You apply parameter configurations or update the parameter constraint values of an existing
model for which you have generated test cases. In this situation, you can reanalyze the model by
reusing the previously generated test cases and extend them to achieve full model coverage. For
an example of extending existing test cases when you modify parameter configurations, see
“Extend Existing Test Cases After Applying Parameter Configurations” on page 5-46.

Common Workflow for Extending Existing Test Cases

Use the following workflow for extending existing test cases during a test-generation analysis:

• Create the starting test cases.
• Log the starting test cases.

8 Extending Existing Test Cases

8-2

• Extend the existing test cases during test-generation analysis.
• Verify that you have created a complete test suite.

The examples in this category use some or all of these tasks when extending existing test cases
during analysis.

Considerations for Starting Test Cases

If the existing test cases are inconsistent with the model, Simulink Design Verifier ignores the test
cases during test case extension. For example, if you update the constraint values of parameters and
the existing test case violates the specified constraint values, the test case will be ignored.

See Also

More About
• “Extend Test Cases for Model with Temporal Logic” on page 8-4
• “Extend Test Cases for Closed-Loop System” on page 8-10
• “Extend Test Cases for Modified Model” on page 8-15

 When to Extend Existing Test Cases

8-3

Extend Test Cases for Model with Temporal Logic
In this section...
“Create Starting Test Case” on page 8-4
“Log Starting Test Case” on page 8-6
“Extend Existing Test Cases” on page 8-7
“Verify Analysis Results” on page 8-8

Create Starting Test Case
This example uses the sldvdemo_sbr_extend_design model. This model includes a Stateflow
chart SBR that uses temporal logic. The transition from the KEY_OFF state to the KEY_ON state occurs
after the Stateflow chart has been simulated 500 times. To test this transition requires a test case
with 500 time steps.

In this example, you create a test case that forces the transition to KEY_ON by setting the KEY input
to 1 for the duration of the test case. You simulate the model using this test case, satisfying the
objectives for the KEY_OFF/KEY_ON transition. Then you analyze the model, ignoring the objectives
already satisfied by the test case you create.

1 Open the example model:

sldvdemo_sbr_extend_design
2 Open the SBR Stateflow chart to see the KEY_OFF/KEY_ON transition.

3 Create a model reference harness model:
[~, harnessModelFilePath] = ...
 sldvmakeharness('sldvdemo_sbr_extend_design',[],[],true);

The harness model, sldvdemo_sbr_extend_design_harness, includes:

• A Model block named Test Unit that references the original model,
sldvdemo_sbr_extend_design.

• A Signal Builder block named Inputs that contains the test-case inputs to the model
referenced in the Model block.

8 Extending Existing Test Cases

8-4

matlab:sldvdemo_sbr_extend_design

Initially, the Signal Builder block contains only the default test case, with all three inputs set
to 0.

• A DocBlock block named Test Case Explanation that documents the test case.

Initially, the Test Case Explanation block does not have any content for the default test case.
4 sldvmakeharness returns the path to the harness model file in harnessModelFilePath.

Extract the name of the harness model file into harnessModel, for later use:

[~, harnessModel] = fileparts(harnessModelFilePath);

In order to analyze the KEY_OFF to KEY_ON state transition, create a test case that makes the
transition to the KEY_ON state in 500 time steps:

1 Open the Signal Builder dialog box for the harness model.
2 Select Axes > Change Time Range.
3 The Signal Builder's time range determines the span of time over which its output is explicitly

defined. In the Set the total time range dialog box, set the Max time field to 5 seconds, creating
500 time steps of 0.01 seconds duration each.

4 Set the KEY input to 1 for the duration of this starting test case, forcing the transition to the
KEY_ON state. Selecting the Inputs.KEY signal requires two clicks. First, click the signal so that
dots appear at both ends of the signal.

5 Click the Inputs.KEY signal again. The Signal Builder thickens the signal to indicate that it is
selected.

 Extend Test Cases for Model with Temporal Logic

8-5

6 At the bottom of the Signal Builder dialog box, under Left Point, enter 1 for Y.
7 Press Enter to apply the change.

The Inputs.KEY signal is set to 1 for the duration of the test case.

8 Close the Signal Builder dialog box.

Log Starting Test Case
The next step is to log the starting test case that you created. You can then specify that Simulink
Design Verifier ignore the objectives satisfied by that test case when performing an analysis.

The sldvlogsignals function records the test case data in a MAT-file that contains an sldvData
structure. This structure stores all the data that the software gathers and produces during the
analysis.

To log the starting test cases:

1 Save the name of the Model block in the harness model that references the
sldvdemo_sbr_extend_design model:

[~, modelBlock] = find_mdlrefs(harnessModel, false);
2 Simulate the model referenced by the Model block using the new test case, and log the input

signals in the workspace variable loggeddata:

loggeddata = sldvlogsignals(modelBlock{1});
3 Save the logged data in a MAT-file named existingtestcase.mat:

save('existingtestcase.mat', 'loggeddata');

You will specify this file when you analyze the sldvdemo_sbr_extend_design model.

8 Extending Existing Test Cases

8-6

Extend Existing Test Cases
You can now analyze the sldvdemo_sbr_extend_design model and specify that the analysis
extend the test cases already satisfied. The analysis uses the existing test-case data as a starting
point, and does not try to generate test cases for the KEY_OFF to KEY_ON transition in the SBR
Stateflow chart.

Specify the starting test case and analyze the model:

1 Open the model.

open_system('sldvdemo_sbr_extend_design');
2 On the Design Verifier tab, click Test Generation Settings.
3 In the Configuration Parameters dialog box, on the Test Generation pane, under Existing test

cases, select Extend existing test cases.
4 In the Data file field, enter the name of the MAT-file that contains the logged data:

existingtestcase.mat
5 Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the software includes the starting test case in the final test suite. You
will see that the complete test suite achieves 100% model coverage.

6 To close the Configuration Parameters dialog box, click OK.
7 Save the sldvdemo_sbr_extend_design model on the MATLAB path with the name

sldvdemo_sbr_extend_design_test.
8 Click Generate Tests.

The log window first lists the objectives that the starting test case satisfied.

 Extend Test Cases for Model with Temporal Logic

8-7

The log window then lists the objectives generated beyond the starting test case.

Verify Analysis Results
To make sure that this analysis creates a complete test suite, generate the harness model so you can
simulate the model with the generated test cases:

1 On the Design Verifier tab, in the Review Results section, click Create Test Harness Model.
2 In the harness model sldvdemo_sbr_extend_design_test_harness, open the Signal Builder

block named Inputs.
3 To simulate the model using all the test cases, click the Run all and produce coverage button

.

When the simulation is complete, the model coverage report is displayed.

8 Extending Existing Test Cases

8-8

4 View the coverage information for the sldvdemo_sbr_extend_design_test model to see that
the complete test suite achieves 100% coverage.

See Also

Related Examples
• “Component-Based Modeling with Model Reference”

More About
• “When to Extend Existing Test Cases” on page 8-2
• “Extend Test Cases for Closed-Loop System” on page 8-10
• “Extend Test Cases for Modified Model” on page 8-15

 Extend Test Cases for Model with Temporal Logic

8-9

Extend Test Cases for Closed-Loop System
In this section...
“Log Starting Test Case” on page 8-10
“Extend Existing Test Cases” on page 8-12

Suppose that you have a model with a closed-loop controller in a model referenced by a Model block.
You do not record 100% coverage for the referenced model. Extending existing test cases can help
you achieve 100% coverage. The Simulink Design Verifier software adds time steps to the existing
test cases when analyzing the controller implemented by the referenced model. The test cases that
result from the analysis realistically reflect the continuous time behavior expected in the closed-loop
controller.

A closed-loop controller passes instructions to the controlled system and receives information from
the environment as the control instructions execute. The controller can adapt and change its
instructions as it receives this information.

Log Starting Test Case
This example uses the “Component-Based Modeling with Model Reference” example model
sldemo_mdlref_basic. sldemo_mdlref_basic model. The CounterA Model block references the
model sldemo_mdlref_counter. When you simulate the parent model, sldemo_mdlref_basic,
and collect coverage, you record only 75% coverage for sldemo_mdlref_counter. Log the data
from the simulation and extend those test cases to achieve 100% coverage for the referenced model.

1 Open the “Component-Based Modeling with Model Reference” example model
sldemo_mdlref_basic.

openExample('sldemo_mdlref_basic')
2 On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Coverage Analyzer.
3 On the Coverage tab, click Settings.
4 In the Coverage pane of the Configuration Parameters, select Enable coverage analysis.
5 Select Referenced Models.

Note that the analysis records coverage only for referenced models with Simulation mode set
to Normal, SIL, or PIL. In sldemo_mdlref_basic, the CounterC Model block has Simulation
mode set to Accelerator, so you cannot record coverage for it.

6 Under Coverage metrics, set the structural coverage level to Modified Condition Decision
Coverage (MCDC) to record decision, condition, and modified condition/decision coverage.

7 Click OK.
8 Click Analyze Coverage.

To open the coverage report, in the Review Results section, click Generate Report.

When the simulation completes, the generated coverage report opens in a browser window. The
report shows the following coverage results for the referenced model:

8 Extending Existing Test Cases

8-10

• Condition: 50% (2/4) condition outcomes
• Decision: 25% (1/4) decision outcomes
• MCDC: 0% (0/2) conditions reversed the outcome

The coverage results are also highlighted in the referenced model, sldemo_mdlref_counter.
You can select individual model objects to view specific coverage results in the Coverage dialog
box, as shown in the following screenshot.

9 To log the input signals for the CounterA Model block in sldemo_mdlref_basic during
simulation, at the MATLAB command prompt, enter the following code:

logged_data = sldvlogsignals('sldemo_mdlref_basic/CounterA');
10 Save the logged data in a MAT-file named existingtestcase.mat:

save('existingtestcase.mat', 'logged_data');

When you analyze the model referenced in CounterA (sldemo_mdlref_counter) to extend
existing test cases, you specify this MAT-file.

 Extend Test Cases for Closed-Loop System

8-11

Extend Existing Test Cases
Analyze the sldemo_mdfref_counter model, specifying that the analysis extend the test cases
already satisfied:

1 To open the sldemo_mdfref_counter model, in the sldemo_mdlref_basic model, double-
click the CounterA Model block.

2 On the Design Verifier tab, click Test Generation Settings.
3 In the Configuration Parameters dialog box, on the Test Generation pane, in the Model

coverage objectives box, select MCDC.
4 Under Advanced parameters, select Add tests for the missing coverage.
5 Select the Extend using existing data check box.
6 In Coverage Data field, specify the name of the MAT-file that contains the logged data, in this

case, existingtestcase.mat
7 Click OK.
8 Click Generate Tests.

The analysis first loads the objectives satisfied by the logged test cases. Then it adds extra time
steps to those test cases and tries to satisfy any missing objectives. When the analysis completes,
the Simulink Design Verifier log window opens and indicates that all 12 objectives are satisfied.

9 To view the analysis results on the model, in the Simulink Design Verifier log window, select
Highlight analysis results on model.

The Simulink Design Verifier results are highlighted in the referenced model,
sldemo_mdlref_counter. You can select individual model objects to view specific analysis
results in the Simulink Design Verifier Results dialog box, as shown in the following screenshot.

8 Extending Existing Test Cases

8-12

10 To verify the results of the analysis and review the generated test cases, in the Simulink Design
Verifier log window, select Generate detailed analysis report.

11 To collect model coverage using the extended test suite, in the Simulink Design Verifier log
window, select Simulate tests and produce a model coverage report.

When the simulation completes, the generated coverage report opens in a browser window. The
report now shows the following coverage results for the referenced model
sldemo_mdlref_counter:

• Condition: 100% (4/4) condition outcomes
• Decision: 100% (4/4) decision outcomes
• MCDC: 100% (2/2) conditions reversed the outcome

 Extend Test Cases for Closed-Loop System

8-13

See Also

Related Examples
• “Component-Based Modeling with Model Reference”

More About
• “When to Extend Existing Test Cases” on page 8-2
• “Extend Test Cases for Model with Temporal Logic” on page 8-4
• “Extend Test Cases for Modified Model” on page 8-15

8 Extending Existing Test Cases

8-14

Extend Test Cases for Modified Model
In this section...
“Create Starting Test Cases” on page 8-15
“Extend Existing Test Cases” on page 8-15

Suppose that you have a model that you have already analyzed using Simulink Design Verifier, and
you modify the model. The original test suite may not record 100% coverage for the modified model.
Reanalyze the modified model to make sure that it satisfies all the new test objectives. Instead of
reanalyzing the entire model, you focus the new analysis on just the modified part of the model. In
this way, you leverage the test cases created for the original model, extending them to satisfy any
new objectives.

This example uses the sldvdemo_cruise_control model. You analyze the model and generate test
cases. Then you analyze a modified version of that model, sldvdemo_cruise_control_mod,
extending the test cases from the original analysis. The analysis returns a complete test suite for the
new model.

Create Starting Test Cases
Analyze the sldvdemo_cruise_control model and generate test cases that achieve 100%
coverage.

1 Open the example model:

sldvdemo_cruise_control
2 To start a Simulink Design Verifier analysis for the sldvdemo_cruise_control model, double-

click the Run Simulink Design Verifier block.

The analysis satisfies 34 test objectives for the sldvdemo_cruise_control model. The
software stores the resulting data file in a subfolder of the MATLAB Current Folder:

sldv_output\sldvdemo_cruise_control\sldvdemo_cruise_control_sldvdata.mat

In the next section, when you analyze the modified model, this data file specifies the starting test
cases that you extend.

3 Close the sldvdemo_cruise_control model and all the files created by the analysis. If asked,
do not save any changes you made to the model.

Extend Existing Test Cases
The sldvdemo_cruise_control_mod model is a modified version of sldvdemo_cruise_control.
The Controller subsystem contains a Saturation block that specifies that the target speed cannot
exceed 70.

 Extend Test Cases for Modified Model

8-15

matlab:sldvdemo_cruise_control

Open the modified model and analyze it, extending the test cases that you generated when analyzing
the sldvdemo_cruise_control model:

1 Open the example model, the modified version of sldvdemo_cruise_control:

sldvdemo_cruise_control_mod
2 Double-click the Controller subsystem to see the change to the original model, a Saturation block

that specifies the maximum speed:

3 Close the Controller subsystem.
4 On the Design Verifier tab, click Test Generation Settings.
5 In the Configuration Parameters dialog box, on the Test Generation pane, under Existing test

cases, select Extend existing test cases.
6 In the Data file field, click Browse and navigate to the MAT-file created in the MATLAB Current

Folder when analyzing the original model:
sldv_output\sldvdemo_cruise_control\sldvdemo_cruise_control_sldvdata.mat

7 Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the analysis includes the test cases recorded in the file
sldvdemo_cruise_control_sldvdata.mat in the final test suite.

8 Click Apply to save these settings.
9 To start the analysis, click Generate Tests.

The analysis first loads the 34 objectives satisfied by the initial test cases. Then it adds extra time
steps to those test cases and tries to satisfy any missing objectives.

10 In the Results Summary window, click Generate detailed analysis report.

The analysis satisfied a total of 38 satisfied objectives for the sldvdemo_cruise_control_mod
model. The analysis satisfied four additional objectives that correspond to the Saturation block.

8 Extending Existing Test Cases

8-16

matlab:sldvdemo_cruise_control

See Also

More About
• “When to Extend Existing Test Cases” on page 8-2
• “Extend Test Cases for Model with Temporal Logic” on page 8-4
• “Extend Test Cases for Closed-Loop System” on page 8-10

 Extend Test Cases for Modified Model

8-17

Create and Run Back-to-Back Tests Using Enhanced MCDC

This example shows you how to create and run a back-to-back test using enhanced MCDC. Enhanced
MCDC analyzes the detectability of each objective in the model and generates non-masking test cases
for each objective. For more information, see “Enhanced MCDC Coverage in Simulink Design
Verifier” on page 7-42.

Back-to-back tests in Simulink® Test™ compare the results of normal simulations with the generated
code results from software-in-the-loop, processor-in-the-loop, or hardware-in-the-loop simulations.

Section 1: Prepare the Model

1. Open the model:

model = ('sldvSliceCruiseControl');
open_system(model);

2. Prepare the model for code generation and logging.

8 Extending Existing Test Cases

8-18

set_param(model, 'ProdHWDeviceType', 'Intel->x86-64 (Linux 64)');
set_param(model, 'ProdLongLongMode', 'on');
set_param(model, 'SaveOutput', 'on');
set_param(model, 'SignalLogging', 'on');
set_param(model, 'SaveFormat', 'Dataset');

Note: You can also optionally mark internal signals in the model as test-pointed logged signals (for
example, sldvSliceCruiseControl/CruiseControlMode/opMode/Switch,) so that these
signals are prioritized as detection sites during the enhanced MCDC analysis. For more information,
see “Configure Detection Sites using Test-pointed Logged Signals” on page 7-48.

3. Generate the code.

In the Apps tab, click Embedded Coder, and then click Generate Code.

Embedded coder generates the code generation report for model. Close the generated report window.
Simulink Design Verifier uses information on logged signals from the generated code to configure the
detection sites for enhanced MCDC. If you do not generate the code, Simulink Design Verifier uses
the information on test-pointed logged signals from the model to configure the detection sites for
enhanced MCDC.

Section 2: Create Back-to-Back Tests Using Enhanced MCDC

Follow these steps to create back-to-back tests in the Simulink Test Test Manager:

1. To open the Simulink Test tab, in the Apps tab, in the Model Verification, Validation, and Test
section, click Simulink Test.

2. To open the Test Manager, in the Tests tab, click Simulink Test Manager.

3. Click New > Test for Model Component. The Create Test for Model Component wizard opens.

4. To specify the Top Model to test, fill the fields by clicking the Use currently selected model
component button next to the Top Model field.

5. Click Next to specify how to use the Simulink Design Verifier to generate test inputs. Select Use
Design Verifier to generate test input scenarios. This option runs the model and creates inputs
using Simulink Design Verifier.

 Create and Run Back-to-Back Tests Using Enhanced MCDC

8-19

6. Click Next to select the testing method. Select Perform back-to-back testing. For Simulation1,
select Normal. For Simulation2, select Software-in-the-Loop (SIL). Select Set Model
coverage objectives as Enhanced MCDC.

8 Extending Existing Test Cases

8-20

7. Click Next to specify the input source, format, and where to save the test data and generated tests.
For Specify the file format, select MAT. For Specify location to save test data, use the default
location name.

8. Click Done. Simulink Test creates the test cases and closes the wizard.

Section 3: Run Back-to-Back Tests

To run the back-to-back test, click Run in Simulink Test Manager.

Clean Up

To complete the example, close the model.

bdclose(model);

Related Topics

• “Create Back-to-Back Tests Using Enhanced MCDC” on page 16-20
• “Generate Tests and Test Harnesses for a Model or Components” (Simulink Test)

 Create and Run Back-to-Back Tests Using Enhanced MCDC

8-21

Achieving Test Cases for Missing Model
Coverage

• “Generate Test Cases for Missing Coverage Data” on page 9-2
• “Achieve Missing Coverage in Referenced Model” on page 9-3
• “Achieve Missing Coverage in Subsystems and Model Blocks” on page 9-10
• “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-11
• “Analyze Coverage for Lookup Table Boundary Values” on page 9-14
• “Modified Condition and Decision Coverage in Simulink Design Verifier” on page 9-21
• “Achieve Coverage in Models with Variable-Size Inputs” on page 9-24

9

Generate Test Cases for Missing Coverage Data
If you simulate your model and record coverage data, but your model does not achieve 100%
coverage, Simulink Design Verifier can find test cases that achieve the missing coverage. The
software targets the test-generation analysis for the part of the model that is missing coverage,
ignoring the model coverage data that was recorded during simulation.

The following examples describe how to focus the test-generation analysis on a part of the model that
did not achieve 100% coverage:

• “Achieve Missing Coverage in Referenced Model” on page 9-3
• “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-11

9 Achieving Test Cases for Missing Model Coverage

9-2

Achieve Missing Coverage in Referenced Model
If you simulate a referenced model that does not achieve full coverage, you can use Simulink Design
Verifier to generate test cases that achieve full coverage. There are two approaches:

• Programmatically achieve missing coverage: Generate test cases for a referenced model with APIs
for test-generation analysis.

• Incrementally increase coverage: Generate test cases for the test harness model with missing
coverage analysis features.

Programmatically Achieve Missing Coverage in Referenced Model
• “Record Coverage Data for Example Model” on page 9-3
• “Find Test Cases for the Missing Coverage” on page 9-4
• “Achieve Missing Coverage” on page 9-5
• “Verify Complete Model Coverage” on page 9-5

This example model uses a referenced model that does not achieve full coverage. When you run a
test-generation analysis on the referenced model and combine it with previously recorded coverage
data, you can achieve 100% coverage for the referenced model.

Record Coverage Data for Example Model

Simulate the example model. Record condition, decision, and MCDC coverage.

1 Open the “Component-Based Modeling with Model Reference” example model
sldemo_mdlref_basic.

openExample('sldemo_mdlref_basic');

The Model blocks CounterA, CounterB, and CounterC reference the model
sldemo_mdlref_counter.

2 On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Coverage Analyzer.
3 On the Coverage tab, click Settings.
4 On the Coverage pane of the Configuration Parameters dialog box, set the following options:

• Select Enable coverage analysis.
• Select Referenced Models.
• Click Select Models. In the Select Models for Coverage Analysis dialog box, select the check

box for the referenced model sldemo_mdlref_counter. Click OK.

The check box for sldemo_mdlref_counter becomes visible, corresponding to CounterA
and CounterB. Coverage is not enabled for CounterC because the reference model CounterC
is in Accelerator simulation mode.

• Specify which types of coverage to record during simulation. Under Coverage metrics,
select MCDC.

5 In the Coverage > Results pane of the Configuration Parameters. Set the following options:

 Achieve Missing Coverage in Referenced Model

9-3

• Select Save last run in workspace variable to save the collected coverage data from the
most recent simulation run in a variable in the MATLAB workspace.

• Select Generate report automatically after analysis to specify that the simulation create a
coverage report.

• In the cvdata object name field, enter covdata_original to specify a unique name for the
coverage data workspace variable.

6 Click OK.
7 To record the coverage data, start the simulation of the sldemo_mdlref_basic model.

After the simulation, the coverage report opens. The report indicates that the following coverage
is achieved for the referenced model sldemo_mdlref_counter:

• Decision: 25%
• Condition: 50%
• MCDC: 0%

The simulation saves the coverage data in the MATLAB workspace variable covdata_original,
a cvdata object that contains the coverage data.

8 Save the coverage data in a file on the MATLAB path:

cvsave('existingcov',covdata_original);

Keep the model open as you continue through this example.

Find Test Cases for the Missing Coverage

To achieve 100% coverage for the sldemo_mdlref_counter model, run a test-generation analysis
that uses the existing coverage data.

1 Open the referenced model. At the command line, enter:

open_system('sldemo_mdlref_counter');
2 Create an sldvoptions object:

opts = sldvoptions;

When you create the sldvoptions object, specify:

• That the analysis ignores satisfied coverage data.
• The file name containing the satisfied coverage data (existingcov.cvt)

Enter the following commands to specify these options:

opts.IgnoreCovSatisfied = 'on';
opts.CoverageDataFile = 'existingcov.cvt';

3 Analyze the referenced model, sldemo_mdlref_counter, by using the specified options:
[status, fileNames] = sldvrun('sldemo_mdlref_counter',opts,true);

The Simulink Design Verifier analysis satisfies seven objectives and creates one test case for the
referenced model.

The next procedure simulates the referenced model, sldemo_mdlref_counter, with the test case
that the analysis created.

9 Achieving Test Cases for Missing Model Coverage

9-4

Achieve Missing Coverage

To achieve the missing coverage for the referenced model, sldemo_mdlref_counter, simulate the
model by using the test case from the Simulink Design Verifier analysis.

1 Open the referenced model. At the command line, enter:

open_system('sldemo_mdlref_counter');
2 Create a cvtest object for the simulation and specify recording decision, condition, and MCDC

coverage.

cvt = cvtest('sldemo_mdlref_counter');
cvt.settings.decision = 1;
cvt.settings.condition = 1;
cvt.settings.mcdc = 1;

3 Specify recording coverage and set the name of the cvtest object.

runOpts = sldvruntestopts;
runOpts.coverageEnabled = true;
runOpts.coverageSetting = cvt;

4 Simulate the model with the cvtest object, cvt, and the test case, as defined in
fileNames.DataFile. Save the recorded coverage data in the workspace variable
covdata_missing.
[~, covdata_missing] = sldvruntest('sldemo_mdlref_counter', fileNames.DataFile, runOpts);

Verify Complete Model Coverage

You saved the coverage data from the simulation of the top-level model, sldemo_mdlref_basic, in
the workspace variable covdata_original. To create a report that combines the coverage data
from the top-level model with the missing coverage data from the referenced model,
sldemo_mdlref_counter, enter the following command:

cvhtml('Coverage Summary', covdata_original, covdata_missing);

The report shows that by analyzing the referenced model and using those results to record coverage,
you can achieve 100% decision, condition, and MCDC coverage.

Increase Coverage for Referenced Models in a Test Harness
• “Generate Test Harness Model and Record Coverage Data” on page 9-6
• “Generate Test Cases for the Missing Coverage” on page 9-6
• “Update Simulink Design Verifier Analysis Options” on page 9-9
• “View Active Results for Missing Coverage Analysis” on page 9-9
• “Limitations” on page 9-9

 Achieve Missing Coverage in Referenced Model

9-5

You can incrementally achieve full coverage for a generated test harness model. This example shows
how to first generate a test harness model that does not achieve full coverage. Next, it shows how to
run missing coverage analysis on the test harness model to generate test cases for 100% coverage.

Note This approach supports only test harness models generated by Simulink Design Verifier that
reference the input model. The Design Verifier app is not available for test harness models when the
test unit is copied from the top model. For more information see, “Reference input model in
generated harness” on page 15-60.

Generate Test Harness Model and Record Coverage Data

To achieve full coverage for the sldemo_mdlref_counter model, run a missing coverage analysis
on the Simulink Design Verifier generated harness model.

1 Open the example model:

open_system('sldemo_mdlref_counter');

2 Create a harness model for referenced model sldemo_mdlref_counter:

[savedHarnessFilePath] = sldvmakeharness('sldemo_mdlref_counter');

For more information about the harness model, see “Manage Simulink Design Verifier Harness
Models” on page 13-13.

3 In the harness model sldemo_mdlref_counter_harness, the Format parameter must be
Dataset to make the referenced model sldemo_mdlref_counter and the harness model
sldemo_mdlref_counter_harness have the same parameter settings. For more information
see, “Model Configuration Parameters: Data Import/Export”.

4 Simulate the sldemo_mdlref_counter_harness model to record the coverage achieved by the
test cases in the harness model. After the simulation, the coverage report appears. The report
indicates that the following coverage is achieved for sldemo_mdlref_counter:

Generate Test Cases for the Missing Coverage

1 Open the harness model:

open_system('sldemo_mdlref_counter_harness');

To generate test cases for the missing coverage, on the Design Verifier tab, click Add Missing
Coverage. A notification indicates the number of new tests that are added.

9 Achieving Test Cases for Missing Model Coverage

9-6

2 The Signal Builder dialog box shows the Missing coverage test case 1 added to the previous
Test Case 1.

 Achieve Missing Coverage in Referenced Model

9-7

3
In the Signal Builder dialog box, click Run all . The software simulates the harness model by
using all the test cases, collects model coverage information, and displays a coverage report. The
coverage report indicates that the missing coverage analysis records 100% coverage for
sldemo_mdlref_counter.

9 Achieving Test Cases for Missing Model Coverage

9-8

Update Simulink Design Verifier Analysis Options

1 Open the harness model.

open_system('sldemo_mdlref_counter_harness');

On the Design Verifier tab, click Test Generation Settings. The Configuration Parameters
dialog box for referenced model sldemo_mdlref_counter opens. You can set design verifier
options for missing coverage analysis. For more information see, “Options in Configuration
Parameters Dialog Box” on page 15-2.

View Active Results for Missing Coverage Analysis

1 Open the referenced model.

open_system('sldemo_mdlref_counter');

On the Design Verifier tab, in the Review Results section, click Load Earlier Results. Browse
to the previously generated data file and click Open.

To view active results for missing coverage test cases, click Results Summary. The Results
Summary window opens with the missing coverage analysis results. For more information on
active results, see “Review Analysis Results” on page 13-57. The missing coverage test cases
data is stored in a MAT-file that contains a structure named sldvData. For more information see,
“Generate sldvData Structure” on page 13-7.

Limitations

1 Missing Coverage analysis is a user interface-based workflow. Command-line functions are not
available for Missing Coverage analysis.

2 Constraining values for parameters is not supported in the Missing Coverage analysis workflow.
For more information see, “Use Parameter Table” on page 5-7.

See Also

More About
• “Generate Test Cases for Missing Coverage Data” on page 9-2
• “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-11

 Achieve Missing Coverage in Referenced Model

9-9

Achieve Missing Coverage in Subsystems and Model Blocks
If your model has a Subsystem block that does not achieve full coverage, you can convert it to model
referenced in a Model block. “Convert Subsystems to Referenced Models” describes how to convert a
subsystem to a referenced model. You can then follow the steps described in “Achieve Missing
Coverage in Referenced Model” on page 9-3.

You cannot convert some subsystems to Model blocks. To test a subsystem to see if you can convert it
to a Model block, use the Simulink.SubSystem.convertToModelReference function. If that
function cannot convert the subsystem, an error message describes why the conversion failed.

It is possible that you have a Stateflow chart or a MATLAB Function block that does not achieve full
coverage. You cannot convert Stateflow charts and MATLAB Function blocks to referenced models.

When you cannot use a Model block, follow the steps described in “Achieve Missing Coverage in
Closed-Loop Simulation Model” on page 9-11.

See Also

More About
• “Achieve Missing Coverage in Referenced Model” on page 9-3
• “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-11

9 Achieving Test Cases for Missing Model Coverage

9-10

Achieve Missing Coverage in Closed-Loop Simulation Model
In this section...
“Record Coverage Data for the Model” on page 9-11
“Find Test Cases for Missing Coverage” on page 9-12

If you have a subsystem or a Stateflow chart that does not achieve 100% coverage, and you do not
want to convert the subsystem or chart to a Model block, follow this example to achieve full coverage.

The example uses a closed-loop controller model. A closed-loop controller passes instructions to the
controlled system and receives information from the environment as the control instructions are
executed. The controller can adapt and change its instructions as it receives this information.

The sldvdemo_autotrans model is a closed-loop simulation model. The ShiftLogic Stateflow chart
represents the controller part of this model. Test cases designed in the ManeuversGUI Signal Builder
block drive the closed-loop simulation.

Record Coverage Data for the Model
To simulate the model, recording condition, decision, and MCDC coverage for the ShiftLogic
controller:

1 Open the example model:

sldvdemo_autotrans
2 On the Apps tab, click the arrow on the right of the Apps section.

Under Model Verification, Validation, and Test, click Coverage Analyzer.
3 On the Coverage tab, click Settings.
4 On the Coverage pane in the Configuration Parameters dialog box. set the following options:

• Select Enable coverage analysis.
• Select Subsystem and click Select Subsystem.
• In the Subsystem Selection dialog box, select ShiftLogic and click OK.

5 Under Coverage metrics, select Modified Condition Decision Coverage (MCDC).
6 Clear the Other metrics if they are selected.
7 In the Coverage > Results pane of the Configuration Parameters dialog box, set the following

options:

• In the cvdata object name field, enter covdata_original_controller to specify a
unique name for the coverage data workspace variable.

• Select Generate report automatically after analysis.
8 Click OK.
9 Start the simulation of the sldvdemo_autotrans model to record the coverage data.

After the simulation, the coverage report opens. The report indicates that the following coverage
is achieved for the ShiftLogic Stateflow chart:

 Achieve Missing Coverage in Closed-Loop Simulation Model

9-11

• Decision: 87% (27/31)
• Condition: 67% (8/12)
• MCDC: 33% (2/6) conditions reversed the outcome

The simulation saves the coverage data in the MATLAB workspace variable
covdata_original_controller, a cvtest object that contains the coverage data.

10 Save the coverage data in a file on the MATLAB path:

cvsave('existingcov',covdata_original_controller);

Find Test Cases for Missing Coverage
To find the missing coverage for the ShiftLogic chart, run a subsystem analysis on that block. Use this
technique to focus your analysis on an individual part of the model.

To achieve 100% coverage for the ShiftLogic controller, run a test-generation analysis that uses the
existing coverage data.

1 Right-click the ShiftLogic block and select Design Verifier > Options.
2 In the Configuration Parameters dialog box, under the Select tree, choose the Design Verifier

node. Under Analysis options in the Mode field, select Test generation.
3 Under the Design Verifier node, select Test Generation. Under Existing coverage data,

select Ignore objectives satisfied in existing coverage data.
4 In the Coverage data file field, enter the name of the file containing the coverage data that you

recorded during simulation:

existingcov.cvt
5 Click Apply to save these settings.
6 Under the Select tree, click Design Verifier.
7 On the main Design Verifier pane, click Generate Tests.

The analysis extracts the Stateflow chart into a new model named ShiftLogic0. The analysis
analyzes the new model, ignoring the coverage objectives previously satisfied and recorded in
the existingcov.cvt file.

8 When the test-generation analysis is complete, in the Simulink Design Verifier log window, select
Simulate tests and produce a model coverage report.

The report indicates that the following coverage is achieved for the ShiftLogic chart in simulation
with the test cases generated by Simulink Design Verifier:

• Decision: 84% (26/31)
• Condition: 83% (10/12)
• MCDC: 67% (4/6) conditions reversed the outcome

The Simulink Design Verifier report lists six test cases for the extracted model that satisfy the
objectives not covered in the existingcov.cvt file.

The Simulink Design Verifier report indicates that two coverage objectives in the Stateflow chart
ShiftLogic are proven unsatisfiable. The implicit event tick is never false because the

9 Achieving Test Cases for Missing Model Coverage

9-12

ShiftLogic chart is updated at every time step. The analysis cannot satisfy condition or MCDC
coverage for either instance of the temporal event after(TWAIT, tick).

after(TWAIT, tick) is semantically equivalent to

Event == tick && temporalCount(tick) >= TWAIT

If you move after(TWAIT, tick) into the condition, as in

[after(TWAIT, tick) && speed < down_th]

Simulink Design Verifier determines that tick is always true, so it only tests the
temporalCount(tick) >= TWAIT part of after(TWAIT, tick). The analysis is able to find
test objectives that satisfy condition and MCDC coverage for after(TWAIT, tick).

See Also

More About
• “Generate Test Cases for Missing Coverage Data” on page 9-2
• “Achieve Missing Coverage in Referenced Model” on page 9-3

 Achieve Missing Coverage in Closed-Loop Simulation Model

9-13

Analyze Coverage for Lookup Table Boundary Values
Lookup tables are standard block sets that approximate functions. Simulink Coverage defines the
coverage of lookup tables by checking if all grid points defined by breakpoints are covered or
satisfied during simulation. For more information, see “N-Dimensional Lookup Table” (Simulink
Coverage).

You can leverage Simulink Design Verifier to generate tests that hit the boundary values of a lookup
table. The minimum and maximum breakpoints for each dimension, also known as the corner points,
define the boundaries of the lookup table. Achieving such coverage is a common use case in the
aerospace and automotive domains.

Consider this two-dimensional lookup table:

The breakpoints that represent corner points are:

Dimension 1 : 10, 30
Dimension 2: 1, 3

The breakpoints that represent the boundaries of this lookup table are (10, 1), (10, 3), (30, 1), and
(30,3). The tests corresponding to the lookup table boundary satisfy the following coverage metrics:

Corner 1: Input 1 < 10, Input2 < 1
Corner 2: Input 1 < 10, Input2 > 3
Corner 3: Input 1 > 30, Input2 < 1
Corner 4: Input 1 > 30, Input2 > 3

This example leverages block replacement framework provided by Simulink Design Verifier to
generate tests.

Consider the controller unit (control logic) and the fault approximation unit (Sensor
correction and Fault Redundancy) as shown:

9 Achieving Test Cases for Missing Model Coverage

9-14

• control logic: The control logic statechart checks for the normal and failure modes of
throttle, speed, and manifold absolute pressure (MAP).

• Sensor correction and Fault Redundancy: If there is a failure in the throttle, speed, and
MAP values, the subsystem Sensor correction and Fault Redundancy approximates their
values by using these tables:

• Throttle Estimate: The lookup table Thrott Estimation Table (2-D) estimates the
throttle position based on the values of speed and pressure.

 Analyze Coverage for Lookup Table Boundary Values

9-15

• Speed Estimate: The lookup table Speed Table (2-D) estimates the speed based on the
estimated value of throttle position and pressure.

• MAP Estimate: The lookup table Pressure Estimate (2-D) estimates the MAP based on the
estimated value of speed and throttle.

Simulink Design Verifier generates boundary value coverage tests for each of these lookup tables. To
describe the results, consider lookup table defined for Throttle Estimate as shown:

• Throttle estimation lookup table uses speed (Sensor index '2') and manifold pressure (Sensor
index '4') sensor values as inputs.

• The lookup table has 19 breakpoints for pressure with 0.05....0.95 as corner points, and
18 breakpoints for speed with 50....1e3 as corner points.

The corner points for this lookup table are:

Breakpoints 1 (speedVect): 50,1000
Breakpoints 2 (press): 0.05,0.95

The generated tests attempt to hit the boundary points highlighted in the table. The tests require
these breakpoint combinations to cover the boundary values.

Note The Engine Speed and MAP inputs are inputs to the breakpoints speedVect and press,
respectively.

Corner 1: Engine Speed < 50, MAP < 0.05
Corner 2: Engine Speed < 50, MAP > 0.95
Corner 3: Engine Speed > 1000, MAP < 0.05
Corner 4: Engine Speed > 1000, MAP > 0.95

The replacement rule, InstrumentLUTForCornerValueCoverage is shipped with the example
mentioned here.

Generate Tests for Lookup Table Boundary Values

This example shows how to generate tests for lookup table boundary value coverage.

9 Achieving Test Cases for Missing Model Coverage

9-16

Open the Model

open_system('sldvdemo_fuelsys_lookup_corner_value_coverage');

Specify the Analysis Options

To specify the analysis options:

1. In the Apps tab, click Coverage Analyzer.

2. In the Coverage tab, click Settings to open the Configuration Parameters window.

3. Expand Other metrics, then select the Lookup table option. Click OK.

4. In the left pane, click Block Replacements. Select Apply block replacements.

5. In List of block replacement rules (in order of priority), specify the rule as
InstrumentLUTForCornerValueCoverage. Click OK.

6. In the Test Generation pane, set Model Coverage Objectives to None.

Note: Because the test generation settings, Test conditions and Test Objectives are enabled,
Simulink Design Verifier generates tests for the custom test objectives defined in the block
replacement rule.

Perform Analysis

To generate tests only for the custom test objectives for the lookup table:

1. In the Design Verifier tab, click Generate Tests.

2. To view the coverage results, click the Simulate Tests and produce a model coverage report
link.

 Analyze Coverage for Lookup Table Boundary Values

9-17

Review Results

After simulating the test cases and generating a coverage report, the top left and right corners are
covered while the bottom left and right corners are uncovered.

The status of the test objectives associated with the 'Thrott Estimation Table (2-D)' Lookup table:

Status: Objectives Satisfied

9 Achieving Test Cases for Missing Model Coverage

9-18

From the above figure:

LUT Boundary: Engine Speed < 50, MAP < 0.05

Corner: Top Left

Analysis: This objectives is satisfied at time 0.03 (Step 4).

LUT Boundary: Engine Speed < 50, MAP > 0.95

Corner: Top Right

Analysis: This objectives is satisfied at time 0.21 (Step 22).

Status: Objectives Unsatisfiable

From the above figure:

LUT Boundary: Engine Speed > 1000, MAP < 0.05

Corner: Bottom Left

 Analyze Coverage for Lookup Table Boundary Values

9-19

Analysis: In the Control logic statechart, the input speed has the following values:

Minimum speed: 0 Maximum Speed: 1000

The statechart input speed is directly connected to the root inport Engine Speed. Hence, the same
range constraints are applied to it. Due to these min/max constraints, the value of Engine Speed can
never be set to a value >1000, hence this test objective becomes unsatisfiable.

LUT Boundary: Engine Speed > 1000, MAP > 0.95

Corner: Bottom Right

Analysis: The value of 'Engine Speed' can never be set to a value >1000, hence this test objective
becomes unsatisfiable.

Clean Up

To complete the example, close the model.

close_system('sldvdemo_fuelsys_lookup_corner_value_coverage',0);

9 Achieving Test Cases for Missing Model Coverage

9-20

Modified Condition and Decision Coverage in Simulink Design
Verifier

Depending on the settings you apply for Simulink Coverage coverage recording, there can be a
difference between the definition of modified condition and decision (MCDC) coverage used for model
coverage analysis in Simulink Coverage and the definition used for test case generation analysis in
Simulink Design Verifier.

MCDC Definitions for Simulink Coverage and Simulink Design Verifier
Simulink Design Verifier and Simulink Coverage represent MCDC objectives in two different ways:

• Simulink Coverage treats each condition of a logical expression as an MCDC objective.
• Simulink Design Verifier treats the true and false halves of each independence pair as separate

MCDC objectives.

The Simulink Design Verifier Results window shows Justified for any justified MCDC objectives. Click
on the corresponding View link to see the filter rule in the Simulink Design Verifier Analysis Filter
window.

Unsatisfiable or undecided MCDC objectives include a Justify link. Click on this link to create a
corresponding filter rule. Because every MCDC objective in Simulink Coverage corresponds to two
MCDC objectives in Simulink Design Verifier, the Simulink Design Verifier MCDC objectives are
justified in pairs.

For example, in the image below, when you click on the Justify link for the MCDC expression
expression for output with input port 4 false, creates a filter rule that justifies this
MCDC objective as well as the MCDC objective for when that expression is true.

Simulink Design Verifier always uses the masking MCDC definition for test case generation. By
default, Simulink Coverage also uses the masking MCDC definition when recording coverage.
However, if you set the CovMcdcMode model configuration parameter to 'UniqueCause', Simulink
Coverage instead uses the unique-cause MCDC definition when recording coverage. For information

 Modified Condition and Decision Coverage in Simulink Design Verifier

9-21

on the differences between the masking MCDC definition and the unique-cause MCDC definition, see
“Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage” (Simulink
Coverage).

Setting the CovMcdcMode model configuration parameter to 'UniqueCause' can result in
differences between MCDC reporting in Simulink Coverage and test generation in Simulink Design
Verifier. An example of this difference can be seen in analysis results for logical expressions
containing a mixture of AND and OR operators, as in this Stateflow transition.

Given that A, B, and C are each separate inputs, there are five possible ways to evaluate the condition
on the Stateflow transition, shown in the following table.

 A B C (A && B) || C
1 F x F F
2 F x T T
3 T F F F
4 T F T T
5 T T x T

Satisfying MCDC for a Boolean variable requires a pair of condition evaluations, showing that a
change in that variable alone changes the evaluation of the entire expression. In this example, MCDC
can be satisfied for C with either the pair 1, 2 or the pair 3, 4. In both of those cases, the value of the
expression changed because the value of C changed, while all other variable values stayed the same.

Each pair has a different set of values for A and B which are held constant, but each pair contains one
evaluation where C and out are true and one evaluation where C and out are false. To satisfy MCDC
for C, Simulink Design Verifier test generation analysis accepts any pair containing one evaluation of
true values and one evaluation of false values for C and out. In this example, Simulink Design Verifier
test generation analysis accepts not only pair 1, 2 and pair 3, 4 but also pair 1, 4 and pair 2, 3.
Simulink Coverage model coverage analysis using the unique-cause MCDC definition is satisfied only
by pair 1, 2 or by pair 3, 4.

The preceding example assumes that A, B, and C are all separate inputs. When input A is constrained
to be the same value as C, as in this model, only a subset of condition evaluations are possible.

9 Achieving Test Cases for Missing Model Coverage

9-22

This subset of condition evaluations for the Stateflow transition is shown in the following table.

 A B C (A && B) || C
1 F x F F
4 T F T T
5 T T x T

Evaluations 2 and 3 are no longer possible, so neither pair 1, 2 nor pair 3, 4 is possible. As a result,
unique-cause MCDC for C can no longer be satisfied in Simulink Coverage model coverage analysis.
Since pair 1, 4 is still possible, however, Simulink Design Verifier test generation analysis reports that
MCDC for C is satisfiable.

The complexity of MCDC analysis for logical expressions with a mixture of AND and OR operators
causes this difference between results from Simulink Coverage set to unique-cause MCDC analysis
and Simulink Design Verifier. The default CovMcdcMode model configuration parameter value of
'Masking' does not cause this discrepancy. However, if you require the use of unique-cause MCDC
analysis in Simulink Coverage, you can minimize this effect by using the IndividualObjectives
test suite optimization for test generation analysis in Simulink Design Verifier For more information,
see the Tip section of “Test suite optimization” on page 15-34.

See Also

More About
• “MCDC” on page 7-31

 Modified Condition and Decision Coverage in Simulink Design Verifier

9-23

Achieve Coverage in Models with Variable-Size Inputs

This example shows you how to achieve model coverage in models with variable-size input signals by
using Simulink Design Verifier™.

Open the Model

The model in this example has two input ports that pass variable-size signals. Input port 1 (in1) of
the model is of variable size signal with maximum dimension [3,3].

open_system('sldvVariableSizeAtInport');

Create and Detach Harness Model

1. Open Simulink Test in the Apps pane.

2. Click Add Test Harness in the Create Test Harness section.

3. Click OK in the Create Test Harness dialog box.

4. Click Detach And Export in the Harness tab.

Drive Variable-size Input Port with Fixed Dimension Signals

Simulink Design Verifier™ supports models with fixed-size signals at the input ports. Enhance the
harness model such that it has fixed-size input ports but produces variable-size signals at the design
interface.

1. Add a Switch block to the harness model and in the Block Parameters dialog box on the Signal
Attributes tab, select Allow different data input sizes checkbox.

2. Set the dimensions of the two data ports of the Switch block to [3,3] and [2,2] to ensure that you
have a variable-dimension signal in1 of the design model.

9 Achieving Test Cases for Missing Model Coverage

9-24

Generate Tests to Achieve Coverage

1. Open Design Verifier in the Apps pane of the updated harness.

2. Click Generate Tests in the Analyze section.

3. Click Simulate tests and generate the model coverage report in the Results summary window.

 Achieve Coverage in Models with Variable-Size Inputs

9-25

Verifying Model Components

• “What Is Component Verification?” on page 10-2
• “Functions for Component Verification” on page 10-3
• “Verify a Component for Code Generation” on page 10-4

10

What Is Component Verification?
In this section...
“Component Verification Approaches” on page 10-2
“Simulink Design Verifier Tools for Component Verification” on page 10-2

Component Verification Approaches
Component verification lets you test a design component in your model using either of the following
approaches:

• Within the context of the model that contains the component — Using systematic
simulation of closed-loop controllers requires that you verify components within a control system
model. Doing so lets you test the control algorithms with your model. This approach is called
system analysis.

• As standalone components — For a high level of confidence in the component algorithm, verify
the component in isolation from the rest of the system. This approach is called component
analysis.

Verifying standalone components provides three advantages:

• You can use analysis to focus on portions of the design that you cannot test because of the
physical limitations of the system being controlled.

• You can use this approach for open-loop simulations to test the plant model without feedback
control.

• You can use this approach when the model is unavailable or when you need to simulate a
control system model in accelerated mode for performance reasons.

Simulink Design Verifier Tools for Component Verification
By isolating the component to verify, and using tools that Simulink Design Verifier provides, you
create test cases that let you expand the scope of the testing for large models. This expanded testing
helps you accomplish the following:

• Achieve 100% model coverage — If certain model components do not record 100% coverage, the
top-level model cannot achieve 100% coverage. By verifying these components individually, you
can create test cases that fully specify the component interface, allowing the component to record
100% coverage.

• Debug the component — To verify that each model component satisfies the specified design
requirements, you can create test cases that verify that specific components perform as designed.

• Test the robustness of the component — To verify that a component handles unexpected inputs
and calculations properly, you can create test cases that generate data. Then, test the error-
handling capabilities in the component.

10 Verifying Model Components

10-2

Functions for Component Verification
The Simulink Design Verifier software provides several functions that facilitate the tasks associated
with component verification.

Function Task
sldvlogsignals Simulate a Simulink model and log input signals to a Model block in

the model. If you modify the test cases in the Signal Builder harness
model, use this approach for logging input signals to the harness
model itself.

sldvmakeharness Create a harness model for a component, using logged input signals
if specified, or using the default signals.

For more information about harness models, see “Manage Simulink
Design Verifier Harness Models” on page 13-13.

sldvmergeharness Merge test cases from several harness models into a single harness
model.

sldvextract Extract an atomic subsystem or atomic subchart into a new model.
sldvruntest Simulate a model, executing the specified test cases to record model

coverage and outport values.
sldvruncgvtest Invoke the Code Generation Verification (CGV) API, and execute the

specified test cases on the generated code for the model.

Note To execute a model in different modes of execution, use the
CGV API to verify the numerical equivalence of results. For more
information about the CGV API, see “Programmatic Code Generation
Verification” (Embedded Coder).

Component verification functions do not support the following Simulink features:

• Variable-step solvers for sldvruntest
• Component interfaces that contain:

• Variable-size signals
• Multiword fixed-point data types larger than 128 bits

 Functions for Component Verification

10-3

Verify a Component for Code Generation
In this section...
“About the Example Model” on page 10-4
“Prepare the Component for Verification” on page 10-6
“Record Coverage for the Component” on page 10-7
“Use Simulink Design Verifier Software to Record Additional Coverage” on page 10-7
“Combine the Harness Models” on page 10-8
“Execute the Component in Simulation Mode” on page 10-9
“Execute the Component in Software-in-the-Loop (SIL) Mode” on page 10-10

About the Example Model
This example uses the slvnvdemo_powerwindow model to show how to verify a component in the
context of the model that contains that component. As you work through this example, you use the
Simulink Design Verifier component verification functions to create test cases and measure coverage
for a referenced model. In addition, you can execute the referenced model in both simulation mode
and Software-in-the-Loop (SIL) mode using the Code Generation Verification (CGV) API.

Note You must have the following product licenses to run this example:

• Stateflow
• Embedded Coder
• Simulink Coder

The component that you verify is a Model block named control. This component resides inside the
power_window_control_system subsystem in the top level of the slvnvdemo_powerwindow
model. The power_window_control_system subsystem is shown below.

10 Verifying Model Components

10-4

The control Model block references the slvnvdemo_powerwindow_controller model.

The referenced model contains a Stateflow chart control, which implements the logic for the power
window controller.

 Verify a Component for Code Generation

10-5

Prepare the Component for Verification
To verify the referenced model slvnvdemo_powerwindow_controller, create a harness model
that contains the input signals that simulate the controller in the plant model:

1 Open the slvnvdemo_powerwindow example model and the referenced model:

open_system('slvnvdemo_powerwindow');
open_system('slvnvdemo_powerwindow_controller');

2 Open the power_window_control_system subsystem in the example model.

The Model block named control in the power_window_control_system subsystem
references the component that you verify during this example,
slvnvdemo_powerwindow_controller.

3 Simulate the Model block that references the slvnvdemo_powerwindow_controller model
and log the input signals to the Model block:

loggedSignalsPlant = sldvlogsignals(...
 'slvnvdemo_powerwindow/power_window_control_system/control');

sldvlogsignals stores the logged signals in loggedSignalsPlant.
4 Generate a harness model with the logged signals:

harnessModelFilePath = sldvmakeharness(...
 'slvnvdemo_powerwindow_controller', loggedSignalsPlant);

sldvmakeharness creates and opens a harness model named
slvnvdemo_powerwindow_controller_harness. The Signal Builder block contains one test
case containing the logged signals.

10 Verifying Model Components

10-6

For more information about harness models, see “Manage Simulink Design Verifier Harness
Models” on page 13-13.

5 For use later in this example, save the name of the harness model:

[~, harnessModel] = fileparts(harnessModelFilePath);
6 Leave all windows open for the next part of this example.

Next, you will record coverage for the slvnvdemo_powerwindow_controller model.

Record Coverage for the Component
Model coverage is a measure of how thoroughly a test case tests a model, and the percentage of
pathways that a test case exercises. To record coverage for the
slvnvdemo_powerwindow_controller model:

1 Create a default options object, required by the sldvruntest function:

runOpts = sldvruntestopts;
2 Specify to simulate the model, and record coverage:

runOpts.coverageEnabled = true;
3 Simulate the referenced model and record coverage:

[~, covDataFromLoggedSignals] = sldvruntest(...
 'slvnvdemo_powerwindow_controller', loggedSignalsPlant, runOpts);

4 Display the HTML coverage report:

cvhtml('Coverage with Test Cases', covDataFromLoggedSignals);

The slvnvdemo_powerwindow_controller model achieved:

• Decision coverage: 40%
• Condition coverage: 35%
• MCDC coverage: 10%

For more information about decision coverage, condition coverage, and MCDC coverage, see
“Types of Model Coverage” (Simulink Coverage).

Because you did not achieve 100% coverage for the slvnvdemo_powerwindow_controller model,
next, you will analyze the model to record additional coverage and create additional test cases.

Use Simulink Design Verifier Software to Record Additional Coverage
You can use Simulink Design Verifier to analyze the slvnvdemo_powerwindow_controller model
and collect coverage. You can specify that the analysis ignore any previously satisfied objectives and
record additional coverage.

To record additional coverage for the model:

1 Save the coverage data that you recorded for the logged signals in a file:

cvsave('existingCovFromLoggedSignal', covDataFromLoggedSignals);

 Verify a Component for Code Generation

10-7

2 Create a default options object for the analysis:

opts = sldvoptions;
3 Specify that the analysis generate test cases to record decision, condition, and modified

condition/decision coverage:

opts.ModelCoverageObjectives = 'MCDC';
4 Specify that the analysis ignore objectives that you satisfied when you logged the signals to the

Model block:

opts.IgnoreCovSatisfied = 'on';
5 Specify the name of the file that contains the satisfied objectives data:

opts.CoverageDataFile = 'existingCovFromLoggedSignal.cvt';
6 Specify that the analysis create long test cases that satisfy several objectives:

opts.TestSuiteOptimization = 'LongTestcases';

Creating a smaller number of test cases each of which satisfies multiple test objectives saves
time when you execute the generated code in the next section.

7 Specify to create a harness model that references the component using a Model block:

opts.saveHarnessModel = 'on';
opts.ModelReferenceHarness = 'on';

The harness model that you created from the logged signals in “Prepare the Component for
Verification” on page 10-6 uses a Model block that references the
slvnvdemo_powerwindow_controller model. The harness model that the analysis creates
must also use a Model block that references slvnvdemo_powerwindow_controller. You can
append the test case data to the first harness model, creating a single test suite.

8 Analyze the model using Simulink Design Verifier:

[status, fileNames] = sldvrun('slvnvdemo_powerwindow_controller', ...
 opts, true);

The analysis creates and opens a harness model
slvnvdemo_powerwindow_controller_harness. The Signal Builder block contains one long
test case that satisfies 74 test objectives.

You can combine this test case with the test case that you created in “Prepare the Component for
Verification” on page 10-6, to record additional coverage for the
slvnvdemo_powerwindow_controller model.

9 Save the name of the new harness model and open it:

[~, newHarnessModel] = fileparts(fileNames.HarnessModel);
open_system(newHarnessModel);

Next, you will combine the two harness models to create a single test suite.

Combine the Harness Models
You created two harness models when you:

10 Verifying Model Components

10-8

• Logged the signals to the control Model block that references the
slvnvdemo_powerwindow_controller model.

• Analyzed the slvnvdemo_powerwindow_controller model.

If you combine the test cases in both harness models, you can record coverage that gets you closer to
achieving 100% coverage:

1 Combine the harness models by appending the most recent test cases to the test cases for the
logged signals:

sldvmergeharness(harnessModel, newHarnessModel);

The Signal Builder block in the slvnvdemo_powerwindow_controller_harness model now
contains both test cases.

2 Log the signals to the harness model:

loggedSignalsMergedHarness = sldvlogsignals(harnessModel);
3 Use the combined test cases to record coverage for the

slvnvdemo_powerwindow_controller_harness model. First, configure the options object
for sldvruntest:

runOpts = sldvruntestopts;
runOpts.coverageEnabled = true;

4 Simulate the model and record and display the coverage data:

[~, covDataFromMergedSignals] = sldvruntest(...
 'slvnvdemo_powerwindow_controller', loggedSignalsMergedHarness, ...
 runOpts);
cvhtml('Coverage with Merged Test Cases', covDataFromMergedSignals);

The slvnvdemo_powerwindow_controller model now achieves:

• Decision coverage: 100%
• Condition coverage: 80%
• MCDC coverage: 60%

Execute the Component in Simulation Mode
To verify that the generated code for the model produces the same results as simulating the model,
use the Code Generation Verification (CGV) API methods.

Note To execute a model in different modes of execution, use the CGV API to verify the numerical
equivalence of results. For more information about the CGV API, see “Programmatic Code Generation
Verification” (Embedded Coder).

When you perform this procedure, the simulation compiles and executes the model code using both
test cases.

1 Create a default options object for sldvruncgvtest:

runcgvopts = sldvruntestopts('cgv');

 Verify a Component for Code Generation

10-9

2 Specify to execute the model in simulation mode:

runcgvopts.cgvConn = 'sim';
3 Execute the slvnv_powerwindow_controller model using the two test cases and the

runcgvopts object:

cgvSim = sldvruncgvtest('slvnvdemo_powerwindow_controller', ...
 loggedSignalsMergedHarness, runcgvopts);

These steps save the results in the workspace variable cgvSim.

Next, you will execute the same model with the same test cases in Software-in-the-Loop (SIL) mode
and compare the results from both simulations.

For more information about Normal simulation mode, see “Execute the Model” (Embedded Coder).

Execute the Component in Software-in-the-Loop (SIL) Mode
When you execute a model in Software-in-the-Loop (SIL) mode, the simulation compiles and executes
the generated code on your host computer.

In this section, you execute the slvnvdemo_powerwindow_controller model in SIL mode and
compare the results to the previous section, when you executed the model in simulation mode.

1 Specify to execute the model in SIL mode:

runcgvopts.cgvConn = 'sil';
2 Execute the slvnv_powerwindow_controller model using the two test cases and the

runcgvopts object:

cgvSil = sldvruncgvtest('slvnvdemo_powerwindow_controller', ...
 loggedSignalsMergedHarness, runcgvopts);

The workspace variable cgvSil contains the results of the SIL mode execution.
3 Compare the results in cgvSil to the results in cgvSim, created from the simulation mode

execution. Use the compare (Embedded Coder) method to compare the results from the two
simulations:

for i=1:length(loggedSignalsMergedHarness.TestCases)
 simout = cgvSim.getOutputData(i);
 silout = cgvSil.getOutputData(i);
 [matchNames, ~, mismatchNames, ~] = ...
 cgv.CGV.compare(simout, silout);
end

4 Display the results of the comparison in the MATLAB Command Window:

fprintf(['\nTest Case(%d):%d Signals match, %d Signals mismatch\r'],...
 i, length(matchNames), length(mismatchNames));

As expected, the results of the two simulations match.

For more information about Software-in-the-Loop (SIL) simulations, see “What Are SIL and PIL
Simulations?” (Embedded Coder).

10 Verifying Model Components

10-10

Considering Specified Minimum and
Maximum Values for Inputs During
Analysis

• “Minimum and Maximum Input Constraints” on page 11-2
• “Specify Input Ranges on Simulink and Stateflow Elements” on page 11-4
• “Specification of Input Ranges in sldvData Fields” on page 11-10

11

Minimum and Maximum Input Constraints

In this section...
“Simulink Design Verifier Support for Specified Input Minimum and Maximum Values” on page 11-
2
“Limitations of Simulink Design Verifier Support for Specified Minimum and Maximum Values” on
page 11-2

When creating a model, you can specify minimum and maximum values on input ports to mimic
environmental constraints as part of your design. The Simulink Design Verifier analysis can
automatically consider these values as constraints for:

• Design error detection
• Test case generation
• Property proving

Specifying minimum and maximum input values is similar to using the Test Condition block to
constrain signals for test case generation or the Proof Assumption block to constrain signals for
property proving. The Test Condition and Proof Assumption blocks capture the analysis constraints.
The Simulink Design Verifier software can also consider the design constraints captured in the Inport
block minimum and maximum parameters as constraints for analysis.

Note For more information about signal values, see “Investigate Signal Values”.

Simulink Design Verifier Support for Specified Input Minimum and
Maximum Values
By default, Simulink Design Verifier considers any minimum and maximum input values specified for
Inport blocks in your model. To enable this capability:

1 On the Design Verifier tab, in the Prepare section, from the drop-down menu for the mode
settings, click Settings.

2 In the Configuration Parameters dialog box, on the Design Verifier pane, select the Use
specified input minimum and maximum values parameter.

3 After the analysis completes, to view the design minimum and maximum constraints for your
model, click Generate detailed analysis reports.

The constraints are listed in the Analysis Information chapter of the Simulink Design Verifier
report.

Limitations of Simulink Design Verifier Support for Specified Minimum
and Maximum Values
Simulink Design Verifier support for specified minimum and maximum values has the following
limitations:

• The analysis considers specified minimum and maximum values on root-level Inport blocks only.
The analysis ignores minimum and maximum values specified on other Simulink blocks.

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-2

See Also

More About
• “Specify Signal Ranges”

 Minimum and Maximum Input Constraints

11-3

Specify Input Ranges on Simulink and Stateflow Elements
When you specify input range constraints on Simulink and Stateflow elements, Simulink Design
Verifier considers these constraints during analysis.

In this section...
“Specify Input Ranges for Inport Blocks” on page 11-4
“Specify Input Ranges for Simulink.Signal Objects” on page 11-5
“Specify Input Ranges for Stateflow Data Objects” on page 11-5
“Specify Input Ranges for Subsystems” on page 11-6
“Specify Input Ranges for Global Data Stores” on page 11-7
“Specify Input Ranges for Bus Elements” on page 11-8

Specify Input Ranges for Inport Blocks
After you specify the output minimum and maximum values on Inport blocks, Simulink Design Verifier
analysis uses the minimum and maximum values as constraints.

The following example model restricts the signals from two Inport blocks:

• Input1 block: Minimum: 1, Maximum: 5
• Input2 block: Minimum: -1, Maximum: 1

When you use Simulink Design Verifier, to analyze this model, the analysis produces these results:

• The output from Input1 is never less than 0, therefore the first input to the Logical Operator block
is never false. The objective that the first input to the Logical Operator equals false is
unsatisfiable.

• The Logical Operator block cannot achieve 100% modified condition/decision coverage (MCDC)
coverage because the condition where the first input is false never occurs.

The detailed analysis report shows the values you use as constraints for Input1 and Input2.

Note Simulink Design Verifier considers the full range of possible values (and any minimum and
maximum constraints) for root-level inports only.

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-4

Specify Input Ranges for Simulink.Signal Objects
Using the Model Explorer, in the model workspace, you can specify minimum and maximum values on
Simulink.Signal objects associated with input signals.

The following example model uses the Simulink.Signal objects associated with the input signals a
and b to restrict the signal values:

• Signal a: Minimum: 1, Maximum: 5
• Signal b: Minimum: -1, Maximum: 1

When you analyze this model, the results are the same as if you specified the minimum and maximum
values on the input ports.

Specifying Signal Ranges on Inport Blocks and Signals

If you specify ranges on the Inport blocks and on the signals, the analysis considers the smallest
range for the values. For example, if you specify a range of 4..12 on an input port and a range of
1..8 on the signal from the input port, the analysis considers the range 4..8.

Specify Input Ranges for Stateflow Data Objects
Using the Model Explorer, you can specify ranges on data objects that are directly connected to the
root-level input ports for a Stateflow chart.

In the following example model, the Stateflow chart named Chart has a data object, x, whose range
you specified as 0 < x < 10. In this chart, x must be greater than 15 to trigger the transition from
low to high.

 Specify Input Ranges on Simulink and Stateflow Elements

11-5

The value of x ranges from 0 through 10, therefore the transition condition [x > 15] is never true.
The transition from low to high never occurs. Because the high state is never entered, the
transition condition [x < 15] is never tested, and the transition from high to low never occurs. The
chart is always in the low state.

When you analyze this model, these objectives are proven unsatisfiable:

• The high state is never entered.
• The transition condition [x > 15] is always false, never true.
• The condition [x < 15] is never tested, so it is never true or false.

The analysis report indicates the values that you use as constraints for x: [0, 10].

Specify Input Ranges for Subsystems
The Simulink Design Verifier software considers specified input minimum and maximum values as
constraints only at the top level of a model. You can specify minimum and maximum values on Input
ports on subsystems, but when you analyze the top-level model, the software ignores those values.

When you perform the subsystem analysis, the software considers specified minimum and maximum
values on the input ports of the subsystem.

For example, consider the following model and its subsystem.

In Subsystem, the specified minimum and maximum values for input port SSIn are -10 and 10,
respectively. The lower and upper limits for the Saturation block are -15 and 15, respectively.

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-6

If you right-click Subsystem in the top-level model and select Design Verifier > Generate Tests for
Subsystem, the analysis considers the specified minimum and maximum values as constraints on the
SSIn port.

Constraints: Design Min Max Constraints

The analysis identifies two unsatisfiable objectives:

• input > lower limit F: The input is always greater than the lower limit on the Saturation block
(-15).

• input >= upper limit T: The input is never greater than or equal to the upper limit on the
Saturation block (15).

If you analyze the model that contains Subsystem, the analysis does not consider the values specified
on the input port SSIn in the subsystem. The analysis considers only the root-level input ports at the
respective level of the hierarchy for analysis.

Specify Input Ranges for Global Data Stores
A data store is a repository to which you can write data and from which you can read data, without
having to connect an input or output signal directly to the data store. You create a data store by using
a Data Store Memory block or a Simulink.Signal object. You can specify minimum and maximum
values for any data store.

During subsystem analysis, Simulink Design Verifier creates an input port to mimic the execution
context for a global data store. For more information, see “Extract Subsystems for Analysis” on page
14-15. If the data store has specified minimum and maximum values, those values are assigned as
minimum and maximum values on the new input port. Simulink Design Verifier analysis considers the
input minimum and maximum values as subsystem-level analysis constraints.

In the following example model, data store A has a minimum value of 0 and a maximum value of 10.

The atomic subsystem reads values from the data store and checks to see if the input is less than 0.
The Compare To Zero block outputs 1 if the input is less than 0, and outputs 0 if the input is greater
than or equal to 0. The Test Objective block checks to see if the output is ever 1.

 Specify Input Ranges on Simulink and Stateflow Elements

11-7

In the top-level model, if you right-click Subsystem and select Design Verifier > Generate Tests for
Subsystem, the analysis considers the constraints for data store A to be [0, 10].

The analysis does not satisfy the objective specified in the Test Objective block. The input is always
greater than or equal to 0, therefore the output from the Compare To Zero block is always 0.

Specify Input Ranges for Bus Elements
When you define a bus, you can specify minimum and maximum values for the elements in the bus.
Simulink Design Verifier considers these minimum and maximum values when analyzing subsystems
and models that use the bus as an input signal.

Consider a subsystem that inputs a bus of three fields, each with a defined minimum and maximum.
To view this subsystem, add the examples folder to the current MATLAB path and at the command
line, enter:

open_system('sldvBusMinMaxExample');

Bus Element Bus Element Minimum Bus Element Maximum
vehicleSpeed 0 125
throttle 0 100
engineSpeed 0 7600

The subsystem has test objectives that confirm that each element does not exceed a constant. The
vehicleSpeed signal is limited to a maximum value lower than the test objective.

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-8

Set the current folder to a writable folder. In the top-level mode, right-click Subsystem and select
Design Verifier > Generate Tests for Subsystem. The Condition Objective for testing
vehicleSpeed > 135 is not satisfiable due to the maximum specification on the vehicleSpeed
element.

 Specify Input Ranges on Simulink and Stateflow Elements

11-9

Specification of Input Ranges in sldvData Fields
When you analyze a model, Simulink Design Verifier generates a data file when it completes its
analysis. The data file is a MAT-file that contains an sldvData structure. The sldvData structure
stores all the data that the software gathers and produces during the analysis. You can use the data
file to customize your own analysis or to generate a custom report.

If your model contains specified minimum and maximum values on the input ports, the sldvData
structure contains information about those values. For example, after analyzing the
ex_minmax_on_inports model in “Specify Input Ranges for Inport Blocks” on page 11-4, the data
file contains the following values:

• For the Input1 block:

sldvData.Constraints.DesignMinMax(1).value{1}.low

ans =

 1

sldvData.Constraints.DesignMinMax(1).value{1}.high

ans =

 5
• For the Input2 block:

sldvData.Constraints.DesignMinMax(2).value{1}.low

ans =

 -1

sldvData.Constraints.DesignMinMax(2).value{1}.high

ans =

 1

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-10

Proving Properties of a Model

• “What Is Property Proving?” on page 12-2
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5
• “Prove System-Level Properties Using Verification Model” on page 12-20
• “Prove Properties in a Subsystem” on page 12-23
• “Model Requirements” on page 12-24
• “Isolate Verification Logic with Observers” on page 12-29
• “Property Proving with an Invalid Property” on page 12-32
• “Property Proving with Multiple Properties” on page 12-33
• “Property Proving with an Assumption Block” on page 12-34
• “Property Proving Workflow for Cruise Control” on page 12-35
• “Property Proving Workflow for Fixed-Point Cruise Control with Block Replacements”

on page 12-39
• “Property Proving Using MATLAB Function Block” on page 12-40
• “Property Proving Using MATLAB Truth Table Block” on page 12-41
• “Property Proving Workflow for Thrust Reverser” on page 12-42
• “Debounce Temporal Properties” on page 12-43
• “Power Window Controller Temporal Properties” on page 12-46
• “Debug Property Proving Violations by Using Model Slicer” on page 12-55
• “Design and Verify Properties in a Model” on page 12-60
• “Validate Requirements by Analyzing Model Properties” on page 12-63
• “Use Observer Reference Blocks for Property Proving Analysis” on page 12-70
• “Prove Properties with Requirements Table Blocks” on page 12-73

12

What Is Property Proving?

A property is a requirement that you model in Simulink or Stateflow, or by using MATLAB Function or
Requirements Table blocks. A property can be a simple requirement, such as a signal in your model
that must attain a particular value or range of values during simulation.

A property can also be a requirement on the model that involves a number of input and output signals
modeled as a logical expression that needs to be proved.

The Simulink Design Verifier software performs a formal analysis of your model to prove or disprove
the specified properties. After completing the analysis, the software offers several ways for you to
review the results:

• Highlighted on the model
• A harness model with test cases
• A detailed HTML report

Proof Blocks
The Simulink Design Verifier software provides two blocks so you can specify property proofs in your
Simulink models:

• Proof Objective — Define the values of a signal to prove
• Proof Assumption — Constrain the values of a signal during a proof

Note Blocks from the Model Verification library in the Simulink software behave like Proof Objective
blocks during Simulink Design Verifier proofs. You can use Assertion blocks and other Model
Verification blocks to specify properties of your model. For more information about these blocks, see
“Model Verification”.

Proof Functions
The Simulink Design Verifier software provides two Stateflow and MATLAB for code generation
functions to specify property proving for a Simulink model or Stateflow chart:

• sldv.prove — Specifies a proof objective
• sldv.assume — Specifies a proof assumption

These functions:

• Identify mathematical relationships for proving properties in a form that can be more natural than
using block parameters

• Support specifying multiple objectives, assumptions, or conditions without complicating the
model.

• Provide access to the power of MATLAB.
• Support separation of verification and model design.

For an example of how to use these proof functions, see the sldv.prove reference page.

12 Proving Properties of a Model

12-2

Note Simulink Design Verifier blocks and functions are saved with a model. If you open the model on
a MATLAB installation that does not have a Simulink Design Verifier license, you can see the blocks
and functions, but they do not produce results.

 What Is Property Proving?

12-3

Workflow for Proving Model Properties

To prove properties of your design model, use the following workflow:

1 Determine the verification objectives for your design model, e.g., based on your requirements
specifications.

2 Instrument your design model to specify proof objectives and proof assumptions.

• For simple properties, instrument your model with blocks or MATLAB functions that specify
the proof objectives.

• For system-level properties, construct a verification model that contains a Model block that
references the design model and define the properties on the design model interface using
the same inputs and outputs.

3 Define analysis constraints using the Proof Assumption block or sldv.assume. These constraints
apply to all enabled proof objectives.

Note The proof assumptions are applied to all enabled proof objectives. Make sure that you do
not specify any contradictory assumptions because that might invalidate the entire analysis.

4 Specify options that control how Simulink Design Verifier proves the properties of your model.
5 Execute the Simulink Design Verifier analysis and review the results.

For an exercise that demonstrates this workflow, see “Prove Properties in a Model” on page 12-5.

See Also

More About
• “Property Proving Workflow for Cruise Control” on page 12-35
• “Property Proving Workflow for Fixed-Point Cruise Control with Block Replacements” on page

12-39
• “Property Proving Workflow for Thrust Reverser” on page 12-42

12 Proving Properties of a Model

12-4

Prove Properties in a Model

In this section...
“About This Example” on page 12-5
“Construct Example Model” on page 12-5
“Check Compatibility of Example Model” on page 12-6
“Instrument Example Model” on page 12-7
“Configure Property-Proving Options” on page 12-8
“Analyze Example Model” on page 12-8
“Review Analysis Results” on page 12-8
“Customize Example Proof” on page 12-15
“Reanalyze Example Model” on page 12-16
“Review Results of Second Analysis” on page 12-16
“Analyze Contradictory Models” on page 12-18
“Prove Properties in a Large Model” on page 12-19

About This Example
The following sections describe a Simulink model, for which you prove a property that you specify
using a Proof Objective block. This example demonstrates the property-proving capabilities of
Simulink Design Verifier.

In this example, you perform the following tasks.

Task Description See...
1 Construct the example model. “Construct Example Model” on page 12-5
2 Verify that your model is compatible

with Simulink Design Verifier.
“Check Compatibility of Example Model” on page
12-6

3 Add a Proof Objective block to your
model to prepare for its proof.

“Instrument Example Model” on page 12-7

4 Configure Simulink Design Verifier to
prove properties.

“Configure Property-Proving Options” on page 12-
8

5 Prove a property of your model. “Analyze Example Model” on page 12-8
6 Review the analysis results. “Review Analysis Results” on page 12-8
7 Add proof assumptions to specify

analysis constraints.
“Customize Example Proof” on page 12-15

8 Prove a property of the customized
model and interpret the results.

“Reanalyze Example Model” on page 12-16

Construct Example Model
Construct a Simulink model to use in this example:

 Prove Properties in a Model

12-5

1 Create an empty Simulink model.
2 Copy the following blocks into your empty model window:

• From the Sources library, an Inport block to initiate the input signal whose value Simulink
Design Verifier controls

• From the Logic and Bit Operations library, a Compare To Zero block to provide simple logic
• From the Sinks library, an Outport block to receive the output signal

3 Connect these blocks such so your model appears similar to the following model:

4 On the Modeling tab, click Model Settings.
5 On the Configuration Parameters dialog box, in the Solver pane, in the Solver selection:

• Set the Type option to Fixed-step.
• Set the Solver option to Discrete (no continuous states).

The Simulink Design Verifier can analyze only models that use a fixed-step solver.
6 Click OK to save your changes and close the Configuration Parameters dialog box.
7 Save your model with the name ex_property_proving_example_basic.

Check Compatibility of Example Model
Every time Simulink Design Verifier software analyzes a model, before the analysis begins, the
software performs a compatibility check. If your model is not compatible, the software cannot analyze
it.

You can also make sure you model is compatible with Simulink Design Verifier before you start the
analysis:

1 Open the ex_property_proving_example_basic model.
2 On the Design Verifier tab, click Check Compatibility.

The Simulink Design Verifier software displays the log window, which states whether or not your
model is compatible.

The model you just created is compatible.

12 Proving Properties of a Model

12-6

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible, your model contains at
least one object that Simulink Design Verifier does not support. You can analyze a partially
compatible model, but, by default, unsupported objects are stubbed out. The results of the analysis
may be incomplete. For detailed information about automatic stubbing, see “Handle Incompatibilities
with Automatic Stubbing” on page 2-7.

Instrument Example Model
Prepare your example model so that you can prove its properties with Simulink Design Verifier.
Specifically, instrument the model by adding and configuring a Proof Objective block:

1 In the MATLAB Command Window, enter sldvlib.

The Simulink Design Verifier library appears.
2 Open the Objectives and Constraints sublibrary.
3 Copy the Proof Objective block to your model and insert it between the Compare To Zero and

Outport blocks.
4 In your model, double-click the Proof Objective block.

The Proof Objective block parameters dialog box opens.
5 In the Values box, enter 1.

The Simulink Design Verifier software will attempt to prove that the signal output by the
Compare To Zero block always attains this value for any signals that it receives.

6 Click OK to apply your changes and close the Proof Objective block parameters dialog box.

 Prove Properties in a Model

12-7

7 Save your model and keep it open.

Configure Property-Proving Options
Configure Simulink Design Verifier to prove properties of the
ex_property_proving_example_basic model that you instrumented:

1 Open the ex_property_proving_example_basic model.
2 On the Design Verifier tab, in the Mode section, select Property Proving.
3 Click Property Proving Settings.
4 Click OK to apply your changes and close the Configuration Parameters dialog box.

Note On the Property Proving pane, you can optionally specify values for other parameters
that control how Simulink Design Verifier proves properties of your model. For more information,
see “Design Verifier Pane: Property Proving” on page 15-52.

5 Save the ex_property_proving_example_basic model.

Analyze Example Model
To analyze the ex_property_proving_example_basic model, on the Design Verifier tab, click
Prove Properties. Simulink Design Verifier begins a property-proving analysis.

During the analysis, the log window shows the progress of the analysis. It displays information such
as the number of objectives processed and which objectives were satisfied or falsified.

To terminate the analysis at any time, in the log window, click Stop.

Review Analysis Results
When the analysis is complete, the log window displays the following options for reviewing the
results:

• Highlight the analysis results on the model
• Generate a detailed HTML analysis report
• Create a harness model with test cases
• Simulate the test cases created by the model and produce a model coverage report

You can also view the Simulink Design Verifier data file. For detailed information about the data file,
see “Manage Simulink Design Verifier Data Files” on page 13-7.

The following sections describe how you can review the analysis results:

12 Proving Properties of a Model

12-8

• “Review Results on Model” on page 12-9
• “Review Detailed Analysis Report” on page 12-10
• “Review Harness Model” on page 12-12
• “Simulate Model with Counterexample” on page 12-13
• “Review Analysis Results” on page 12-15

Review Results on Model

You can review the analysis results at a glance by viewing the blocks that are highlighted in the
model window. The highlighting can have four colors:

• Green — The analysis proved all the proof objectives valid.
• Red — The analysis disproved a proof objective and generated a counterexample that falsified that

objective.
• Orange — The analysis disproved a proof objective, but it could not generate a counterexample or

the proof objective remained undecided. This result occurs due to:

• A proof objective on a signal whose value the software cannot control, for example, a Constant
block

• A proof objective that depends on nonlinear computation
• A proof objective that creates an arithmetic error, such as division by zero
• Automatic stubbing being enabled, and the analysis encountering an unsupported block whose

operation it does not understand but that the analysis requires to generate the counterexample
• The analysis timing out
• Limitations of the analysis engine

• Gray — The model object was not part of the analysis.

Highlight the analysis results on the example model:

1 In the Results Summary window for the ex_property_proving_example_basic analysis,
click Highlight analysis results on model.

The Proof Objective block is highlighted in red, which indicates that a proof objective was
falsified with a counterexample.

The Simulink Design Verifier Results window appears.

 Prove Properties in a Model

12-9

As you click objects in the model, this window changes to display detailed analysis results for
that object.

Tip By default, the Simulink Design Verifier Results window is always the topmost visible
window. To allow the window to move behind other window, click and clear Always on top.

2 Click the highlighted Proof Objective block.

The Simulink Design Verifier Results window indicates that the proof objective that the output
signal from the Compare to Zero was not 1 was disproved with a counterexample.

Review Detailed Analysis Report

To create a detailed HTML analysis report:

1 In the Simulink Design Verifier Results Summary window, click Generate detailed analysis
report.

The HTML report opens in a browser window.
2 The report includes the following Table of Contents. Click a hyperlink to navigate to particular

section in the report.

12 Proving Properties of a Model

12-10

3 In the Table of Contents, click Summary.

The Summary provides an overview of the analysis results, and it indicates that Simulink Design
Verifier identified a counterexample that falsifies an objective in your model.

4 In the Table of Contents, click Proof Objectives Status.

The Objectives Falsified with Counterexamples table lists the proof objectives that Simulink
Design Verifier disproved using a counterexample that it generated. You can locate the objective
in your model window by clicking Proof Objective; the software highlights the corresponding
Proof Objective block in your model window.

5 In the Objectives Falsified with Counterexamples table, under the Counterexample column,
click 1.

 Prove Properties in a Model

12-11

This section displays information about proof objective 1 and provides details about the
counterexample that Simulink Design Verifier generated to disprove that objective. In this
counterexample, a signal value of 99 falsifies the objective that you specified using the Proof
Objective block. That is, 99 is not less than or equal to 0, which causes the Compare To Zero
block to return 0 (false) instead of 1 (true).

Review Harness Model

Create a harness model with counterexamples that falsify the proof objectives in your model:

1 In the Simulink Design Verifier log window, click Create harness model.

The software creates a harness model named
ex_property_proving_example_basic_harness.

The harness model contains the following items:

• Signal Builder block named Inputs — A group of signals that falsify proof objectives.
• Subsystem block named Test Unit — A copy of your model.
• DocBlock named Test Case Explanation — A textual description of the counterexamples

that the analysis generates.

12 Proving Properties of a Model

12-12

• A Size-Type block — A subsystem that transmits signals from the Inputs block to the Test Unit
block. This block verifies that the size and data type of the signals are consistent with the Test
Unit block.

2 Double-click the Inputs block.

The input signal 1 causes the output of the Compare to Zero block to be 0. This counterexample
violates the proof objective that specifies that the output of the Compare to Zero block be 1.

Simulate Model with Counterexample

Simulate the harness model to observe the counterexample that falsifies the proof objective in your
model:

 Prove Properties in a Model

12-13

1 Open the ex_property_proving_example_basic model.
2 On the Simulation tab, click Library Browser.
3 From the Sinks library, copy a Scope block into your harness model window. The Scope block

allows you to see the value of the signal output by the Compare To Zero block in your model.
4 In your harness model window, connect the output signal of the Test Unit subsystem to the Scope

block.

5 To simulate your harness model, on the Simulation tab, click Run.

The Simulink software simulates the harness model.
6 In your harness model window, double-click the Scope block to open its display window.

The Scope block displays the value of the signal output by the Compare To Zero block in your
model. In this example, the Compare To Zero block returns 0 (false) throughout the simulation,
which falsifies the proof objective that the output of the Compare to Zero block be 1 (true). The
counterexample that the Signal Builder block supplies falsifies the proof objective.

12 Proving Properties of a Model

12-14

Review Analysis Results

As long as your model remains open, you can view the results of your most recent Simulink Design
Verifier analysis results in the Results Summary window.

On the Design Verifier tab, in the Review Results section, click Results Summary. The Results
Summary window opens displaying the results of the latest Simulink Design Verifier analysis.

For any Simulink Design Verifier analysis, from the Results Summary window, you can perform the
following tasks.

Task For more information
Highlight the analysis results on the model. “Highlight Results on the Model” on page 13-2
Generate a detailed analysis report. “Review Results” on page 13-35
Create the harness model, or if the harness model
already exists, open it.

If no counterexamples were created during the
analysis, this option is not available.

“Manage Simulink Design Verifier Harness
Models” on page 13-13

View the data file. “Manage Simulink Design Verifier Data Files” on
page 13-7

View the log file. “View Log Files” on page 13-56

After you close your model, you can no longer view the analysis results.

Customize Example Proof
Modify the simple Simulink model whose proof objective Simulink Design Verifier disproved in the
previous task. Specifically, customize the proof by adding and configuring a Proof Assumption block:

1 In the MATLAB Command Window, type sldvlib.

The Simulink Design Verifier library opens.
2 Open the Objectives and Constraints sublibrary.
3 Copy the Proof Assumption block to your model.
4 In your model window, insert the Proof Assumption block between the Inport and Compare To

Zero blocks.
5 In your model, double-click the Proof Assumption block to access its attributes.

The Proof Assumption block parameter dialog box opens.
6 In the Values box, enter [-1, 0]. When proving properties of this model, Simulink Design

Verifier constrains the signal values entering the Compare To Zero block to the specified range. If
the input to the Compare to Zero block is always within this range, the output of the Compare to
Zero block will always be 1.

7 Click Apply and then OK to apply your changes and close the Proof Assumption block parameter
dialog box.

 Prove Properties in a Model

12-15

8 Save the ex_property_proving_example_basic model and keep it open.

Reanalyze Example Model
Analyze the model that you modified to see how the Proof Assumption block affects the property-
proving analysis.

Open the ex_property_proving_example_basic model. On the Design Verifier tab, click Prove
Properties.

When the analysis is complete, the log window displays the options. There is no option to create a
harness model, because the analysis satisfied all proof objectives in your model, so there are no
counterexamples.

Review Results of Second Analysis
Review the results of the second analysis:

• “Review Results on the Model” on page 12-16
• “Review Analysis Report” on page 12-17

Review Results on the Model

Highlight the model to see the analysis results:

1 Click Highlight analysis results on model.

The Proof Objective is now highlighted in green.

2 Click the Proof Objective block.

The Simulink Design Verifier Results window shows that the proof objective that states that the
signal be 1 is valid.

12 Proving Properties of a Model

12-16

Review Analysis Report

Review the analysis results in the detailed report:

1 Click Generate detailed analysis report.
2 In the Table of Contents, click Summary.

The Summary chapter indicates that Simulink Design Verifier proved a proof objective in the
model.

3 The Constraints section lists the analysis constraint you specified in the Proof Assumption block.

4 Scroll back to the top of the browser window. In the Table of Contents, click Proof
Objectives Status.

 Prove Properties in a Model

12-17

The Objectives Proven Valid table lists the proof objectives that Simulink Design Verifier proved
to be valid.

5 Scroll down to view the Properties chapter or go to the top of the browser window and in the
Table of Contents, click Properties.

The Proof Objective summary indicates that Simulink Design Verifier proved an objective that
you specified in your model. The Proof Assumption block restricts the domain of the input signals
to the interval [-1, 0]. Therefore, the software proves that this interval does not contain values
that are greater than zero, thereby satisfying the proof objective.

Analyze Contradictory Models
If the analysis produces the error The model is contradictory in its current
configuration, the software detected a contradiction in your model and it cannot analyze the
model. You can have a contradiction if your model has Proof Assumption blocks with incorrect
parameters. For example, an assumption could state that a signal must be between 0 and 5 when the
signal is constant 10.

If the software detects a contradiction, all previous results are invalidated and the software reports
that all the properties are falsified.

Note Constraints added at the inputs either through design minimum/maximum or test conditions/
proof assumptions do not lead to a contradiction. However, if you constrain signals that are
downstream of a computation using test conditions/proof assumptions, you must ensure that the
constrained condition is feasible through the model computation. Otherwise, the resulting model is
contradictory that may produces invalid results with or without an explicit analysis error. To ensure
that the constraints are feasible, first try the same condition using a Test Objective. If it can be
satisfied, you can use the same condition safely as a constraint.

12 Proving Properties of a Model

12-18

Prove Properties in a Large Model
A thorough proof of your model requires that Simulink Design Verifier search through all reachable
configurations of your model—even the ones that are reached only after long time delays. The
computation time and memory required to search a model completely often make an exhaustive proof
impractical.

“Prove Properties in Large Models” on page 14-24 gives detailed information about strategies you
can use to improve the performance of a property-proving analysis of a large model.

See Also

More About
• “Property Proving with an Invalid Property” on page 12-32
• “Property Proving with Multiple Properties” on page 12-33
• “Property Proving with an Assumption Block” on page 12-34

 Prove Properties in a Model

12-19

Prove System-Level Properties Using Verification Model
In this section...
“When to Use a Verification Model for Property Proving” on page 12-20
“About This Example” on page 12-20
“Understand the Verification Model” on page 12-20
“Prove the Properties of the Design Model” on page 12-21
“Fix the Verification Model” on page 12-22

When to Use a Verification Model for Property Proving
If your model has system-wide properties that affect the behavior of the model, you might want to
prove the properties without changing the design model. To do this, you create a verification model
that includes:

• Model block that references the design model
• One or more verification subsystems that define the properties and any required constraints

About This Example
The design model sldvdemo_sbr_design models the logic for a seat belt reminder light. If the
ignition is turned on, the seat belts are unfastened, and the car exceeds a certain speed, the seat belt
reminder light turns on.

The sldvdemo_sbr_verification model is a verification model that defines some constraints and
verifies the properties in the sldvdemo_sbr_design model. The Model block in the verification
model references the design model, so that the verification logic exists only in the verification model.

The sldvdemo_sbr_verification model contains a property that is falsified, because a constraint
is disabled. In the sldvdemo_sbl_verification_fixed model, the constraint is enabled and all
the properties are proven valid.

Understand the Verification Model
Take these steps to understand how the verification model works:

1 Open the verification model:

sldvdemo_sbr_verification

The Design Model block is a Model block that references sldvdemo_sbr_design. The SBR
Stateflow chart in the design model assumes that the KEY input is initially 0.

2 Open the Safety Properties subsystem that specifies the properties of the design model that you
want to prove.

This subsystem contains a MATLAB Function block called MATLAB Property. The code in this
block specifies the property that the seat belt reminder should be on when the ignition is on, the
seat belt is not fastened, and the speed is less than 15:

3 Close the Safety Properties subsystem.

12 Proving Properties of a Model

12-20

matlab: sldvdemo_sbr_verification

4 Open the Input Constraints subsystem.

This subsystem defines the following constraints:

• The key can have three positions: 0, 1, 2
• The speed is constrained to fall between 10 and 30.
• The key must start at 0 and can only change by one increment at a time. For example, the key

can change from 0 to 1 or 1 to 2, but not from 0 to 2. In this verification model, this constraint
is not enabled.

5 Close the Input Constraints subsystem, but keep the sldvdemo_sbr_verification model
open.

Prove the Properties of the Design Model
Analyze the sldvdemo_sbr_verification model to prove the properties:

1 In the sldvdemo_sbr_verification model window, to start the analysis, double-click the Run
button to start the analysis.

When the analysis completes, the Simulink Design Verifier log window indicates that one
objective is falsified - needs simulation. For more information, see “Objectives Falsified - Needs
Simulation” on page 13-49.

2 To see which objective was falsified, click Highlight analysis results on model.

The Safety Properties subsystem is highlighted in orange.
3 Open the Safety Properties subsystem and click the MATLAB Property block.

The Simulink Design Verifier Results window indicates that the statement

sldv.prove(implies(activeCond,SeatBeltIcon))

was false during at least one time step.

4 Click View counterexample to see the signal values that violated this property.

The Signal Builder block opens with the counterexample. The KEY input was initially 2, which is
invalid.

To validate the property specified in the Safety Properties subsystem, you have to make sure that the
initial value of KEY is 0.

 Prove System-Level Properties Using Verification Model

12-21

Fix the Verification Model
The Input Constraints subsystem in the verification model contained three constraints. The third
constraint, which requires that the initial value of KEY be 0, and that KEY can only change in
increments of 1, is disabled.

To see how this property is validated when you enable the third constraint:

1 In the sldvdemo_sbr_verification model, click Open Fixed Model.

The sldvdemo_sbr_verification_fixed verification model opens.
2 Open the Input Constraints subsystem.

This third constraint is now enabled so that KEY has an initial value of 0 and changes in
increments of 1.

3 Close the Input Constraints subsystem.
4 In the sldvdemo_sbr_verification_fixed model, to start the analysis, double-click the Run

block.

The analysis proves the validity of the property.

See Also

More About
• “Property Proving Using MATLAB Function Block” on page 12-40
• “Property Proving Using MATLAB Truth Table Block” on page 12-41

12 Proving Properties of a Model

12-22

Prove Properties in a Subsystem
If you have a large model, you can prove the properties of a subsystem in the model and review the
analyses in smaller, manageable reports. The workflow for proving properties in a subsystem is:

1 Open the model that contains the subsystem.
2 Make the subsystem atomic.
3 Run Simulink Design Verifier using the Prove Properties of Subsystem option.
4 Review the results.

The tutorial in “Generate Test Cases for a Subsystem” on page 7-18 explains how to generate test
cases for the Controller subsystem in the Cruise Control Test Generation model. The steps for proving
properties are similar to those for generating test cases, except that you select the Prove Properties
of Subsystem option instead of the Generate Tests for Subsystem option.

 Prove Properties in a Subsystem

12-23

Model Requirements
The Simulink Design Verifier block library includes a sublibrary Example Properties. The Example
Properties sublibrary includes:

• “Basic Properties” on page 12-24 — Four examples that demonstrate how to prove basic
properties.

• “Temporal Properties” on page 12-26 — Four examples that demonstrate how to define temporal
properties on Boolean signals

The workflow for using these examples in your model is:

1 Copy these examples into your Verification Subsystem block.
2 Adapt them, if required, for the specific properties that you want to prove.
3 Run the Simulink Design Verifier analysis to prove that the assertions in these examples never

fail.
4 If the assertion fails, the software creates a counterexample that causes the assertion to fail and

then generates a harness model.
5 On the harness model, execute the counterexample to confirm that the assertion fails with that

counterexample.

Basic Properties
To view the Basic Properties examples:

1 Open the Simulink Design Verifier block library. Type:

sldvlib
2 Double-click the Examples sublibrary.
3 Double-click the Basic Properties block that contains the examples.

The sections that follow describe each example in the Block Properties sublibrary in detail.

Conditions that Trigger a Result

The Simulink Design Verifier Implies block allows you to test for conditions that trigger a result. This
example specifies that if condition A is true, result B must always be true.

Increasing or Decreasing Signals

The two examples in this section specify that a signal is either:

12 Proving Properties of a Model

12-24

• Always increasing or staying constant
• Always decreasing or staying constant

Exclusivity Operation

This example describes four conditions that should not be true at the same time.

Conditions with One True Element

This example specifies that only one of the four input signals can be true.

 Model Requirements

12-25

Temporal Properties
To view the Temporal Properties examples:

1 Open the Simulink Design Verifier block library. Type:

sldvlib
2 Double-click the Temporal Properties sublibrary.
3 Double-click the Temporal Properties block that contains the examples.

The sections that follow describe each example in the Temporal Properties sublibrary in detail.

Synchronize the Output with the Input

When the input In1 equals ACTIVE, the input In2 is set to INACTIVE after five time steps.

Make a Signal Inactive After a Delay

In this example, after five consecutive time steps where the SENSOR_HIGH input is true, the CMD
signal becomes true. CMD is true as long as SENSOR_HIGH is true, unless the block is reset by the
MANUAL_RESET signal.

12 Proving Properties of a Model

12-26

Extend a True Signal

In this example, after the input becomes true, the output becomes true for the number of time steps
specified in the Detector block, in this case, 5. The input remains true for 5 time steps as well.

Test the Input Against a Specified Threshold

When the input In3 equals ON and the input In4 is less than the constant THRESHOLD, In3 is set to
OFF within five time steps.

 Model Requirements

12-27

See Also

More About
• “Debounce Temporal Properties” on page 12-43
• “Power Window Controller Temporal Properties” on page 12-46

12 Proving Properties of a Model

12-28

Isolate Verification Logic with Observers
You can isolate the verification logic in a model by using Observer Reference blocks. Use Observer
Reference blocks when you want to keep the verification logic separate from your design model.
When you use an Observer Reference, you can make changes to the Observer model without
changing the design model. Using Observer Reference blocks can help you specify properties or
requirements early in the model design or across multiple model designs. The Observer Reference
block also allows you to:

• Model design requirements as properties and prove them using Simulink Design Verifier.
• Establish baseline results based on the captured output and detect model regressions.
• Generate test cases for functional design requirements using custom test objectives.

Double-click an Observer Reference block to open the Observer model. Observer Reference blocks
can only be at the top level of a system model and do not have input ports. For more information, see
“Access Model Data Wirelessly by Using Observers” (Simulink Test).

Replace a Verification Subsystem with an Observer Reference Block
When authoring custom verification objectives, the Observer Reference block can be used in place of
the Verification Subsystem block. The Observer Reference block references a separate verification
model called the Observer model that you use to verify your system model. Converting a Verification
Subsystem block to an Observer Reference block can declutter a system model. To convert a
Verification Subsystem block to an Observer Reference block, right-click the verification subsystem
and select Observers > Move selected block to Observer > New Observer. This operation cannot
be undone. This action adds an Observer Reference block to your system model and opens the
Observer model. You must save the Observer model in a writable folder on the MATLAB path.

Consider the case where the model sldvdemo_debounce_validprop contains the Verification
Subsystem block Verify Output.

 Isolate Verification Logic with Observers

12-29

By converting the subsystem to an Observer Reference block, you remove the signals that connect
subsystem to the system model while preserving the ability to test the integrity of the system.

The two signals, debounce and raw, are automatically mapped to two Observer Port blocks in the
Observer model, sldvdemo_debounce_validprop_Observer1.

12 Proving Properties of a Model

12-30

You can verify the properties of sldvdemo_debounce_validprop without making any changes to
the design model.

Report on Observer Reference Blocks
If your model includes an Observer Reference block, the Simulink Design Verifier analysis report
shows the property proving, test case generation, and design error information for the Observer
Reference blocks in the Observer Model(s) subsection and the design model information in the
Design Model subsection. For more information, see “Review Results” on page 13-35.

Limitations
• Simulink Design Verifier does not support:

• Observer models that include Model blocks
• Observer models observing a constant signal
• Applying block replacement rules to Observer models
• Observer models that run at a different base rate than the design model
• Tuning the parameters inside an Observer model
• Test generation for code generated by Embedded Coder for models that contain Observer

Reference blocks
• Observer model that uses variable-step solver settings to execute the analysis

Note If an Observer model includes any of the restrictions in this list, the software ignores the
corresponding Observer Reference block during the analysis.

• Simulink Design Verifier analysis returns an error when you:

• Analyze standalone Observer models
• Perform subsystem extraction on an Observer Reference block

See Also
Observer Port (Simulink Test) | Observer Reference (Simulink Test) | “Use Observer Reference Blocks
for Property Proving Analysis” on page 12-70 | “Use Observer Reference Block for Test Case
Generation” on page 7-130

External Websites
• “Access Model Data Wirelessly by Using Observers” (Simulink Test)

 Isolate Verification Logic with Observers

12-31

Property Proving with an Invalid Property

This example shows how to find an invalid property using Simulink® Design Verifier™ property
proving analysis. It attempts to prove that when the sum of the current and six previous input values
is greater than 6, the output equals 2. In this case, the property is invalid because a single large input
value (e.g. 255) causes the sum to be greater than 6. Simulink Design Verifier produces a
counterexample that demonstrates the violation.

open_system('sldvdemo_debounce_falseprop');

12 Proving Properties of a Model

12-32

Property Proving with Multiple Properties

This example shows how to perform a property proving analysis with multiple properties. The model
is configured for the analysis to attempt to prove that:

• When the current and six previous input values are true, the output will be true.
• When the current and six previous input values are false, the output will be false.

open_system('sldvdemo_debounce_validprop');

 Property Proving with Multiple Properties

12-33

Property Proving with an Assumption Block

This example shows how to perform a Simulink® Design Verifier™ property proof using a Proof
Assumption block. It attempts to prove that when the sum of the current and six previous input values
is greater than 6, the output equals 2. The model includes a Proof Assumption block that constrains
the input to be 0 or 1. Simulink Design Verifier searches for violations of 20 or fewer time steps. It is
unable to find a violation because the property is valid under the assumption.

open_system('sldvdemo_debounce_assumeblk');

12 Proving Properties of a Model

12-34

Property Proving Workflow for Cruise Control

This example shows how to find a property violation by using Simulink® Design Verifier™ property
proving analysis. You model safety requirements as properties and then verify the design model
against requirements.

When you perform property proving analysis, Simulink Design Verifier generates a counterexample
that you use to debug the property violation.

Step 1: Open the Model

The sldvdemo_cruise_control_verification model contains a model reference to the
sldvdemo_cruise_control_defective design model. The design model is a cruise control
system that consists of a PI Controller that computes the throttle output based on the difference
between the actual and target speed.

open_system('sldvdemo_cruise_control_verification');

The safety properties for the throttle output are modeled in the Safety Properties verification
subsystem by the Assertion block.

 Property Proving Workflow for Cruise Control

12-35

open_system('sldvdemo_cruise_control_verification/Safety Properties');

Step 2: Perform Property Proving Analysis

On the Design Verifier tab, click Prove Properties.

After the analysis completes, the Results Summary window reports that one objective was falsified.

The harness model is generated and the Signal Builder dialog box opens and displays the
counterexample.

Step 3: Simulate the Counterexample to Replicate the Error

In the Signal Builder dialog box, click the Start simulation button ▸ .

The Diagnostic Viewer window displays an error stating that the simulation was terminated because
an assertion occurred at time 0.04.

Optionally, you can debug the property violation by using the Model Slicer. For more information, see
“Debug Property Proving Violations by Using Model Slicer” on page 12-55.

12 Proving Properties of a Model

12-36

Step 4: Open the Fixed Model

The erroneous behavior exhibited by the counter example is fixed in the
sldvdemo_cruise_control_verification_fixed model.

open_system('sldvdemo_cruise_control_verification_fixed');

In the property proving workflow, you may be required to redesign the system and/or redefine the
property and perform such iterations.

Open the referenced model sldvdemo_cruise_control_fixed and open the Controller
subsystem. In this subsystem, the updated design model resets the throttle output when Active
Control is active.

On the Design Verifier tab, click Prove Properties. After the analysis completes, the Results
Summary window reports that the objective is valid.

See Also

• “Workflow for Proving Model Properties” on page 12-4

 Property Proving Workflow for Cruise Control

12-37

• “Prove System-Level Properties Using Verification Model” on page 12-20

12 Proving Properties of a Model

12-38

Property Proving Workflow for Fixed-Point Cruise Control with
Block Replacements

This example shows how to prove properties in a fixed-point cruise control algorithm. It references
the design model using model reference so that the original design model is unchanged. A block
replacement rule specifies the property that checks if an overflow is possible. The verification
subsystem specifies an assumption on the range of the speed input during property proving. This
model configures Simulink Design Verifier to apply a block replacement to the Sum block that feeds
the outport of the fixed-point PI Controller in the referenced model and return a counterexample that
demonstrates an overflow.

open_system('sldvdemo_cruise_control_fxp_verification');

 Property Proving Workflow for Fixed-Point Cruise Control with Block Replacements

12-39

Property Proving Using MATLAB Function Block

This example shows how to verify the seat belt reminder design model. The Safety Properties block
below it contains a property specified in MATLAB® that indicates when the icon should be active.
Simulink® Design Verifier™ analyzes the design model and safety property to prove correctness or to
identify counterexamples. In this model, the property is violated because the design implicitly
assumes that the KEY input starts at 0 and changes by increments of 1.

open_system('sldvdemo_sbr_verification');

12 Proving Properties of a Model

12-40

Property Proving Using MATLAB Truth Table Block

This example shows how to verify the seat belt reminder design model referenced in the top block
above. The Safety Properties block below it contains a property specified in MATLAB Truth Table that
indicates when the SeatBeltIcon output should be active. Simulink Design Verifier analyzes the design
model and safety property to prove correctness or to identify counterexamples. In this model, the
property is proven under the explicit assumption that the KEY input starts at 0 and changes by
increments of 1.

open_system('sldvexSBRVerificationTruthTableFixedExample');

 Property Proving Using MATLAB Truth Table Block

12-41

Property Proving Workflow for Thrust Reverser

This example shows how to verify safety properties in a thrust reverser design model. The Properties
block below it contains four safety properties. Simulink® Design Verifier™ analyzes the design model
and safety properties to prove correctness or to identify counterexamples. The use of model
referencing eliminates the need to add verification content to the design model, allowing the
verification content to exist independently from the design.

open_system('sldvdemo_thrustrvs_verification');

12 Proving Properties of a Model

12-42

Debounce Temporal Properties

This example shows how to model temporal system requirements for property proving and test case
generation using Simulink® Design Verifier™ Temporal Operator blocks.

Temporal Operators

The Simulink® Design Verifier™ library provides three basic temporal operator blocks can be used to
model temporal properties. The intent of the temporal operators is to support the specification of
temporal requirements, such that the modeled property has a closer co-relation to the actual textual
requirement. These blocks are low-level building blocks for constructing more complex temporal
properties.

Debounce Model and Requirements

Consider a debounce logic that debounces between values of 0 and 1 based on the input holding a
value for a fixed number of time steps.

The debounce functionality is captured in the containing Stateflow® chart.

open_system('sldvdemo_debounce_to')
open_system('sldvdemo_debounce_to/debounce')

Consider two requirements of the debounce model that you would like to verify.

Requirement 1:

Whenever the input equals 1 for more than 6 steps, the output shall be equal to 2.

Requirement 2:

Whenever the input becomes 0 for more than 5 steps after the output was 2, the output shall equal 1
as long as the input stays at 0.

Property Specification

For specifying Requirement 1, you first represent the constraint that input equals 1 for more
than 6 steps. This can be captured by the Detector block from the Temporal Operator Blocks Library.
On detecting that the input value is 1 for 7 (or more than 6) time steps, you want to check that the
output equals 2 as long as input stays equal to 1 after the detection. Use the "Synchronized" option of
the Detector block followed by an Implies block to capture this.

open_system('sldvdemo_debounce_to/Verify True Output1')

 Debounce Temporal Properties

12-43

Multiple temporal operator blocks can be combined to construct more complex temporal properties.
Consider Requirement 2.

open_system('sldvdemo_debounce_to/Verify True Output2')

For illustration, this requirement is broken down roughly into three pieces of interest:

1 After the output was 2: This is an enabling condition for your property. While checking the rest
of the constraints, you want to know if this condition was true at some point in the past. This type
of an enabling condition is typically followed by an Extender (either "Finite" or "Infinite") that, in
combination with other constraints, might form the first input to your implication.

2 The input becomes 0 for more than 5 steps and check something as long as input stays 0:
For the same reason as the first property, you use a Detector with "Synchronized" output ("Time
steps for input detection" = 6).

12 Proving Properties of a Model

12-44

3 The output shall equal 1: This is the condition that you want to verify whenever the first two
constraints hold. This is captured through a logical Implies block. Note that you cannot use
Within Implies block here.

Property Proving

Once the temporal requirements have been modeled, you can perform property proving on these
using Simulink Design Verifier.

Clean Up

To complete the example, close all the opened models.

close_system('sldvdemo_TOBlocks',0);
close_system('sldvdemo_debounce_to',0);

 Debounce Temporal Properties

12-45

Power Window Controller Temporal Properties

This example shows how to model temporal system requirements in a power window controller model
for property proving and test case generation using Simulink® Design Verifier™ Temporal Operator
blocks.

Temporal Operators

The Simulink® Design Verifier™ library provides three basic temporal operator blocks which can be
used to model temporal properties. The intent of the temporal operators is to support the
specification of temporal requirements, such that the modeled property has a closer correlation to the
actual textual requirement. These blocks are low-level building blocks for constructing more complex
temporal properties.

Power Window Controller

The power window controller responds to the driver and passenger commands by giving the
commands for moving the window up or down. It also responds to an obstacle and to reaching the
end of the window frame in either direction.

Consider the following two requirements for the power window controller:

Requirement 1 (Obstacle Response)

Whenever an obstacle is detected, the controller shall give the down command for 1 second.

Requirement 2 (AutoDown feature)

If the driver presses the down button for less than 1 second, the controller keeps giving the down
command until the end has been reached or the driver presses the up button.

%Model of the power window controller
open_system('sldvdemo_powerwindowController')
open_system('sldvdemo_powerwindowController/control')

12 Proving Properties of a Model

12-46

Property Specification

The power window verification system is the top-level model that contains a model reference to the
power window controller model specifying the controller behavior and the modeled requirements.

%Model of the top-level verification system
open_system('sldvdemo_powerwindow_vs')

 Power Window Controller Temporal Properties

12-47

Global Assumptions: The power window controller is an open system. This makes the environment
controlled inputs, obstacle and endstop (end of the window frame) to occur freely. To constrain the
environment, add two global assumptions for your controller model.

1) The obstacle and the endstop inputs never become true at the same time.

2) The obstacle does not occur multiple times within the following 1-second interval.

For the temporal assumption on obstacle, use a Detector block with output type of "Delayed Fixed
Duration" to capture the fixed duration of 1 second (5 time steps with 0.2 sample time).

12 Proving Properties of a Model

12-48

% Global Assumptions
open_system('sldvdemo_powerwindow_vs/Global Assumptions')

Now consider the first controller requirement for Obstacle Response.

% Obstacle Response
open_system('sldvdemo_powerwindow_vs/Verification Subsystem2')

Here, use the Detector block with output type of "Delayed Fixed Duration" for the property
specification. After detection of the obstacle, construct a fixed interval of 4 steps. Note that the input
is not observed during the output construction phase for the Detector with "Delayed Fixed Duration"
output type. In the case where the obstacle can occur freely in absence of the assumption, you might
wish to observe all the intermediate occurrences of the obstacle. This can be achieved through an
Extender block with "Finite" extension duration of 4 time steps.

Now consider the AutoDown feature of the power window controller.

 Power Window Controller Temporal Properties

12-49

For illustration, consider this property specification in smaller parts:

1 The first temporal duration of interest, "driver presses the down button for less than 1 second", is
captured by Detector1. At sample rate of 0.2, the 1-second interval is broken down into 5 time
steps. On detection of the down signal, Detector1 constructs a 5-step fixed temporal duration at
its output, which you will subsequently use in combination with other constraints.

2 For the AutoDown feature, you know that the down signal cannot be pressed for more than 1
second, or 5 time steps. Thus, you want to ensure that both driver up and down are "true" or both
are "false" in less than 5 steps after down is pressed. By taking the AND of this driver neutral
and the Detector output, enforce the constraint that driver down can be pressed for any number
of consecutive time steps less than 5.

3 You also need to ensure that, during this period, other signals such as obstacle, EndStop and
DriverUp are not true, since these will take the controller out of responding to the down press.
This is captured using Detector2 by enforcing that NOT(HaltDown) is true for 5 time steps.

12 Proving Properties of a Model

12-50

Detector2 has "Delayed Fixed Duration" output type. It also has "Time steps for input detection"
= 5 and "Time steps for output duration" = 1.

4 Take the AND of these constructed durations.
5 For the AutoDown feature, you do not want to limit the number of time steps for which the

controller gives the down command. You know that you want the controller to keep giving the
down command as long as the driver does not press an up or down command again, or an
obstacle or the physical end of the window frame is not hit. This behavior can be captured by the
Extender block with "Infinite" extension period and an external reset signal that encodes the
condition to end the extension.

6 The final piece is an Implies block that takes the temporal duration constructed as explained
above and checks if the controller down command is true for every time step of this duration.

Once you have this initial property specification, you can use it for property proving with Simulink
Design Verifier. You will get a counterexample for this property. The counterexample shows a scenario
where the down command is given when the controller was in the emergency down state due to the
response to an earlier detected obstacle. After you add a constraint to avoid this, you will get another
counterexample: if the down button is pressed when previously the up command was being given, the
AutoDown feature is disabled and the down command is given only as long as the down button is
pressed. Looking at these counterexamples and observing the model, you can see a pattern that the
AutoDown feature is enabled only when the controller is in a neutral state to begin with when the
driver presses the down button.

Incorporate this constraint by forcing the controller output to be neutral - neither up nor down
command is true - as a precondition for the AutoDown property. This property is proven valid.

% Valid AutoDown
open_system('sldvdemo_powerwindow_vs/Verification Subsystem3')

 Power Window Controller Temporal Properties

12-51

Test Case Generation for Property Validation

Once the properties are specified, in addition to property proving, you can run Simulink Design
Verifier to automatically generate test cases that exercise various conditions in the property. This can
be achieved by placing custom Test Objective blocks at appropriate locations in the property.

One such location to place a Test Objective block (with "true" value) is on the signal feeding into the
first input of the Implies block (as shown in the above property). On running test generation, this Test
Objective is satisfied and you will get a test case exercising the various constraints encoded in the
property. Simulink Design Verifier can also create a test harness to simulate this test case. The Signal
Builder block with relevant signals is shown below.

12 Proving Properties of a Model

12-52

One can now simulate this test case, and see how the temporal durations are created in the property
by placing a scope that displays the input and output values of the two Detector blocks and No_Cmd.

 Power Window Controller Temporal Properties

12-53

Manually inspecting the test case values enables you to see if the specified property behaves as
intended.

This Test Objective block helps in identifying a scenario where the property is valid while the Implies
block is not trivially true. An Implies block is trivially true when its output is true because of its first
input being false. When you get a test case satisfying this Test Objective, you know that there is at
least one case where the first input to the Implies block is true.

This exercise can help you validate your property specifications by manually inspecting the test cases
automatically generated by Simulink Design Verifier.

Clean Up

To complete the example, close all the opened models.

close_system('sldvdemo_TOBlocks',0);
close_system('sldvdemo_powerwindowController',0);
close_system('sldvdemo_powerwindow_vs',0);

12 Proving Properties of a Model

12-54

Debug Property Proving Violations by Using Model Slicer

This example shows how to debug property proving violations by using Model Slicer. Consider the
model sldvdemo_cruise_control_verification. This model contains an Assertion block.

The Verification subsystem Safety Properties models a property that should hold true for the design
model. This subsystem contains an Assertion Block (BrakeAssertion) that verifies the property.
Simulink Design Verifier Property Proving analysis will try to falsify the assertion. If Simulink Design
Verifier is successful it will generate a counterexample falsifying the assertion. We can use Model
Slicer to debug this falsified assertion.

1. Open model sldvdemo_cruise_control_verification.

open_system ('sldvdemo_cruise_control_verification')

2. Open Simulink Design Verifier by clicking on Apps > Design Verifier.

3. Click Prove Properties. Simulink Design Verifier analyses the model and displays the results in
Results Summary window.

 Debug Property Proving Violations by Using Model Slicer

12-55

The model highlights the subsystem where the Assertion block is located.

12 Proving Properties of a Model

12-56

4. Open Safety Properties subsystem and select the falsified Assertion block.

5. Click Debug Using Slicer from the toolstrip menu to debug the violation using Model Slicer.
Alternatively, you can click Debug in the results Inspector window.

On Clicking either of the entry points the following setup is done on the model:

a. The Assertion block is added as a starting point for Model Slicer.

b. The model is highlighted with the counterexample generated by Simulink Design Verifier analysis.

c. The design model is simulated and paused at the time-step of assertion failure.

6. Debug and analyze the model by using the Step Back and Step Forward buttons, and inspecting the
Port labels.

• The Assert block tests if the output of A implies B (A==>B) is false.
• A is true when the brake input in is true for three consecutive time steps.
• B is true when the Throttle_out <= 0

 Debug Property Proving Violations by Using Model Slicer

12-57

You can notice that the simulation is stopped at t=0.04 when the condition A==>B is false. This can
be observed from the Port labels.

a. On the Simulation tab, click the Step Back to see the port labels of all the blocks at T = (T-0.1).

You can notice that the Port label of A is false till T=0.04, when it becomes true. At this point the
Port label of B is false (Throttle_Out > 0). The property is falsified because Throttle_Out is greater
than 0.

b. To view the blocks that results in the failure, open the Design Model > Controller. The
dependent blocks and path are highlighted.

12 Proving Properties of a Model

12-58

To view the fix, open sldvdemo_cruise_control_verification model and the click the Open
Fixed Model button on the canvas.

 Debug Property Proving Violations by Using Model Slicer

12-59

Design and Verify Properties in a Model

You can use Simulink® Design Verifier™ to model design requirements as properties and then prove
properties in a model. To verify that the properties associated with the model requirements hold
under all possible input values, use property proving analysis. If the requirement fails, Simulink
Design Verifier provides counterexamples to debug the failure.

This example explains how you can model design requirements as properties by using a Proof
Objective block and then verify the property for simplified cruise control model discussed in “Analyze
a Simple Cruise Control Model”.

Step 1: Design Property Using Verification Subsystem

The model sldvexSimpleCruiseControlProperties consists of Verification Subsystem, that
consists of function requirements modeled by using Proof Objective block.

load_system('sldvexSimpleCruiseControlProperty');
open_system('sldvexSimpleCruiseControlProperty/Verification Subsystem');

Step 2: Perform Property Proving Analysis

On the Apps tab, click arrow on the far right of the Apps section. Under Model Verification,
Validation, and Test gallery, click Design Verifier.

To perform property proving analysis, click Prove Properties. The software analyzes the model and
displays the results in the Results Summary window. The result indicates that one objective is valid
under approximation.

12 Proving Properties of a Model

12-60

Step 3: Review Analysis Results

On the Design Verifier tab, in the Review Results section, click Highlight in Model.

The property that is valid under approximation is highlighted in orange. Click the Proof Objective
block. The Results Inspector window displays the objectives of the Proof Objective block.

To view the HTML report, in the Review Results section, click HTML Report. The Proof Objective
Status chapter lists the proof objective that is found valid under approximation.

 Design and Verify Properties in a Model

12-61

See also

• “What Is Property Proving?” on page 12-2
• “Prove Properties in a Model” on page 12-5

12 Proving Properties of a Model

12-62

Validate Requirements by Analyzing Model Properties

Validate a requirement set by analyzing properties that model individual requirements. Falsified
properties indicate design and requirement set incompleteness.

Overview

In this example, you analyze model properties that are based on four requirements of an engine
thrust reverser system. Falsified results from the property analysis suggest that the system design
requirements are incomplete -- the system allows behavior that violates several of the following
requirements:

1 The thrust reverser shall not deploy if the airspeed is greater than 150 knots.
2 The thrust reverser shall not deploy if the aircraft is in the air, as indicated by the value of the

weight on wheels sensors. If the aircraft is in the air, the signal value for each of two weight on
wheels (WOW) sensors is false.

3 The thrust reverser shall not deploy if the value of either thrust sensor is positive.
4 The thrust reverser shall not deploy if the rotational speed of the landing gear wheels is less than

a threshold value.

To better understand the model behavior, you analyze dependencies for a time series input that
causes undesirable model behavior because the system lacks required control logic. Then, you
analyze a revised control system model which passes the property analysis.

Analyze the Safety Properties

1. Click the Open Model button to open the original model and create a working directory of the
example files.

 Validate Requirements by Analyzing Model Properties

12-63

The Safety Properties subsystem is a Verification Subsystem block from the Simulink® Design
Verifier™ library. The verification logic in Safety Properties models the safety requirements. For
example, the airspeed requirement is verified by:

For more information about Verification Subsystem blocks, see Verification Subsystem.

2. View the requirements. In the model, click the Show Perspectives views icon at the lower right
and select Requirements. The Requirements pane opens. Expand
thrust_reverser_safety_requirements.

The safety requirements link to the Assertion blocks in the Safety Properties subsystem. The
Assertion blocks are considered proof objectives. The verification status for each requirement reflects
the property analysis results of its corresponding Assertion block.

12 Proving Properties of a Model

12-64

3. Display the verification status for the requirements. Right-click one of the requirements in the
browser and select Verification Status. The Verified column indicates that the requirements are
unexecuted.

4. Analyze the model properties. In the Apps tab, click Design Verifier. In the Design Verifier tab,
click Prove Properties.

When the property analysis completes, click the Refresh button to update the status in the Verified
column. The results show that three out of four objectives are falsified -- analysis found a signal
condition that falsifies the properties, and therefore violates the requirements.

Analyze Model Behavior with Counterexamples

From the Design Verifier Results Summary window, click HTML to open the detailed analysis report.
In Chapter 4, each falsified property lists a counterexample. For example, in the counterexample that
falsifies the airspeed requirement:

• At t = 0.1, the thrust reverser is deployed with airspeed below the threshold.
• At t = 0.2, the thrust reverser is still deployed with airspeed above the threshold.

The counterexample time series indicates a condition that might be difficult to encounter in
simulation, but nonetheless causes model behavior that violates a requirement. Investigate the
behavior by analyzing signal dependencies in the counterexample:

1. In the Design Verifier tab, click the Highlight in Model button.

2. Select the airspeed valid assertion block in the Test Unit > Safety Properties > airspeed
property subsystem.

3. In the Design Verifier tab, click the Debug Using Slicer button. The model highlights
dependencies of the airspeed valid assertion, and displays signal values at T = 0.2.

 Validate Requirements by Analyzing Model Properties

12-65

4. Move up one level in the model, to the Safety Properties subsystem. Step back through the
counterexample simulation time. In the Simulation tab, click Step Back.

5. At T = 0.1, the average airspeed is below the threshold, and the thrust reverser is deployed.
Stepping forward, at T = 0.2, the average airspeed is above the threshold, and the thrust reverser is
still deployed. This violates a requirement.

The falsified property and the dependency analysis suggest that the control system algorithm is
incompletely designed, and the requirements are incomplete.

Analyze the Redesigned System

Redesigning a control system requires rethinking requirements. In this case, the lack of an
intermediate standby state allows undesirable system behavior when inputs change suddenly. Adding
an intermediate deployment mode which delays thrust reverser response resolves the issue.

Open the reqs_validation_property_proving_redesigned_model model. Open the
thrustReversers chart.

12 Proving Properties of a Model

12-66

 Validate Requirements by Analyzing Model Properties

12-67

The additional design requirement states that the thrust reverser shall deploy after a pause. The
redesigned model includes:

• An additional aboutToBeDeployed state.
• Expanded transition conditions that return to undeployed.

Create links from the verification blocks in the redesigned model to the requirements:

1. In the model, from the Apps tab, click Requirements Manager.

2. In the Requirements tab, click Requirements Editor.

3. Open thrust_reverser_safety_requirements in the Requirements Editor.

4. For requirement 1.1, Airspeed Condition, link to the airspeed valid block in the Safety Properties >
airspeed property subsystem. Drag R1.1 from the requirements browser to the airspeed valid block in
the model.

5. The new link appears in the Requirements Editor, in the right pane, under Links.

6. Delete the link to the assert block in the original model. If the original model is closed, this link
appears unresolved. Next to the link, click the Delete Link icon.

12 Proving Properties of a Model

12-68

7. Repeat for the other three requirements and verification blocks in the redesigned model.

Run the property analysis on the revised model. View the results in the Requirements pane.

The results show that the properties are valid.

 Validate Requirements by Analyzing Model Properties

12-69

Use Observer Reference Blocks for Property Proving Analysis

This example shows you how to use an Observer Reference block to perform property proving
analysis with multiple properties without making changes to the model. In this example, you replace
an existing verification subsystem with an Observer Reference block. However, you can add an
Observer Reference block to your model even if your model does not have a verification subsystem to
replace. For more information, see “Access Model Data Wirelessly by Using Observers” (Simulink
Test).

The model sldvdemo_debounce_validprop is configured for analysis and attempts to prove that:

1 When the current and six previous input values are true, the output will be true.
2 When the current and six previous input values are false, the output will be false.

For a detailed description of the Observer Reference block, see “Isolate Verification Logic with
Observers” on page 12-29.

Step 1: Open the Model

The sldvdemo_debounce_validprop model contains a verification subsystem called Verify Output.
For more information on the Verification Subsystem, see Verification Subsystem. To open the model,
enter:

open_system('sldvdemo_debounce_validprop');

Step 2: Replace the Verification Subsystem with an Observer Reference Block

Perform these steps to create a new Observer Reference block and replace the Verify Output
verification subsystem.

1. Right-click the the Verify Output subsystem. In the context menu, click Observers > Move
selected block to Observer > New Observer.

2. Click Yes in the dialog box that appears.

12 Proving Properties of a Model

12-70

3. An Observer Reference block replaces the verification subsystem. The
sldvdemo_debounce_validprop_Observer1 Observer model opens.

4. Save sldvdemo_debounce_validprop_Observer1 in a writable folder on the MATLAB path.

5. Double-click one of the Observer Port blocks to open the Manage Observer Block window. The two
signals, debounce and raw, are automatically map to the two Observer Port blocks in the
sldvdemo_debounce_validprop_Observer1 Observer model.

 Use Observer Reference Blocks for Property Proving Analysis

12-71

Step 3: Perform Property Proving Analysis

To perform the property proving analysis, follow these steps:

1. In the top-level model, on the Design Verifier tab, click Prove Properties.

2. After the analysis completes, the Simulink Design Verifier Results Summary window reports that
two objectives are satisfied.

3. Open the HTML analysis report to see a detailed report that includes information about the top-
level model and Observers.

Step 4: Review the Property Proving Analysis Report

The analysis report shows the Observer information for property proving in the Observer Model(s)
section of the Properties chapter..

Step 5: Cleanup

Close the model.

bdclose('sldvdemo_debounce_validprop');

Related Topics

• “Isolate Verification Logic with Observers” on page 12-29

12 Proving Properties of a Model

12-72

Prove Properties with Requirements Table Blocks

This example shows how to use a Requirements Table block and Simulink® Design Verifier™ to prove
the properties of a engine thrust reverser system.

When you use a Requirements Table block and Simulink Design Verifier for property proving:

1 Each requirement in the block defines a formal requirement that you can use to test properties of
a model, subsystem, or block. In this example, the Requirements Table block represents the
requirements as preconditions and postconditions.

2 Each requirement in the block produces a corresponding requirement in the Requirements
Editor. See “Configure Properties of Formal Requirements” (Requirements Toolbox).

3 Simulink Design Verifier produces proof objectives for the requirements in the requirement set.
The postconditions define the logical conditions that you would normally define in Proof
Objective blocks. The block evaluates the proof objective associated with a postcondition only if
the precondition is true.

For more information, see “Use a Requirements Table Block to Create Formal Requirements”
(Requirements Toolbox) and “What Is Property Proving?” on page 12-2.

View the Requirements in the Requirements Table Block

Open the example model, property_proving_reqtable. In this example, you test the properties of
the engine thrust reverser system, which is modeled by the chart, ThrustReverserDeployLogic.
The Requirements Table block uses the chart input signals and deploy output signal to observe the
chart behavior. The block defines data in expressions to assess the inputs and outputs of the chart.
See “Define Data in Requirements Table Blocks” (Requirements Toolbox).

 Prove Properties with Requirements Table Blocks

12-73

To view the verification logic associated with each requirement, open the Requirements Table block.
The requirements correspond to the requirements in the requirement set used in the example
“Validate Requirements by Analyzing Model Properties” on page 12-63. The block proves these
properties:

1 The thrust reverser shall not deploy if the airspeed is greater than 150 knots.
2 The thrust reverser shall not deploy if the aircraft is in the air, as indicated by the value of the

weight on wheels sensors. If the aircraft is in the air, the signal value for each of two weight on
wheels (WOW) sensors is false.

3 The thrust reverser shall not deploy if the value of either thrust sensor is positive.
4 The thrust reverser shall not deploy if the rotational speed of the landing gear wheels is less than

a threshold value.

Each requirement defines a property. If the preconditions are valid, the postcondition must also be
satisfied to prove the property.

12 Proving Properties of a Model

12-74

Prove Properties

To prove the properties, in the Design Verifier tab, click Prove Properties. In this example, the
properties of the chart are proven. The Requirements Table block highlights the postconditions
associated with the proven proof objectives in green.

If the requirement proof objective is falsified, the block highlights the requirement in red. Otherwise,
if Simulink Design Verifier is unable to prove or disprove the proof objective, the block highlights the
requirement in yellow. You can investigate this behavior by replacing the chart in this example with

 Prove Properties with Requirements Table Blocks

12-75

the first iteration of the chart used in the “Validate Requirements by Analyzing Model Properties” on
page 12-63 example.

See Also
Requirements Table

Related Examples
• “Prove Properties in a Model” on page 12-5
• “Use a Requirements Table Block to Create Formal Requirements” (Requirements Toolbox)
• “Export Tests from Models That Contain Requirements Table Blocks with Simulink Design

Verifier” on page 13-30

12 Proving Properties of a Model

12-76

Reviewing the Results

• “Highlight Results on the Model” on page 13-2
• “Manage Simulink Design Verifier Data Files” on page 13-7
• “Manage Simulink Design Verifier Harness Models” on page 13-13
• “Simulate Harness Model with Signal Editor Inputs Block” on page 13-22
• “Export Test Cases to Simulink Test” on page 13-27
• “Export Tests from Models That Contain Requirements Table Blocks with Simulink Design
Verifier” on page 13-30

• “Review Results” on page 13-35
• “View Log Files” on page 13-56
• “Review Analysis Results” on page 13-57

13

Highlight Results on the Model
In this section...
“Results Review with Model Highlighting” on page 13-2
“Simulink Design Verifier Results Inspector” on page 13-2
“Highlight Results on Model Automatically” on page 13-2
“Green Highlighting on Model” on page 13-4
“Red Highlighting on Model” on page 13-4
“Orange Highlighting on Model” on page 13-4
“Gray Highlighting on Model” on page 13-6

Results Review with Model Highlighting
When you analyze a model by using Simulink Design Verifier, the analyzed model objects are
automatically highlighted in one of these colors:

• Green
• Red
• Orange
• Gray

You can review the analysis results at a glance by viewing the objects that are highlighted in the
Simulink Editor.

Simulink Design Verifier Results Inspector
When a model is highlighted, you can click an object for which the analysis recorded results. The
Simulink Design Verifier Results Inspector then displays the detailed analysis results for that object.

Highlight Results on Model Automatically
During analysis, Simulink Design Verifier highlights the model objects automatically when the
objectives status is updated. By default, the automatic highlighting is enabled. To disable the
highlighting, click Disable Highlighting in the Results Summary window.

13 Reviewing the Results

13-2

In the Simulink Editor, results highlighting appears on the model. When highlighting is enabled, the
Results Inspector opens displaying the summary of status for analysis objectives.

 Highlight Results on the Model

13-3

Note Simulink Design Verifier does not highlight the Stateflow state transition tables. The Simulink
Design Verifier reports, data files, and log files include the analysis data for the state transition
tables. Using the report, you can navigate to the state transition tables.

Green Highlighting on Model
Objects that are highlighted in green have the following meaning for each type of analysis.

Analysis Mode Green highlighting
Design error detection • The analysis did not find overflow or division-by-zero errors.

• The analysis did not find dead logic.
• The analysis did not find intermediate or output signals outside the

range of user-specified minimum and maximum constraints.
• The analysis did not find out of bound array access errors.

Test generation The analysis found test cases that satisfy the test objectives.
Property proving The analysis found all the proof objectives as valid.

Red Highlighting on Model
Objects that are highlighted in red have the following meaning, depending on the analysis type.

Analysis Mode Red highlighting
Design error detection • The analysis found at least one test case that causes overflow or

division-by-zero errors.
• The analysis found dead logic.
• The analysis found intermediate or output signals outside the range

of user-specified minimum and maximum constraints.
• The analysis found at least one test case that causes an out of bound

array access error.
Test generation The analysis did not satisfy certain test objectives.
Property proving The analysis disproved a proof objective and generated a

counterexample that falsified that objective.

If your model contains at least one object highlighted in red, there might be further design errors in
your model that Simulink Design Verifier does not highlight in red. If an object in your design causes
run-time errors, Simulink Design Verifier might not be able to determine further errors on objects
that are downstream of or rely on the results of the object that causes the run-time errors. Resolve
the errors that cause the initial red highlighting and rerun the analysis to determine if Simulink
Design Verifier highlights other objects in your model as red.

Orange Highlighting on Model
Objects that are highlighted in orange have the following meaning, depending on the analysis type.

13 Reviewing the Results

13-4

Analysis Mode Orange highlighting
Design error detection For the highlighted model object,

• The analysis did not decide at least one design error detection
objective. This situation can occur when:

• The analysis is still in progress.
• The analysis times out.
• The analysis cannot decide a design error detection objective

because of division by zero or nonlinear arithmetic.
• The software cannot decide a design error detection objective

because of stubbing. For more information, see “Handle
Incompatibilities with Automatic Stubbing” on page 2-7.

• The software cannot decide a design error detection objective
because of limitations of the analysis engine. For example, if the
analysis encounters an unbounded while loop, it performs an
approximation. For more information, see “Role of
Approximations During Model Analysis” on page 2-20.

• The analysis found dead logic that approximations can impact. For
more information, see “How Simulink Design Verifier Reports
Approximations Through Validation Results” on page 2-23.

• The analysis found valid objectives that approximations can impact.
For more information, see “How Simulink Design Verifier Reports
Approximations Through Validation Results” on page 2-23.

Test generation For the highlighted model object,

• The analysis did not decide at least one test objective. This situation
can occur when:

• The analysis is still in progress.
• The analysis times out.
• The analysis cannot decide a test objective because of division by

zero or nonlinear arithmetic.
• The software cannot decide a test objective because of stubbing.

For more information, see “Handle Incompatibilities with
Automatic Stubbing” on page 2-7.

• The software cannot decide a test objective because of limitations
of the analysis engine. For example, if the analysis encounters an
unbounded while loop, it performs an approximation. For more
information, see “Role of Approximations During Model Analysis”
on page 2-20.

• The analysis found unsatisfiable objectives that approximations can
impact. For more information, see “How Simulink Design Verifier
Reports Approximations Through Validation Results” on page 2-23.

• The analysis is unable to confirm the satisfied status through
validation results. For more information, see “Objectives Satisfied -
Needs Simulation” on page 13-46.

 Highlight Results on the Model

13-5

Analysis Mode Orange highlighting
Property proving For the highlighted model object,

• The analysis did not decide at least one proof objective. This
situation can occur when:

• The analysis is still in progress.
• The analysis times out.
• A proof objective exists on a signal whose value the software

cannot control, for example, a Constant block.
• The analysis cannot decide a proof objective because of division

by zero or nonlinear arithmetic.
• The software cannot decide a proof objective because of

stubbing. For more information, see “Handle Incompatibilities
with Automatic Stubbing” on page 2-7.

• The software cannot decide a proof objective because of
limitations of the analysis engine. For example, if the analysis
encounters an unbounded while loop, it performs an
approximation. For more information, see “Role of
Approximations During Model Analysis” on page 2-20.

• The analysis found valid objectives that approximations can impact.
For more information, see “How Simulink Design Verifier Reports
Approximations Through Validation Results” on page 2-23.

• The software is unable to confirm the falsified status through
validation results. For more information, see “Objectives Falsified -
Needs Simulation” on page 13-49.

Gray Highlighting on Model
Objects that are highlighted in gray have the following meaning.

Analysis Mode Gray Highlighting
• Design error detection
• Test generation
• Property proving

The model object was not part of the analysis.

13 Reviewing the Results

13-6

Manage Simulink Design Verifier Data Files

Simulink Design Verifier generates a data file after completing the analysis. The data file is a MAT-file
that contains the sldvData structure. This structure stores all the data the software gathers and
produces during the analysis. Although the software displays the same data graphically in the
harness model and report, you can use the data file for further custom analysis or to generate a
custom report.

Generate sldvData Structure
Complete these steps to explore the contents of the sldvData structure.

1 Generate test cases for the sldvdemo_flipflop model.

sldvdemo_flipflop;
sldvrun('sldvdemo_flipflop');

2 Load the sldvData structure for the sldvdemo_flipflop model to the MATLAB workspace.
load('sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat')

3 Display the names of the fields in the structure.

sldvData =

 ModelInformation: [1x1 struct]
 AnalysisInformation: [1x1 struct]
 ModelObjects: [1x2 struct]
 Constraints: []
 Objectives: [1x12 struct]
 TestCases: [1x4 struct]
 Version: '2.1'

Model Information Fields in sldvData
The following sections describe the fields in the sldvData structure:

Model Information

The ModelInformation field contains information about the model you analyze in Simulink Design
Verifier. This table describes the subfields in the ModelInformation field.

Subfield Name Description
Name Model name.
Version Model number.
Author User name.
TimeStamp Date and time of last update.
SubsystemPath Full path name of the subsystem (if any) that was analyzed.
ExtractedModel Name of model extracted to analyze subsystem in SubsystemPath.
ReplacementModel Name of model containing block replacements.

 Manage Simulink Design Verifier Data Files

13-7

matlab:sldvdemo_flipflop

Subfield Name Description
HarnessOwnerModel Name of owner of analyzed Simulink Test harness model.

Analysis Information

The AnalysisInformation field lists the analysis options and related information. The table
describes the AnalysisInformation field.

Subfield Name Description
Status Status of analysis.
AnalysisTime Duration in seconds of analysis
Options Deep copy of the Simulink Design Verifier options object used during the

analysis.
InputPortInfo Cell array of structures with information about everyInport block in top

level of system.
OutputPortInfo Cell array of structures with information about every Outport block in

top level of system.
SampleTimes For internal use only.
Parameters For internal use only.
AbstractedBlocks For internal use only.
Approximations Structure describing approximations performed during analysis. For

more information, see “Role of Approximations During Model Analysis”
on page 2-20.

ReplacementInfo For internal use only.
PreProcessingTime Time in seconds to build or reuse model representation.
ModelRepresentationIn
fo

Date and time of model representation used in analysis.

Model Objects

The ModelObjects field lists the model items and their associated objectives. The table describes
the ModelObjects field.

Subfield Name Description
descr Full path to model object, including objects in Stateflow chart.
typeDesc Type of model object, returned as S for a state object and T for a

transition object.
slPath Full path to Simulink model object.
sfObjType Type of Stateflow object. Example: S for state and T for transition.
sfObjNum Integer representing a unique identifier for Stateflow object.
sid For internal use only.
designSid For internal use only.
replacementSid For internal use only.

13 Reviewing the Results

13-8

Subfield Name Description
objectives Vector of integers representing indices of objectives related to model

object.

Constraints

The Constraints field lists information about specified minimum and maximum values (if any) on
input ports in your model. The table describes the Constraints field.

Subfield Name Description
DesignMinMax Cell array of structures containing name and

minimum and maximum values of each input
port.

Objectives

The Objectives field lists information about each objective, such as its type, status, and description.
The table describes the Objectives field.

Subfield Name Description
type Type of objective.
status Status of objective.
descr Description associated with objective.
label Label of objective.
outcomeValue Integer representing outcome of objective.
coveragePointIdx Integer representing index of coverage point associated with objective.
linkInfo For internal use only.
range For internal use only.
detectability Detectability status of objective.

This field appears in the data file when you set the analysis “Mode” on
page 15-10 to Test Generation and “Model coverage objectives” on
page 15-31 to Enhanced MCDC.

detectionSites Simulink Identifier (SID) array of detection sites for detectable
objectives.

This field appears in the data file when you set the analysis “Mode” on
page 15-10 to Test Generation and “Model coverage objectives” on
page 15-31 to Enhanced MCDC.

modelObjectIdx Integer representing index of model object associated with objective.
analysistime Analysis time of objective.
testCaseIdx Integer representing index of test case or counterexample addressed in

objective.

Test Cases or Counterexamples

This field name depends on the type of check:

 Manage Simulink Design Verifier Data Files

13-9

• If you set the Mode parameter to Design error detection, the CounterExamples field
provides information on each test case that results in an integer-overflow or division-by-zero error.

• If you set the Mode parameter to Test generation, the TestCases field lists information
about each test case, such as its signal values and test objectives.

• If you set the Mode parameter to Property proving, the CounterExamples field lists
information about each counterexample and the proof objective it falsifies.

The table describes the TestCases and CounterExamples fields.

Subfield Name Description
timeValues Vector of time values associated with signals in test case or

counterexample.
dataValues Vector of data values associated with signals in test case or

counterexample.
paramValues Structure representing details of parameters associated with test case or

counterexample containing these fields:

name— Parameter name.

value — Parameter value.

noEffect — Logical to signify if parameter value affects an objective.
stepValues Vector that specifies the number of time steps that comprise signals in a

test case or counterexample.
objectives Structure that specifies objectives that a test case or a counterexample

addresses. Its fields include:

objectiveIdx — Integer that represents the index of an objective that
a test case achieves or a counterexample falsifies.

atTime — Time value at which either a test case achieves an objective
or a counterexample falsifies an objective.

atStep — Time step at which either a test case achieves an objective or
a counterexample falsifies an objective.

dataNoEffect Cell array of logical vectors that specifies whether a signal's data values
affect an objective. The vector uses 1 to indicate that a signal's data
value does not affect an objective; otherwise, it uses 0.

expectedOutput Cell array of vectors that specifies the output values that result from
simulating the model using the test case signals. Each cell represents the
output values associated with a different Outport block in the top-level
system. This subfield is populated if you select Include expected
output values.

Version Field

The Version field lists the of Simulink Design Verifier version used in the analysis.

13 Reviewing the Results

13-10

Dead Logic Field

If you analyze your model for dead logic by using the “Run a Partial Check for Dead Logic” on page 6-
7 option, the DeadLogic field in the sldvData structure lists information about each dead logic
objective.

This table describes each subfield of the DeadLogic field.

Subfield Name Description
label Description of dead logic objective.
descr Full path to model object, including objects in Stateflow chart.
modelObjIdx Integer representing index of model object associated with objective.
coverageType Type of coverage objective.
coverageIdx Integer that represents the index of a coverage point that is associated

with an objective.
ObjectiveIdx Integer that represents the index of an objective that is associated with a

model object.

Simulate Models Using Data Files
You can use the sldvruntest function to simulate a model by using test cases or counterexamples
that reside in a Simulink Design Verifier data file. Complete these steps to simulate the
sldvdemo_flipflop model using a test case in its data file.

1 Simulate the sldvdemo_flipflop model and generate test cases:

sldvdemo_flipflop
2 Save the location of the data file that Simulink Design Verifier generates after analyzing the

model.
sldvDataFile = 'sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat'

3 Use the sldvruntest function to simulate the sldvdemo_flipflop model using the second
test case in the data file:

[outdata] = sldvruntest('sldvdemo_flipflop', sldvDataFile, 2)

The sldvruntest outputs is an array of Simulink.SimulationOutput objects.
4 Examine the output data from the first test case using the Simulink.SimulationOutput

object:

tout_sldvruntest = outdata(1).find('tout_sldvruntest');
xout_sldvruntest = outdata(1).find('xout_sldvruntest');
yout_sldvruntest = outdata(1).find('yout_sldvruntest');
logsout_sldvruntest = outdata(1).find('logsout_sldvruntest');

Load Results from Data Files
You can load the results of a previous analysis of a model from a data file. For more information, see
“Load Previous Results” on page 13-57 and sldvloadresults.

 Manage Simulink Design Verifier Data Files

13-11

matlab:sldvdemo_flipflop

See Also
“Review Analysis Results” on page 13-57 | sldvreport | “Load Previous Results” on page 13-57

13 Reviewing the Results

13-12

Manage Simulink Design Verifier Harness Models
In this section...
“Harness Model Generation” on page 13-13
“Create a Harness Model” on page 13-13
“Contents of a Harness Model” on page 13-13
“Configuration of the Harness Model” on page 13-19
“Simulate the Harness Model” on page 13-19

Harness Model Generation
A harness model provides an isolated environment to test design changes. You can create a harness
model during Simulink Design Verifier analysis or after the analysis.

The contents of the harness model depends on the value of the Mode parameter, set in the
Configuration Parameters dialog box on the Design Verifier pane:

• Design error detection — The harness model contains the test cases that result in errors
during simulation.

• Test generation — The harness model contains the test cases that achieve test objectives.
• Property proving — The harness model contains counterexamples that falsify the proof

objectives.

By default, the Generate separate harness model after analysis parameter is disabled.

Note The Simulink Design Verifier software generates a harness model only when the top-level
model that you are analyzing contains an Inport block.

Create a Harness Model
To create a harness model before or after the analysis, use these methods:

• Before the analysis, in the Configuration Parameters dialog box, on the Design Verifier >
Results pane, select Generate separate harness model after analysis.

• After the analysis, in the Simulink Design Verifier Results Summary window, select Create
harness model.

Contents of a Harness Model
Simulink Design Verifier software creates a harness model that contains these items:

• Inputs — The Inputs block is a Signal Builder or Signal Editor block based on the “Harness
source” on page 15-61 option set in the Design Verifier > Results pane.

• Signal Builder: This block contains signals that are comprised of the test cases or
counterexamples that Simulink Design Verifier generates. The Signal Builder block contains
signals only for input signals that are used in the model. If an input signal has no effect on the
output of the model, that signal is not included in the Signal Builder block.

 Manage Simulink Design Verifier Harness Models

13-13

To open the Signal Builder dialog box and view its signals, double-click the Inputs block. Each
signal group represents a unique test case or counterexample. To view the signals associated
with a particular test case or counterexample, in the Signal Builder dialog box, select Active
Group.

After Simulink Design Verifier performs test generation analysis on the
sldvdemo_cruise_control model with the default options, this Signal Builder block shows
the signals for Test Case 7.

13 Reviewing the Results

13-14

If you select the LongTestcases option of the Test suite optimization parameter, the
analysis creates fewer, longer test cases. For example, if you select the LongTestcases option
for the sldvdemo_cruise_control model, the analysis produces one long test case instead
of nine shorter test cases. This Signal Builder dialog box shows the signals for the long test
case. For more information about the Signal Builder dialog box, see “Signal Groups”.

 Manage Simulink Design Verifier Harness Models

13-15

• Signal Editor: This block contains scenarios that are comprised of the test cases or
counterexamples that Simulink Design Verifier generates. The Signal Editor block contains
signals only for input signals that are used in the model. If an input signal has no effect on the
output of the model, that signal is not included in the Signal Editor block.

After Simulink Design Verifier generates harness model, the input MAT-file for the Signal
Editor block is saved at the default location <current_folder>\sldv_output
\<model_name>\<model_name>_harness_HarnessInputs.mat.

13 Reviewing the Results

13-16

To open the Signal Editor dialog box and view the scenarios of signal sources, double-click the
Inputs block. The Active scenario lists the test cases or counterexamples. To create and edit
scenarios, launch the Signal Editor user interface. For more information, see “Create and Edit
Signal Data”.

 Manage Simulink Design Verifier Harness Models

13-17

• Size-Type — This Subsystem block transmits signals from the Inputs block to the Test Unit block.
It verifies that the size and data type of the signals are consistent with the Test Unit block.

• Test Unit — This Model block references the original model that Simulink Design Verifier
analyzed.

If you do not select the Reference input model in generated harness on the Design Verifier >
Results pane in the Configuration Parameters dialog box, the Test Unit created is a Subsystem
block.

If the Test Unit in the harness model is a subsystem, the values of the parameters on the
Optimization and Math and Data Types panes might impact the coverage results.

• Test Case Explanation — This DocBlock block documents the test cases or counterexamples that
Simulink Design Verifier generates. To view the description of each test case or counterexample,
double-click the Test Case Explanation block. The block lists either the test objectives that each
test case achieves or the proof objectives that each counterexample falsifies.

13 Reviewing the Results

13-18

Configuration of the Harness Model
Simulink Design Verifier generates the harness model with these settings.

• The harness model start time is always 0. If the original model uses a nonzero start time, the
software ignores the start time and uses 0 for the simulation start time for test cases and
counterexamples.

• The harness model stop time always equals the stop time of the longest test case in the Inputs
block.

• By default, the software enables coverage analysis and generates a coverage report for the
harness models that contain test cases. The coverage reporting is enabled with default options.
You can customize these settings by using “Specify Coverage Options” (Simulink Coverage).

• By default, if you select Ignore objective based on filter and provide a coverage filter file for
the Test Unit, the coverage filter file applies to the harness model. For more information, see
“Coverage data” on page 15-38.

• For models that use the complex type Inport block, a Signal Editor block is used as the harness
source regardless of the Harness source that you specify.

Simulate the Harness Model
The harness model enables you to simulate a copy of your original model by using the test cases or
counterexamples that Simulink Design Verifier generates. Using the harness model, you can simulate:

• A counterexample.

 Manage Simulink Design Verifier Harness Models

13-19

• A single test case, for which the Simulink Coverage software collects and displays model coverage
information.

• All the test cases, for which the Simulink Coverage software collects and displays cumulative
model coverage information.

Note If you analyze a model that is simulated with sample time warnings, when you simulate the
harness model, the warnings might be reported as errors, causing the simulation to fail.

Simulate Harness Model by Using the Signal Builder Source Block

To simulate a single test case or counterexample:

1 In the harness model, double-click the Inputs block.
2 In the Signal Builder dialog box, select the Active Group with a particular test case or

counterexample.

The Signal Builder dialog box displays the signals that comprise the selected test case or
counterexample.

3
Click the Start simulation button .

The Simulink software simulates the harness model by using the signals associated with the
selected test case or counterexample. When simulating a test case, the Simulink Coverage
software collects model coverage information and displays a coverage report.

To simulate all test cases and measure their combined model coverage:

1 In the harness model, double-click the Inputs block.
2

In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates the harness model by using all test cases, while the Simulink
Coverage software collects model coverage information and displays a coverage report.

When you click Run all, the software simulates all the test cases by using the stop time for the
harness model. The stop time equals the stop time for the longest test case, so you might
accumulate additional coverage when you simulate the shorter test cases.

For more information, see “Simulating with Signal Groups”.

Simulate Harness Model by Using the Signal Editor Inputs Block

To simulate a single test case or counterexample:

1 In the harness model, double-click the Inputs block.
2 In the Signal Editor dialog box, select the Active scenario with a particular test case or

counterexample and click OK.
3 In the Simulink editor, click the Run button.

The Simulink software simulates the harness model by using the scenario of signal sources
associated with the selected test case or counterexample. When simulating a test case, the
Simulink Coverage software collects model coverage information and displays a coverage report.

13 Reviewing the Results

13-20

To simulate all the test cases and measure their combined model coverage, use cvsim (Simulink
Coverage) or parsim command. For example, see Simulate Harness Model with Signal Editor Inputs
Block on page 13-22.

See Also
“Creating and Executing Test Cases” on page 7-100 | “Create Harness Model” on page 1-12

 Manage Simulink Design Verifier Harness Models

13-21

Simulate Harness Model with Signal Editor Inputs Block

This example shows how to generate model coverage report by simulating the test harness model
with the Signal Editor Inputs block. You can simulate a single test case or counterexample by
selecting the active scenario in the Signal Editor dialog box. For more information see, “Simulate
Harness Model by Using the Signal Editor Inputs Block” on page 13-20.

To simulate all the test cases and measure their combined model coverage, use the cvsim or the
parsim command.

In this example, you generate a harness model by selecting the Signal Editor as the harness source.
The Signal Editor scenarios consists of signal sources that are associated with the test cases or
counterexamples. Then, to generate combined model coverage report, you simulate all the scenarios
by using the cvsim or parsim function.

1. Open the model and configure harness options

Create a harness model for the sldvdemo_cruise_control model by using the sldvharnessopts
options. Set the HarnessSource option to Signal Editor.

model = 'sldvdemo_cruise_control';
open_system(model);
opts = sldvoptions;
opts.Mode = 'TestGeneration';
opts.SaveHarnessModel = 'on';
opts.HarnessSource = 'Signal Editor';
opts.HarnessModelFileName = 'sldvdemo_cruise_control_harness';
opts.SaveReport = 'off';

13 Reviewing the Results

13-22

2. Generate test cases

Analyze the model by using the sldvrun function and sldvoptions.

sldvrun('sldvdemo_cruise_control', opts);
save_system('sldvdemo_cruise_control_harness');

Checking compatibility for test generation: model 'sldvdemo_cruise_control'
Compiling model...done
Building model representation...done

'sldvdemo_cruise_control' is compatible for test generation with Simulink Design Verifier.

Generating tests using model representation from 31-Dec-2021 02:59:04...
........................

Completed normally.

Generating output files:

 Simulate Harness Model with Signal Editor Inputs Block

13-23

The analysis did not produce a harness model.
Unable to read MAT-file C:\Users\pdasbasu\AppData\Roaming\MathWorks\MATLAB\R2022a\matlabprefs.mat. File might be corrupt.

Results generation completed.

 Data file:
 C:\Users\pdasbasu\OneDrive - MathWorks\Documents\MATLAB\ExampleManager\pdasbasu.Bdoc22a.j1830012\sldv-ex99648832\sldv_output\sldvdemo_cruise_control\sldvdemo_cruise_control_sldvdata.mat

3. Generate combined model coverage report

Simulink Design Verifier automatically configures Signal Editor harness in multiple simulation mode.
To simulate the generated test cases and gather coverage for Test Unit, click Run all (Coverage)
button on Simulation toolstrip menu.

13 Reviewing the Results

13-24

Alternatively, after the analysis generates the harness model, you can use this code that uses cvtest
and cvsim functions to generate the combined model coverage report.

signalEditorBlock = 'sldvdemo_cruise_control_harness/Inputs';
numOfScenarios = str2double(get_param(signalEditorBlock,'NumberOfScenarios'));
harnessModel = 'sldvdemo_cruise_control_harness';
test = cvtest(harnessModel);
test.modelRefSettings.enable = 'On';
test.modelRefSettings.excludeTopModel = 1;
covData = [];
for id = 1:numOfScenarios
set_param(signalEditorBlock,'ActiveScenario',id);
aCovData = cvsim(harnessModel);
if isempty(covData)
covData = aCovData;
else
covData = covData + aCovData;
end
end
save_system('sldvdemo_cruise_control_harness');
cvhtml('Coverage_Harness',covData);

Optionally, you can use this code that uses the parsim function to generate the combined model
coverage report.

 Simulate Harness Model with Signal Editor Inputs Block

13-25

signalEditorBlock = 'sldvdemo_cruise_control_harness/Inputs';
numOfScenarios = str2double(get_param(signalEditorBlock,'NumberOfScenarios'));
harnessModel = 'sldvdemo_cruise_control_harness';

simIn = Simulink.SimulationInput.empty(0,numOfScenarios);
for id = 1:numOfScenarios
 simIn(id) = Simulink.SimulationInput(harnessModel);
 simIn(id) = simIn(id).setBlockParameter(signalEditorBlock,'ActiveScenario', id);
 simIn(id) = simIn(id).setModelParameter('CovEnable', 'on');
 simIn(id) = simIn(id).setModelParameter('CovSaveSingleToWorkspaceVar', 'on');
end

simOut = parsim(simIn);
cvhtml('Coverage_Harness',simOut.covdata);

[31-Dec-2021 02:59:45] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
[31-Dec-2021 03:00:49] Starting Simulink on parallel workers...
[31-Dec-2021 03:01:16] Configuring simulation cache folder on parallel workers...
[31-Dec-2021 03:01:17] Loading model on parallel workers...
[31-Dec-2021 03:01:26] Running simulations...
[31-Dec-2021 03:01:45] Completed 1 of 3 simulation runs
[31-Dec-2021 03:01:45] Completed 2 of 3 simulation runs
[31-Dec-2021 03:01:45] Completed 3 of 3 simulation runs
[31-Dec-2021 03:01:45] Cleaning up parallel workers...

The coverage report indicates that 100% coverage is achieved by simulating all the test cases for
sldvdemo_cruise_control_model.

5. Clean Up

% To complete this example, close the models.
close_system('sldvdemo_cruise_control_harness', 0);
close_system('sldvdemo_cruise_control', 0);

13 Reviewing the Results

13-26

Export Test Cases to Simulink Test
Model verification often requires repeated testing to achieve certain objectives or coverage criteria.
If you run repeated tests, consider using the Test Manager in Simulink Test to structure your test
cases, archive test results, and generate reports. You can generate test cases using Simulink Design
Verifier and export the test inputs to new test cases automatically created in the Simulink Test
Manager.

To export generate inputs to new test cases in Simulink Test:

1 Choose an existing Simulink Design Verifier results file or generate new results by analyzing your
model.

• If you use an existing results file, you can load results by either:

• Using the Simulink Test command sltest.import.sldvData.
• Using Load Earlier Results in the Design Verifier tab. Select the MAT-file or Excel® file

with the analysis results.
• If you run a model analysis, the Design Verifier Results Summary window appears after the

analysis completes.
2 In the results summary window, click Export test cases to Simulink Test. The Export Design

Verifier Test Cases dialog box opens.
3 In the Export Design Verifier Test Cases dialog box, you can:

• Choose Harness Source to Inport, Signal Editor or Signal Builder.
• Set the Test Data Format to MAT or Excel.
• Click OK to generate the test file and test harness.

4 Simulink Test generates the test file and test harness. In the Test Manager, expand the new test
file in the Test Browser to see the individual test cases.

Generate and Export Test Cases to Simulink Test
This example shows how to generate test cases to achieve coverage objectives for a controller
subsystem. The example also shows how to add functional test cases from test harnesses in the
model. This example requires a Simulink Test license.

The model is a closed-loop heat pump system. The controller accepts the measured room temperature
and set temperature inputs. The controller outputs a bus of three signals controlling the fan, heat
pump, and the direction of the heat pump. The model contains a harness that tests heating and
cooling scenarios.

1 Open the model.

open_system('sltestTestCaseFromDVExample.slx'));
2 Set the current working folder to a writable folder.
3 In the model, generate tests for the Controller subsystem. Right-click the Controller block and

select Design Verifier > Generate Tests for Subsystem.
4 In the Simulink Design Verifier Results Summary window, click Export test cases to Simulink

Test.

 Export Test Cases to Simulink Test

13-27

5 In the Export Design Verifier Test Cases dialog box, click OK.

The Test Manager displays six new test cases in the test file.

6 In the model, click the perspective view badge to see the new test harness.

13 Reviewing the Results

13-28

7 Add a test case to the other test harness in the model. In the Test Manager, point to the new test
file name and click the Synchronize Test File button .

8 The Test Manager prompts you to add tests for the Requirement2 test harness. Select
Simulation for the test type and click Update Test File.

The Test Manager adds the Requirement2 test case to the test file.

See Also
sltest.import.sldvData

 Export Test Cases to Simulink Test

13-29

Export Tests from Models That Contain Requirements Table
Blocks with Simulink Design Verifier

If you create models that contain Requirements Table blocks and you generate tests with Simulink
Design Verifier, you can export the tests to the Test Manager. When configuring the tests, you can
specify the test harness that you want to use. After running the tests, you can determine if the tests
fail or pass, and inspect the results further.

Construct the Model and Generate Tests
Simulink Design Verifier creates test objectives from the requirements defined in Requirements
Table blocks. To generate tests, construct a model, called the specification model, with Requirements
Table blocks and Simulink blocks that do not define test objectives. See “What Is a Specification
Model?” on page 7-60. After you create the requirements, confirm that the requirement set in each
Requirements Table block is complete and consistent by analyzing them. See “Identify Inconsistent
and Incomplete Formal Requirement Sets” (Requirements Toolbox). If you do not create complete and
consistent requirements, Simulink Design Verifier may not be able to create tests that satisfy the test
objectives.

After constructing the requirements, generate tests in the specification model.

1 In the Apps tab, click Design Verifier.
2 In the Mode section, set the mode to Test Generation.
3 In the Prepare section, click Test Generation Settings. The Requirements Table block supports

test generation with decision, condition, MCDC, enhanced MCDC, and relational boundary
coverage objectives. Specify the objectives in the Model coverage objectives parameter. For
more information on these options, See “Model Coverage Objectives for Test Generation” on
page 7-30. Click OK.

4 In the Analyze section, click Generate Tests. Simulink Design Verifier indicates how many
objectives from the requirements are satisfied.

13 Reviewing the Results

13-30

5 If at least one of the objectives is not satisfied, update your requirements. If you did not analyze
the requirements before, analyze them now.

Export the Tests to the Test Manager
If you have Simulink Test, you can export the tests to the Test Manager. In the Simulink Design
Verifier Results Summary window, click Export test cases to Simulink Test.

 Export Tests from Models That Contain Requirements Table Blocks with Simulink Design Verifier

13-31

The Export Design Verifier Test Cases window displays the properties that you can adjust before
exporting.

For more information on the properties you can select, see “Export Test Cases to Simulink Test” on
page 13-27.

13 Reviewing the Results

13-32

Run the Tests
After exporting the tests, Simulink Test registers the requirements in the Requirements Table blocks
to the test cases they generate. To view these assignments, open the Test Manager. Then select the
test case in the Test Browser pane. In the Test Case pane, expand the Iterations section.

If you have a manually created test harness that you want to run the tests on, in the Test Browser
pane, select the test case and expand System Under Test. In the Model field, specify the model, and
clear the model from the Harness field.

Inspect Test Failures
If one of your tests fail, you may need investigate causes of the failure. If you use verification blocks
in your harness to verify the outputs of your design and specification model, or if you capture design
model outputs in requirement postconditions, you can use property proving on the test harness and
run Model Slicer to identify the conditions that cause an assertion failure.

1 Open the test harness model.
2 In the Design Verifier tab, in the Mode section, select Property Proving.
3 In the Prepare section, click Property Proving Settings. If your specification model uses at

least one postcondition, the Requirements Table block highlights the postconditions green if the
associated proof objectives are satisfied, red if they are not, and orange for other conditions.

 Export Tests from Models That Contain Requirements Table Blocks with Simulink Design Verifier

13-33

If you use verification blocks, Simulink Design Verifier highlights the blocks that assert a failure
in red.

4 If you use verification blocks, select the highlighted verification block. In the Results window,
click debug. The model displays the values that correspond to each signal that caused the
failure. These values only display outside of the Requirements Table block.

For more information, see “Debug Property Proving Violations by Using Model Slicer” on page 12-55
and “Prove Properties with Requirements Table Blocks” on page 12-73.

See Also
Requirements Table

Related Examples
• “Use a Requirements Table Block to Create Formal Requirements” (Requirements Toolbox)
• “What Is Property Proving?” on page 12-2
• “What Is a Specification Model?” on page 7-60
• “Use Specification Models for Requirements-Based Testing” on page 7-69

13 Reviewing the Results

13-34

Review Results
In this section...
“Simulink Design Verifier Report Generation” on page 13-35
“Create Analysis Reports” on page 13-35
“Front Matter” on page 13-35
“Summary Chapter” on page 13-36
“Analysis Information Chapter” on page 13-36
“Derived Ranges Chapter” on page 13-40
“Objectives Status Chapters” on page 13-42
“Model Items Chapter” on page 13-50
“Design Errors Chapter” on page 13-51
“Test Cases Chapter” on page 13-52
“Properties Chapter” on page 13-54

Simulink Design Verifier Report Generation
After an analysis, Simulink Design Verifier can generate an HTML report that contains detailed
information about the analysis results.

The analysis report contains hyperlinks that allow you to:

• Navigate to a specific part of the report
• Navigate to the object in your Simulink model for which the analysis recorded results

You can also generate an additional PDF version of the Simulink Design Verifier report.

Create Analysis Reports
To create a detailed analysis report before or after the analysis, do one of the following:

• Before the analysis, in the Configuration Parameters dialog box, on the Design Verifier > Report
pane, select Generate report of the results. If you want to save an additional PDF version of the
Simulink Design Verifier report, select Generate additional report in PDF format.

• After the analysis, in the Simulink Design Verifier log window, you can choose HTML or PDF
format and Generate detailed analysis report.

Front Matter
The report begins with two sections:

• “Title” on page 13-35
• “Table of Contents” on page 13-36

Title

The title section lists the following information:

 Review Results

13-35

• Model or subsystem name Simulink Design Verifier analyzed
• User name associated with the current MATLAB session
• Date and time that Simulink Design Verifier generated the report

Table of Contents

The table of contents follows the title section. Clicking items in the table of contents allows you to
navigate quickly to particular chapters in the report.

Summary Chapter
The Summary chapter of the report lists the following information:

• Name of the model
• MATLAB release in which the analysis was performed
• Checksum value that represents the state of the model analyzed
• Analysis mode
• Model Representation
• Test generation target (applicable for test case generation analysis)
• Analysis status
• Preprocessing time
• Analysis time
• Status of objectives analyzed. This includes the percentage number for each status

Analysis Information Chapter
The Analysis Information chapter of the report includes the following sections:

13 Reviewing the Results

13-36

• “Model Information” on page 13-37
• “Analysis Options” on page 13-37
• “Unsupported Blocks” on page 13-38
• “User Artifacts” on page 13-39
• “Constraints” on page 13-39
• “Block Replacements Summary” on page 13-39
• “Approximations” on page 13-39
• “Analysis Harness Information” on page 13-40

Model Information

The Model Information section provides the following information about the current version of the
model:

• Path and file name of the model that Simulink Design Verifier analyzed
• Model version
• Date and time that the model was last saved
• Name of the person who last saved the model

Analysis Options

The Analysis Options section provides information about the Simulink Design Verifier analysis
settings.

The Analysis Options section lists the parameters that affected the Simulink Design Verifier analysis.
If you enabled coverage filtering, the name of the filter file is included in this section.

 Review Results

13-37

Note For more information about these parameters, see “Simulink Design Verifier Options” on page
15-2.

Unsupported Blocks

If your model includes unsupported blocks, by default, automatic stubbing is enabled to allow the
analysis to proceed. With automatic stubbing enabled, the software considers only the interface of the
unsupported blocks, not their actual behavior. This technique allows the software to complete the
analysis. However, the analysis may achieve only partial results if any of the unsupported model
blocks affect the simulation outcome.

The Unsupported Blocks section appears only if the analysis stubbed unsupported blocks; it lists the
unsupported blocks in a table, with a hyperlink to each block in the model.

For more information about automatic stubbing, see “Handle Incompatibilities with Automatic
Stubbing” on page 2-7.

13 Reviewing the Results

13-38

User Artifacts

The User Artifacts section provides information about test data and coverage data in the Simulink
Design Verifier analysis.

Constraints

The Constraints section provides information about test conditions that Simulink Design Verifier
applied when it analyzed a model.

You can navigate to the constraint in your model by clicking the hyperlink in the Constraints table.
The software highlights the corresponding Test Condition block in your model window and opens a
new window showing the block in detail.

Block Replacements Summary

The Block Replacements Summary provides an overview of the block replacements that Simulink
Design Verifier executed. It appears only if Simulink Design Verifier replaced blocks in a model.

Each row of the table corresponds to a particular block replacement rule that Simulink Design
Verifier applied to the model. The table lists the following:

• Name of the file that contains the block replacement rule and the value of the BlockType
parameter the rule specifies

• Description of the rule that the MaskDescription parameter of the replacement block specifies
• Names of blocks that Simulink Design Verifier replaced in the model

To locate a particular block replacement in your model, click on the name for that replacement in the
Replaced Blocks column of the table; the software highlights the affected block in your model window
and opens a new window that displays the block in detail.

Approximations

Each row of the Approximations table describes a specific type of approximation that Simulink Design
Verifier used during its analysis of the model.

 Review Results

13-39

Note Review the analysis results carefully when the software uses approximations. In rare cases, an
approximation may result in test cases that fail to achieve test objectives or counterexamples that fail
to falsify proof objectives. For example, a floating-point round-off error might prevent a signal from
exceeding a designated threshold value.

Analysis Harness Information

The Analysis Harness Information section provides an overview of the analysis harness generated
by Simulink Design Verifier used to analyze the model. The Analysis Harness Information section
shows these sub-sections based on whether the model is an export-function model or a model that
contains Function Caller blocks without corresponding Simulink functions.

Schedule for Export Function analysis

Simulink Design Verifier assumes an analysis harness for invoking Export Functions during
analysis. For example, this table shows the analysis harness for the model
sldvExportFunction_autosar_multirunnables:

Stubbed Simulink Functions for Analysis

This table in the Stubbed Simulink Functions for Analysis lists the function prototypes that
correspond to the stubbed Simulink functions which are stubbed in the analysis harness:

Note Simulink Design Verifier assumes the outputs of stubbed Simulink functions do not change
when the function is invoked multiple times during a single time step.

Derived Ranges Chapter
In a design error detection analysis, the analysis calculates the derived ranges of the signal values for
the Outports for each block in the model. This information can help you identify the source of data
overflow or division-by-zero errors.

The table in the Derived Ranges chapter of the analysis report lists these bounds.

13 Reviewing the Results

13-40

If an Observer Reference block is used in the design error detection analysis, then this section will
show the observer information in a Observer Model (s) subsection and design model information in
Design Model subsection.

The table in the Design Model subsection shows the list of each derived range in the
sldvdemo_debounce_validprop example model.

The Observer model(s) section will not show derived ranges reported as the observers are ignored for
design error detection analysis.

 Review Results

13-41

Objectives Status Chapters
This section of the report provides information about all the objectives in a model, including the type
of the objective, the model item that corresponds to the type, and objective description.

• “Design Error Detection Objectives Status” on page 13-43
• “Test Objectives Status” on page 13-45
• “Proof Objectives Status” on page 13-47
• “Objectives Undecided due to Runtime Error” on page 13-49
• “Objectives Undecided Due to Division by Zero” on page 13-49
• “Objectives Undecided Due to Nonlinearities” on page 13-50
• “Objectives Undecided Due to Stubbing” on page 13-50
• “Objectives Undecided Due to Array Out of Bounds” on page 13-50
• “Objectives Undecided” on page 13-50

The software identifies the presence of approximations and reports them at the level of each objective
status. For more information, see “How Simulink Design Verifier Reports Approximations Through
Validation Results” on page 2-23. This table summarizes the objective status for Simulink Design
Verifier analysis modes.

Analysis Mode Objective Status
Design error detection • “Dead Logic” on page 13-44

• “Dead Logic under Approximation” on page 13-44
• “Active Logic - Needs Simulation” on page 13-44
• “Objectives Valid” on page 13-44
• “Objectives Valid under Approximation” on page 13-45
• “Objectives Falsified with Counterexamples” on page 13-45
• “Objectives Error - Needs Simulation” on page 13-45
• “Objectives Undecided Due to Division by Zero” on page 13-49
• “Objectives Undecided Due to Nonlinearities” on page 13-50
• “Objectives Undecided Due to Stubbing” on page 13-50
• “Objectives Undecided” on page 13-50
• “Objectives Undecided Due to Array Out of Bounds” on page 13-50

13 Reviewing the Results

13-42

Analysis Mode Objective Status
Test generation • “Objectives Satisfied” on page 13-46

• “Objectives Satisfied - Needs Simulation” on page 13-46
• “Objectives Unsatisfiable” on page 13-47
• “Objectives Unsatisfiable under Approximation” on page 13-47
• “Objectives Undecided with Testcases” on page 13-47
• “Objectives Undecided due to Runtime Error” on page 13-49
• “Objectives Undecided Due to Division by Zero” on page 13-49
• “Objectives Undecided Due to Nonlinearities” on page 13-50
• “Objectives Undecided Due to Stubbing” on page 13-50
• “Objectives Undecided” on page 13-50
• “Objectives Undecided Due to Array Out of Bounds” on page 13-50

Property proving • “Objectives Valid” on page 13-48
• “Objectives Valid under Approximation” on page 13-48
• “Objectives Falsified with Counterexamples” on page 13-48
• “Objectives Falsified - Needs Simulation” on page 13-49
• “Objectives Undecided with Counterexamples” on page 13-49
• “Objectives Undecided due to Runtime Error” on page 13-49
• “Objectives Undecided Due to Division by Zero” on page 13-49
• “Objectives Undecided Due to Nonlinearities” on page 13-50
• “Objectives Undecided Due to Stubbing” on page 13-50
• “Objectives Undecided” on page 13-50
• “Objectives Undecided Due to Array Out of Bounds” on page 13-50

Design Error Detection Objectives Status

If you run a design error detection analysis, the Design Error Detection Objectives Status section
can include the following objective statuses:

• “Dead Logic” on page 13-44
• “Dead Logic under Approximation” on page 13-44
• “Active Logic - Needs Simulation” on page 13-44
• “Objectives Valid” on page 13-44
• “Objectives Valid under Approximation” on page 13-45
• “Objectives Falsified with Counterexamples” on page 13-45
• “Objectives Error - Needs Simulation” on page 13-45

If an Observer Reference block is used in the design error detection analysis, then this section will
show the observer information in Observer Model(s) subsection and design model information in
Design Model subsection. This section will be empty when there are no active logic present in the
model.

The table in the Design model subsection shows the list of active logic in the
sldvdemo_debounce_validprop example model.

 Review Results

13-43

The Observer model(s) section will not show any active logic reported as the observers are ignored
for design error detection analysis.

Dead Logic

The Dead Logic section lists the items for which the analysis found dead logic.

This image shows the Dead Logic section of the generated analysis report for the
sldvdemo_fuelsys_logic_simple model.

Dead Logic under Approximation

The Dead Logic under Approximation section lists the model items for which the analysis found
dead logic under the impact of approximation.

In releases before R2017b, this section can include objectives that were marked as Dead Logic.

This image shows the Dead Logic under Approximation section of the generated analysis report.

Active Logic - Needs Simulation

The Active Logic - Needs Simulation section lists the model items for which the analysis found
active logic. To confirm the active logic status, you must run additional simulations of test cases.

In releases before R2017b, this section can include objectives that were marked as Active Logic.

This image shows a portion of the Active Logic - Needs Simulation section of the generated
analysis report for the sldvdemo_fuelsys_logic_simple model.

Objectives Valid

The Objectives Valid section lists the design error detection objectives that the analysis found valid.
For these objectives, the analysis determined that the described design errors cannot occur.

In releases before R2017b, this section can include objectives that were marked as Proven Valid.

13 Reviewing the Results

13-44

This image shows the Objectives Valid section of the generated analysis report for the
sldvdemo_design_error_detection model.

Objectives Valid under Approximation

The Objectives Valid under Approximation section lists the design error detection objectives that
the analysis found valid under the impact of approximation.

In releases before R2017b, this section can include objectives that were marked as Proven Valid.

This image shows the Objectives Valid under Approximation section of the generated analysis
report.

Objectives Falsified with Counterexamples

The Objectives Falsified with Counterexamples lists the set of design error detection objects
whose counterexamples have been simulated and verified to observe the reported errors.

This image shows the Objectives Falsified with Counterexamples section of the generated
analysis report for the sldvdemo_design_error_detection model.

Objectives Error - Needs Simulation

The Objectives Error- Needs Simulation section lists the design error detection objectives for
which the analysis found test cases that demonstrate design errors. To confirm the falsified status,
you must run additional simulations of test cases.

In releases before R2017b, this section can include objectives that were marked as Falsified.

This image shows the Objectives Error - Needs Simulation section of the generated analysis
report for the sldvdemo_array_bounds model.

Test Objectives Status

If you run a test case generation analysis, the Test Objectives Status section can include the
following objective statuses:

• “Objectives Satisfied” on page 13-46

 Review Results

13-45

• “Objectives Satisfied - Needs Simulation” on page 13-46
• “Objectives Unsatisfiable” on page 13-47
• “Objectives Unsatisfiable under Approximation” on page 13-47
• “Objectives Undecided with Testcases” on page 13-47

When you analyze a model with Model coverage objectives set to Enhanced MCDC, the software
reports the detection status of model items. For more information, see “Enhanced MCDC Coverage in
Simulink Design Verifier” on page 7-42.

If an Observer Reference block is used in the test case generation analysis, then each test objective
status section will show the observer information in Observer Model(s) sub-section an design model
information in Design Model subsection. These subsections will be empty if no test objective found
in the model.

The table shows a part of Objectives Satisfied test objectives for the design model in the
sldvdemo_debounce_testobjblks example model.

The table shows a part of Objectives Satisfied test objectives for observer model in the
sldvdemo_debounce_testobjblks example model.

Objectives Satisfied

The Objectives Satisfied section lists the test objectives that the analysis satisfied. The generated
test cases cover the objectives.

This image shows a portion of the Objectives Satisfied section of the generated analysis report for
the sldvdemo_fuelsys_logic_simple example model.

Objectives Satisfied - Needs Simulation

The Objectives Satisfied - Needs Simulation section lists the test objectives that the analysis
satisfied. To confirm the satisfied status, you must run additional simulations of test cases.

In releases before R2017b, this section can include objectives that were marked as Satisfied.

This image shows the Objectives Satisfied - Needs Simulation section of the generated analysis
report.

13 Reviewing the Results

13-46

Objectives Unsatisfiable

The Objectives Unsatisfiable section lists the test objectives that the analysis determined could not
be satisfied.

In releases before R2017b, this section can include objectives that were marked as Proven
Unsatisfiable.

This image shows the Objectives Unsatisfiable section of the generated analysis report for the
sldvdemo_fuelsys_logic_simple example model.

Objectives Unsatisfiable under Approximation

The Objectives Unsatisfiable under Approximation section lists the test objectives that the
analysis determined could not be satisfied due to approximation during analysis.

In releases before R2017b, this section can include objectives that were marked as Proven
Unsatisfiable.

This image shows the Objectives Unsatisfiable under Approximation section of the generated
analysis report.

Objectives Undecided with Testcases

The Objectives Undecided with Testcases section lists the test objectives that are undecided due
to the impact of approximation during analysis.

In releases before R2017b, this section can include objectives that were marked as Satisfied.

This image shows the Objectives Undecided with Testcases section of the generated analysis
report for the sldvApproximationsExample example model.

Proof Objectives Status

If you run a property-proving analysis, the Proof Objectives Status section can include:

• “Objectives Valid” on page 13-48
• “Objectives Valid under Approximation” on page 13-48

 Review Results

13-47

• “Objectives Falsified with Counterexamples” on page 13-48
• “Objectives Falsified - Needs Simulation” on page 13-49
• “Objectives Undecided with Counterexamples” on page 13-49

If an Observer Reference block is used in the property-proving analysis, then each proof objective
status section will show the observer information in Observer Model(s) subsection and design
model information in Design Model subsection. These subsections will be empty when no objective
is found in the model.

The table shows Objectives Valid proof objectives for the Observer model in the
sldvdemo_debounce_validprop example model.

Objectives Valid

The Objectives Valid section lists the proof objectives that the analysis found valid.

In releases before R2017b, this section can include objectives that were marked as Proven Valid.

This image shows the Objectives Valid section of the generated analysis report for the
sldvdemo_debounce_validprop example model.

Objectives Valid under Approximation

The Objectives Valid under Approximation section lists the proof objectives that the analysis
found valid under the impact of approximation.

In releases before R2017b, this section can include objectives that were marked as Objectives
Proven Valid.

This image shows the Objectives Valid under Approximation section of the generated analysis
report.

Objectives Falsified with Counterexamples

The Objectives Falsified with Counterexamples section lists the proof objectives that the analysis
disproved. The generated counterexample shows the violation of the proof objective.

This image shows the Objectives Falsified with Counterexamples section of the generated
analysis report for the sldvdemo_debounce_falseprop example model.

13 Reviewing the Results

13-48

Objectives Falsified - Needs Simulation

The Objectives Falsified - Needs Simulation section lists the proof objectives that the analysis
disproved. To confirm the falsified status, you must run additional simulations of counterexamples.

In releases before R2017b, this section can include objectives that were marked as Objectives
Falsified with Counterexamples.

This image shows the Objectives Falsified - Needs Simulation section of the generated analysis
report.

Objectives Undecided with Counterexamples

The Objectives Undecided with Counterexamples section lists the proof objectives undecided due
to the impact of approximation during analysis.

In releases before R2017b, this section can include objectives that were marked as Falsified.

This image shows the Objectives Undecided with Counterexamples section of the generated
analysis report.

Objectives Undecided due to Runtime Error

For proof objectives and test objectives, the Objectives Undecided due to Runtime Error section
lists the undecided objectives during analysis due to a run-time error. The run-time error occurred
during simulation of a test case or counterexample.

In releases before R2017b, this section can include objectives that were marked as Falsified or
Satisfied.

This image shows the Objectives Undecided due to Runtime Error section of the generated
analysis report.

Objectives Undecided Due to Division by Zero

For all types of objectives, the Objectives Undecided Due to Division by Zero section lists the
undecided objectives during analysis due to division-by-zero errors in the associated model items. To
detect division-by-zero errors before running further analysis on your model, follow the procedure in
“Detect Integer Overflow and Division-by-Zero Errors” on page 6-19.

 Review Results

13-49

Objectives Undecided Due to Nonlinearities

For all types of objectives, the Objectives Undecided Due to Nonlinearities section lists the
undecided objectives during analysis due to required computation of nonlinear arithmetic. Simulink
Design Verifier does not support nonlinear arithmetic or nonlinear logic.

Objectives Undecided Due to Stubbing

For all types of objectives, the Objectives Undecided Due to Stubbing section lists model items
with undecided objectives during analysis due to stubbing. In releases before R2013b, these
objectives can include objectives that were marked as Objectives Satisfied – No Test Case or
Objectives Falsified – No Counterexample.

Objectives Undecided Due to Array Out of Bounds

For all types of objectives, the Objectives Undecided Due to Array Out of Bounds section lists the
undecided objectives during analysis due to array out of bounds errors in the associated model items.
To detect out of bounds array errors in your model, see “Detect Out of Bound Array Access Errors” on
page 6-28.

Objectives Undecided

For all types of objectives, the Objectives Undecided section lists the objectives for which the
analysis was unable to determine an outcome in the allotted time.

In this property-proving example, either the software exceeded its analysis time limit (which the
Maximum analysis time parameter specifies) or you aborted the analysis before it completed
processing these objectives.

Model Items Chapter
The Model Items chapter of the report includes a table for each object in the model that defines
coverage objectives. The table for a particular object lists all of the associated objectives, the
objective types, objective descriptions, and the status of each objective at the end of the analysis.

The table for an individual object in the model looks similar to this one for the Discrete-Time
Integrator in the PI Controller subsystem of the sldvdemo_cruise_control example model.

13 Reviewing the Results

13-50

To highlight a given object in your model, click View at the upper-left corner of the table; the
software opens a new window that displays the object in detail. To view the details of the test case
that was applied to a specific objective, click the test case number in the last column of the table.

If an Observer Reference block is used in the property-proving analysis, then each model item section
will show the observer information in Observer Model(s) subsection an design model information in
Design Model subsection. These subsections will be empty if no test objective found in the model.

The table shows one of the test objectives for the design model in the
sldvdemo_debounce_testobjblks example model.

The table shows one of the test objectives for the observer model in the
sldvdemo_debounce_testobjblks example model.

Design Errors Chapter
If you perform design error detection analysis and the analysis detects design errors in the model, the
report includes a Design Errors chapter. This chapter summarizes the design errors that the
analysis falsified:

• “Table of Contents” on page 13-51
• “Summary” on page 13-51
• “Test Case” on page 13-52

Table of Contents

The Design Errors chapter contains a table of contents. Each item in the table of contents is a
hyperlink to results about a specific design error.

Summary

The Summary section lists:

• The model item
• The type of design error that was detected (overflow or division by zero)
• The status of the analysis (Falsified or Proven Valid)

 Review Results

13-51

In the following example, the software analyzed the sldvdemo_debounce_falseprop model to
detect design errors. The analysis detected an overflow error in the Sum block in the Verification
Subsystem named Verify True Output.

Test Case

The Test Case section lists the time step and corresponding time at which the test case falsified the
design error objective. The Inport block raw had a value of 255, which caused the overflow error.

Test Cases Chapter
If you run a test generation analysis, the report includes a Test Cases chapter. This chapter includes
sections that summarize the test cases the analysis generated:

• “Table of Contents” on page 13-52
• “Summary” on page 13-52
• “Objectives” on page 13-53
• “Generated Input Data” on page 13-53
• “Expected Output” on page 13-53
• “Long Test Cases” on page 13-54

Table of Contents

The Test Cases chapter contains a table of contents. Each item in the table of contents is a hyperlink
to information about a specific test case.

Summary

The Summary section lists:

• Length of the signals that comprise the test case
• Total number of test objectives that the test case achieves

13 Reviewing the Results

13-52

Objectives

The Objectives section lists:

• The time step at which the test case achieves that objective.
• The time at which the test case achieves that objective.
• A link to the model item associated with that objective. Clicking the link highlights the model item

in the Simulink Editor.
• The objective that was achieved with a link to navigate between the Test Objectives Status and

Test Cases chapters.

Generated Input Data

For each input signal associated with the model item, the Generated Input Data section lists the time
step and corresponding time at which the test case achieves particular test objectives. If the signal
value does not change over those time steps, the table lists the time step and time as ranges.

Note The Generated Input Data table displays a dash (–) instead of a number as a signal value when
the value of the signal at that time step does not affect the test objective. The table does not include
the entire signal if all values of a signal are having no impact. In the harness model, the Inputs block
represents these values with zeros unless you enable the Randomize data that does not affect
outcome parameter (see “Randomize data that do not affect the outcome” on page 15-58).

Expected Output

If you select the Include expected output values on the Design Verifier > Results pane of the
Configuration Parameters dialog box, the report includes the Expected Output section for each test
case. For each output signal associated with the model item, this table lists the expected output value
at each time step.

 Review Results

13-53

Long Test Cases

If you set the Test suite optimization option to LongTestcases, the Test Cases chapter in the
report includes fewer sections about longer test cases.

Properties Chapter
If you run a property-proving analysis, the report includes a Properties chapter. This chapter
includes sections that summarize the proof objectives and any counterexamples the software
generated:

• “Table of Contents” on page 13-54
• “Summary” on page 13-55
• “Counterexample” on page 13-55

Table of Contents

The Properties chapter contains a table of contents. Each item in the table of contents is a hyperlink
to information about a specific property that was falsified.

If an Observer Reference block is used in the property-proving analysis, then each properties chapter
will show the observer information in Observer Model(s) subsection an design model information in
Design Model subsection. It will be empty when there are no properties in the model.

The table shows one of the properties for the observer model in the
sldvdemo_debounce_validprop example model.

13 Reviewing the Results

13-54

Summary

The Summary section lists:

• The model item that the software analyzed
• The type of property that was evaluated
• The status of the analysis

In the following example, the software analyzed the sldvdemo_cruise_control_verification
model for property proving. The analysis proved that the input to the Assertion block named
BrakeAssertion was nonzero.

Counterexample

The Counterexample section lists the time step and corresponding time at which the counterexample
falsified the property. This section also lists the values of the signals at that time step.

 Review Results

13-55

View Log Files
Every time you analyze a model, Simulink Design Verifier creates a log file. To view the log file, click
View Log in the Simulink Design Verifier log window.

The log file contains a list of the analysis results for each object in the model. The content of the log
file corresponds to the analysis results displayed in the log window during the analysis.

13 Reviewing the Results

13-56

Review Analysis Results

In this section...
“View Active Results” on page 13-57
“Load Previous Results” on page 13-57
“Explore Results” on page 13-57

View Active Results
After analysis is complete, the Simulink Design Verifier Results Summary window opens, showing
different ways you can use the results. See “Explore Results” on page 13-57.

If you close the Results Summary window so you can fix the cause of any analysis errors in your
model, you might need to review the analysis results again. If you have not closed your model since
you ran the analysis, you can reopen the latest analysis results for your model.

On the Design Verifier tab, click Results Summary to view the Results Summary window. The
Results Summary window reopens with the latest analysis results for your model.

Load Previous Results

If you want to review results of a previous analysis on a model, you can load these results from the
analysis data file. On the Design Verifier tab, click Load Earlier Results and browse to the data file
that corresponds to the analysis you want to review. Click Results Summary.

For more information on analysis data files, see “Manage Simulink Design Verifier Data Files” on
page 13-7.

If you load analysis results for a model from a data file that was generated with a previous version of
that model, you might see unexpected effects. To avoid inconsistencies between your model and
analysis results data, when you load results for a model, choose a data file that contains results from
the same version of that model.

Explore Results
With active or previous analysis results loaded in the Results Summary window, you can perform the
following tasks.

Task For more information
Highlight the analysis results on the model. “Highlight Results on the Model” on page 13-2
Generate a detailed analysis report. “Review Results” on page 13-35

 Review Analysis Results

13-57

Task For more information
Create the harness model, or if the harness model
already exists, open it.

You will not be able to create the harness model
if:

• No design error objectives were falsified
• No test cases were generated
• No counterexamples were created

“Manage Simulink Design Verifier Harness
Models” on page 13-13

View the data file. “Manage Simulink Design Verifier Data Files” on
page 13-7

View the log file. “View Log Files” on page 13-56

See Also

More About
• “Design Verifier Pane: Results” on page 15-56
• “Manage Simulink Design Verifier Data Files” on page 13-7
• “Review Results” on page 13-35

13 Reviewing the Results

13-58

Analyzing Large Models and Improving
Performance

• “Sources of Model Complexity” on page 14-2
• “Analyze a Large Model” on page 14-3
• “Increase Allocated Memory for Analysis Report Generation” on page 14-7
• “Manage Model Data to Simplify the Analysis” on page 14-8
• “Partition Model Inputs for Incremental Test Generation” on page 14-11
• “Bottom-Up Approach to Model Analysis” on page 14-13
• “Extract Subsystems for Analysis” on page 14-15
• “Logical Operations” on page 14-21
• “Analyzing Models with Large Verification State Space” on page 14-22
• “Counters and Timers” on page 14-23
• “Prove Properties in Large Models” on page 14-24

14

Sources of Model Complexity

Some characteristics of Simulink models can cause problems during a Simulink Design Verifier
analysis in the following ways:

• Complexity of model inputs due to:

• Large number of inputs (The number of inputs can vary, depending on the individual model.)
• Types of inputs (floating-point values, for example)
• The way the inputs affect the model state and the objectives of the analysis

• Number of possible simulation paths through a model
• Portions of the model that cannot be reached
• Large counters in the model

The topics in “Reduce Model Complexity” describe techniques designed to reduce the impact of this
complexity and achieve the best performance from Simulink Design Verifier.

Most of these techniques focus on test generation for large models. However, you can use many of
them to detect design errors or prove the properties of a large model and generate counterexamples
when a property is disproved. In addition, “Prove Properties in Large Models” on page 14-24
describes specific techniques for proving properties in a large model.

14 Analyzing Large Models and Improving Performance

14-2

Analyze a Large Model
In this section...
“Types of Large Model Problems” on page 14-3
“Summarize Model Hierarchy and Compatibility” on page 14-3
“Use the Default Parameter Values” on page 14-4
“Modify the Analysis Parameters” on page 14-5
“Stop the Analysis Before Completion” on page 14-5

Types of Large Model Problems
The Simulink Design Verifier software may encounter some of these problems when analyzing a large
model:

• Unsatisfiable objectives — The software proved there are no test cases that exercise these test
objectives, and did not generate any test cases.

• Undecided objectives — The software was not able to satisfy or falsify these objectives.
• Objectives with errors — This problem usually occurs when a model component uses nonlinear

arithmetic, which can affect a test objective.
• Cannot complete the analysis in the time allotted — This problem may indicate an area of your

model where the software encountered problems, or you may need to increase value of the
Maximum analysis time parameter.

• Analysis hangs — If the number of objectives processed remains constant for a considerable
length of time, the software has likely encountered complexity between the model and its
objectives.

• Does not achieve a high percentage of model coverage — When you run the test cases on the
harness model, the percentage of model coverage is insufficient for your design.

The next few sections describe the initial steps to take when analyzing a large model. Although these
steps address test generation, you can use a similar approach when detecting design errors or
proving properties in a model.

Summarize Model Hierarchy and Compatibility
You can use the Test Generation Advisor to summarize test generation compatibility, condition and
decision objectives, and dead logic for the model and model components.

The Test Generation Advisor performs a high-level analysis and fast dead logic detection. You can use
the results to better understand your model, particularly large models, complex models, or models for
which you are uncertain of their compatibility with Simulink Design Verifier. For example, you can:

• Identify incompatibilities with test case generation.
• Identify complex components that might be time-consuming to analyze.
• Determine instances of dead logic.
• Get a summary of the component hierarchy.
• Get recommended test generation parameters.

 Analyze a Large Model

14-3

To access the Test Generation Advisor, on the Design Verifier tab, in the Mode section, click Test
Generation. In the Prepare section, click Advisor. For more information see “Use Test Generation
Advisor to Identify Analyzable Components” on page 7-24.

Use the Default Parameter Values
When you generate test cases, you should generally begin by analyzing the model using the Simulink
Design Verifier default parameter values:

1 Check to see if your model is compatible with Simulink Design Verifier, as described in “Check
Model Compatibility” on page 3-2.

2 Using the default parameter values, analyze the model. The following table lists the default
values for parameters in the Configuration Parameters dialog box that you might change when
analyzing large models.

Parameter Default Value Description
Maximum analysis time
(s)

300 (seconds) If the analysis does not finish within the specified
time, the analysis times out and terminates.

Test suite optimization Auto Generates test cases that address more than one
test objective.

Model coverage
objectives

Condition/Decision Generates test cases that achieve condition and
decision coverage.

3 Review the following information in the Simulink Design Verifier log window while the analysis
runs:

• Number of objectives processed — How many objectives were processed? Did the analysis
hang after processing a certain number of objectives? The answers to these questions might
give you a clue about where a problem might lie.

• Number of objectives satisfied/Number of objectives falsified — Which objectives were
falsified?

• Time elapsed — Did the analysis time out, or did it finish within the specified maximum
analysis time?

4 When the analysis completes, you can highlight the results in the model and individually review
the analysis of each model object, as described in “Highlight Results on the Model” on page 13-2.
You can also generate and review the Simulink Design Verifier HTML report. This report contains
links to the model elements for satisfied and falsified objectives so you can see what portions of
the model might have problems. For more information, see “Review Results” on page 13-35.

5 For a test generation analysis, if all the test objectives have been satisfied, run the test cases on
the harness model to determine model coverage.

If model coverage is enough for your design, you do not need to do anything else. If the coverage
is insufficient, take additional steps to improve the analysis performance, as described in the
following sections.

Note A large percentage of falsified objectives and poor model coverage often indicate that you need
to change model parameter values to get complete coverage. This can occur when you have tunable
parameters in Constant blocks that are connected to enabled subsystems or to the trigger inputs of
Switch blocks. In these situations, configure Simulink Design Verifier parameter support as described
in the example “Specify Parameter Configuration for Full Coverage” on page 5-17.

14 Analyzing Large Models and Improving Performance

14-4

Modify the Analysis Parameters
If the analysis satisfied most but not all of the objectives, try the following steps:

1 Increase the Maximum analysis time parameter. This gives the analysis more time to satisfy all
the objectives.

2 Set the Model coverage objectives parameter to Decision. Selecting this option generates
only test cases that achieve decision coverage. These test cases are a subset of the MCDC option.

3 Rerun the analysis and review the report.

If the results are still not satisfactory, try the techniques described in the following sections.

Stop the Analysis Before Completion
Watch the Objectives processed value in the log window. If about 50 percent of the Maximum
analysis time parameter has elapsed and this value does not increase, the model analysis may have
trouble processing certain objectives. If the analysis does not progress, take the following steps:

1 Click Stop in the log window.

A dialog box appears, informing you that the analysis was aborted and asking you if you still want
to produce results.

2 Click Yes to save the results of the analysis so far.

The log window lists the following options, depending on which analysis mode you ran:

• Highlight analysis results on model
• Generate detailed analysis report
• Create harness model
• Simulate tests and produce a model coverage report

3 Click Generate detailed analysis report.
4 In the HTML report, review the following sections to identify the model elements that are

causing problems:

• Objectives Undecided when the Analysis was Stopped
• Objectives Producing Errors

5 Review the model elements that have undecided objectives or objectives with errors to see if
these problems are present. Consult the pages in the More Information column for specific
techniques to improve the analysis.

Problem in Your Model More Information
Floating-point inputs • “Manage Model Data to Simplify the

Analysis” on page 14-8
• “Bottom-Up Approach to Model Analysis”

on page 14-13
Nonlinear operations • “Logical Operations” on page 14-21

• “Bottom-Up Approach to Model Analysis”
on page 14-13

 Analyze a Large Model

14-5

Problem in Your Model More Information
Large state spaces • “Analyzing Models with Large Verification

State Space” on page 14-22
• “Bottom-Up Approach to Model Analysis”

on page 14-13
Large timers and time delays • “Counters and Timers” on page 14-23

• “Bottom-Up Approach to Model Analysis”
on page 14-13

14 Analyzing Large Models and Improving Performance

14-6

Increase Allocated Memory for Analysis Report Generation

When you analyze a model with a large root-level input signal count, you may encounter an
insufficient memory error when Simulink Design Verifier is generating the report.

When this occurs, you need to increase the amount of memory the Sun® Java® Virtual Machine
(JVM™) software can allocate. For steps on how to increase this memory, see “Increase the MATLAB
JVM Memory Allocation Limit” (MATLAB Report Generator).

 Increase Allocated Memory for Analysis Report Generation

14-7

Manage Model Data to Simplify the Analysis
In this section...
“Simplify Data Types” on page 14-8
“Constrain Data” on page 14-8

Simplify Data Types
One way to simplify your model is to use for the designated signal data type a data type requiring the
least amount of space for the expected data. For example, do not use an int data type for Boolean
data, because only one bit is required for Boolean data.

In another example, suppose you have a Sum block with two inputs that are always integers between
–10 and 10. Set the Output data type parameter to int8, rather than int32 or double.

To display the signal data types, on the Debug tab, click Information Overlays > Port Data Type.

Constrain Data

Another effective technique for reducing complexity is to restrict the inputs to a set of representative
values or, ideally, a single constant value. This process, called discretization, treats the input as if it
were an enumeration. Discretization allows you to handle nonlinear arithmetic from multiplication
and division in the simplest way possible.

The following model has a Product block feeding a Saturation block. The inputs x and y have specific
design ranges as shown and the Saturation block limits the input signal to the upper and lower
saturation values which is 8000 and 0 RPM.

The Simulink Design Verifier software generates errors when attempting to satisfy the upper and
lower limits of the Saturation block, because the software does not support nonlinear arithmetic. To
work around these errors, restrict one of the inputs to a set of discrete values.

Identify discrete values that are required to satisfy your testing needs. For example, you may have an
input for model speed, and your design contains paths of execution that are conditioned on speed
above or below thresholds of 80, 150, 600, and 8000 RPM. For an effective analysis, constrain speed
values to be 50, 100, 200, 1000, 5000, or 10000 RPM so that every threshold can be either active or
inactive.

14 Analyzing Large Models and Improving Performance

14-8

If you need to use more than two or three values, consider specifying the constrained values using an
expression like

num2cell(minval:increment:maxval)

Using the previous example model, restrict the second input (y) to be either 1, 2, 5, or 10 using the
Test Condition block as shown in the following model. The Simulink Design Verifier software produces
test cases for all inputs.

You can also constrain signals that are intermediate or output values of the model. Constraining such
signals makes it easier to work around multiplication or division inside lower level subsystems that do
not depend on model inputs.

Note Discretization is best limited to a small number of inputs (less than 10). If your model requires
discretization of many inputs, try to achieve model coverage through successive simulations, as
described in “Partition Model Inputs for Incremental Test Generation” on page 14-11.

Test Condition blocks do not need to be placed exactly on the inputs. In deciding where to place the
constraints in your model, consider the following guidelines:

• Favor constraints on the input values because the software can process inputs easier.
• If you need to place constraints on both the input and the output, for example, to avoid nonlinear

arithmetic, one of the constraints should be a range such as [minval maxval]. The software
first tests the values at both ends of the range and can return a test case, even if the underlying
calculations are nonlinear.

• Make sure that constraints at corresponding input and output points are not contradictory. Do not
constrain the output signals to values that are not achievable because of the constraints on the
input values.

• Avoid creating constraints that contradict the model. Such contradictions occur when a constraint
can never be satisfied because it contradicts some aspect of the model or another constraint.
Analyzing contradictory models can cause Simulink Design Verifier to hang.

The next model is a simple example of a contradictory model. The second input to the Multiply
block is the constant 1, but the Test Condition block constrains it to a value of 2, 5, or 10. The
analysis cannot achieve all the test objectives in this model.

 Manage Model Data to Simplify the Analysis

14-9

• When you work with large models that have many multiplication and division operations, you may
find it easier to add constraints to all of the floating-point inputs rather than to identify the precise
set of inputs that require constraints.

14 Analyzing Large Models and Improving Performance

14-10

Partition Model Inputs for Incremental Test Generation
As described in “Constrain Data” on page 14-8, you can constrain the values of model inputs using
the Simulink Design Verifier Test Condition block.

Like other Simulink parameters, constraint values can be shared across several blocks by referencing
a common workspace variable; you can initialize constraint values using MATLAB commands. If you
have several inputs related to speed, such as desired speed, measured speed, and average speed, you
might choose to constrain all of them to the same set of values.

As an advanced technique for experienced MATLAB programmers, you can use parameterized
constraints and successive runs of Simulink Design Verifier to implement an incremental test
generation technique:

1 Partition model inputs so that some are held constant, some are constrained to sets of constants
using the Test Condition block, and some can have any value.

2 Generate test cases and run those test cases to collect model coverage.
3 Choose new values and partition the inputs with these new values.
4 Generate test cases for missing coverage using the sldvgencov function and the current test

coverage.

Note To view an example of extending an existing test suite to achieve missing model coverage,
enter the following at the command prompt in the MATLAB Command Window:

showdemo('sldvdemo_incremental_test_generation')

5 Repeat steps 3 and 4 until you have achieved the desired coverage.

Partition the model inputs that enable further simplification when an analysis runs. Consider the
following model, which has three mutually independent enabled subsystems:

• Normal Mode
• Shutdown Mode
• Failure Mode

 Partition Model Inputs for Incremental Test Generation

14-11

You can incrementally generate test cases for each subsystem by constraining the first input to a
constant value before running an analysis. In this way, as you create test cases for each subsystem,
the software ignores the complexity of the other two subsystems.

14 Analyzing Large Models and Improving Performance

14-12

Bottom-Up Approach to Model Analysis
In this section...
“Reuse of Analysis Results from Subsystems at the System level” on page 14-13
“Limitations” on page 14-14

Simulink Design Verifier software works most effectively at analyzing large models using a bottom-up
approach. In this approach, the software analyzes smaller model components first, which can be
faster than using the default Auto test suite optimization.

The bottom-up approach offers several advantages:

• It allows you to solve the problems that slow down error detection, test generation, or property
proving in a controlled environment.

• Solving problems with small model components before analyzing the model as a whole is more
efficient, especially if you have unreachable components in your model that you can only discover
in the context of the model.

• You can iterate more quickly—find a problem and fix it, find another problem and fix it, and so on.
• If one model component has a problem—for example, a component is unreachable in simulation—

that can prevent the software from generating tests for all the objectives in a large model.

Try this workflow with your large model:

1 Use the Test Generation Advisor to identify analyzable model components and generate tests for
these components. For more information, see “Use Test Generation Advisor to Identify Analyzable
Components” on page 7-24.

2 Fix any problems by adding constraints or specifying block replacements.
3 After you analyze the smaller components, reapply the required constraints and substitutions to

the original model. Analyze the full model.

When you finish a bottom-up analysis, you have a top-level model that Simulink Design Verifier
can analyze quickly.

Reuse of Analysis Results from Subsystems at the System level
This section explains how the results for Simulink Design Verifier run on the unit level generalize to
the system level. This could be used in certain circumstances as a replacement for running Simulink
Design Verifier at the system level, or to restrict the checks that need to run at the system level.

These points describe how Simulink Design Verifier generalizes the results on the unit level to the
system level:

• When the design errors prove to be valid or, if you find dead logic at the unit level, the same
results are considered valid (or dead logic) at the integration level. Without the system context,
analysis at the unit level allows for a less constrained set of behaviors than those experienced in a
unit when running at the system level. In other words, when the design error is valid in an
unconstrained setting, it is valid in the more constrained setting.

• When there are design errors or an absence of dead logic at the unit level, the results might be
different at the integration level. You must then reanalyze these objectives at the integration level.

 Bottom-Up Approach to Model Analysis

14-13

Limitations
These limitations are for reusing of analysis results from subsystems, at the system level:

• If the configuration parameter values between the unit level and the system level differ, the
Simulink Design Verifier results may change at the system level.

• If floating-point Inf/NaN check is run at the unit level, the inputs to the unit are assumed to be
finite, and similarly if the subnormal check is run at the unit level, the inputs to the unit are
assumed to be normal. If you need to consider Inf/NaN and subnormal as inputs to the unit level,
consider either disabling these checks or analyzing at the integration level. For more information,
see “Assumptions and Limitations” on page 6-33.

• If you use sldvextract function, in order to extract a unit for analysis, Simulink Design Verifier
in some cases, inserts a Data Store Memory block and Data Store Read and/or Data Store Write
blocks. For more information, see “Analyze Subsystems That Read from Global Data Storage” on
page 14-16. This leads to a different simulation behavior for the unit level. Additionally, the data
store access violation checks may experience different results.

14 Analyzing Large Models and Improving Performance

14-14

Extract Subsystems for Analysis
In this section...
“Overview of Subsystem Extraction” on page 14-15
“sldvextract Function” on page 14-15
“Structure of the Extracted Model” on page 14-15
“Analyze Subsystems That Read from Global Data Storage” on page 14-16
“Analyze Function-Call Subsystems” on page 14-17
“Analyze Global Simulink Function” on page 14-19

Overview of Subsystem Extraction
If you have a large model that slows down your analysis or has unreachable objectives, you may want
to analyze atomic subsystems or Stateflow atomic subcharts using Simulink Design Verifier. This
technique allows you to implement a bottom-up approach to analyzing a large model, as described in
“Bottom-Up Approach to Model Analysis” on page 14-13.

When you analyze a subsystem or atomic subchart, the software:

• Extracts the subsystem or subchart into a new model.
• If required, adds blocks to the newly created model that replicate the execution context of the

subsystem or subchart within its parent model.
• Analyzes the extracted model and produces results.

Note The Simulink Design Verifier software can only analyze atomic subsystems and atomic
subcharts.

For more information about analyzing subsystems, see “Generate Test Cases for a Subsystem” on
page 7-18.

For more information about analyzing atomic subcharts, see “Analyze a Stateflow Atomic Subchart”
on page 1-17.

sldvextract Function
The sldvextract function allows you to extract subsystems and atomic subcharts for component
verification. By extracting the subsystem or atomic subchart, you can verify the component in
isolation from the rest of the system, allowing you to test the component algorithm. For more
information, see “What Is Component Verification?” on page 10-2 and “Functions for Component
Verification” on page 10-3.

Structure of the Extracted Model
When you analyze a subsystem or atomic subchart, Simulink Design Verifier creates a new model that
contains the subsystem or atomic subchart, and any input and output ports that correspond to the
ports connected to the original subsystem.

 Extract Subsystems for Analysis

14-15

The software assigns the following properties to the ports in the new model, as determined by
compiling the original model:

• Data types
• Sample rates
• Signal dimensions
• Minimum and maximum values of the signal ranges

The software names the new model subsystem_name, where subsystem_name is the name of the
subsystem.

The next sections provide examples of how Simulink Design Verifier extracts and analyzes
subsystems.

Analyze Subsystems That Read from Global Data Storage

A data store is a repository to which you can write data, and from which you can read data, without
having to connect an input or output signal directly to the data store.

You create a data store using a Data Store Memory block or a Simulink.Signal object. The Data
Store Memory block or Simulink.Signal object represents the data store and specifies its
properties. Every data store must have a unique name.

When you analyze a subsystem that reads data from a data store that is accessed outside the
subsystem, the analysis:

• Adds a Data Store Memory block to the new model.
• Adds an input port that writes to the data store. Since the input writes to the data store, the data

can have any values (within the specified data type) for the purpose of the Simulink Design
Verifier analysis.

• If the data store specifies minimum and maximum values, those values are assigned to the new
input port.

The following example analyzes a subsystem in the sl_subsys_fcncall8 example model:

1. Open the sl_subsys_fcncall8 example model:

open_system('sl_subsys_fcncall8');

This model defines a data store A, from which the atomic subsystem Reader reads data using a Data
Store Read block.

2. Right-click the Reader subsystem and select Design Verifier > Generate Tests for Subsystem.

The Simulink Design Verifier log window shows that the software extracts the subsystem into a new
model named Reader, analyzes the extracted model, and offers you the choice of which results to
produce.

3. Open the new Reader model that the software created in <current_folder>\sldv_output
\Reader.

14 Analyzing Large Models and Improving Performance

14-16

The new Inport block A writes into the data store, which is used by the subsystem Reader in the new
model.

Analyze Function-Call Subsystems

A function-call subsystem is a triggered subsystem whose execution is determined by logic internal to
a C MEX S-function instead of by the value of a signal. Function-call subsystems are always atomic.

Note: For more information, see “Implement Function-Call Subsystems with S-Functions”.

When you analyze a model with a function-call subsystem, Simulink Design Verifier creates a new
model with an Inport block that mimics the trigger and a copy of the subsystem. The software then
analyzes the new model.

The following example analyzes a function-call subsystem in the sl_subsys_fcncall2 model:

1. Open the sl_subsys_fcncall2 example model:

open_system("sl_subsys_fcncall2");

2. This model contains a Stateflow™ chart named Chart that triggers the function-call subsystem f.

Right-click the f subsystem and select Design Verifier > Generate Tests for Subsystem.

The software extracts the subsystem into a new model named f0, analyzes the extracted model, and
produces results.

 Extract Subsystems for Analysis

14-17

3. Open the f0 model that the software created in <current_folder>\sldv_output\f0.

The Inport block and the new subsystem block mimic the trigger for the function-call subsystem f in
the new f0 model.

14 Analyzing Large Models and Improving Performance

14-18

Analyze Global Simulink Function

A Simulink® function is a computational unit that calculates a set of outputs when provided with a
set of inputs.

When you analyze Simulink Function subsystem, Simulink Design Verifier™ creates a new model
containing a MATLAB function block _SldvExportFcnScheduler and a copy of the subsystem. This
MATLAB Function block invokes Simulink Functions aperiodically and is driven by inports which
represent the input arguments of the Simulink Function. An additional Inport block called
FcnTriggerPort, the value of which indicates whether to invoke a particular function in a time step
or not.

The following example analyzes a global Simulink function in the sldvexGlobalSimFcn model:

1. Open the sldvexGlobalSimFcn model.

open_system("sldvexGlobalSimFcn");

2. Right-click the subsystem and select Design Verifier > Generate Tests for Subsystem.

The software extracts the subsystem into a new model and analyzes the extracted model, and
produces results.

3. Open the new model SimulinkFunctionRunnable0 that the software creates in
<current_folder>\sldv_output\.

The Inport block FcnTriggerPort, invokes the Simulink Function SimulinkFunctionRunnable in
the new SimulinkFunctionRunnable0 model.

 Extract Subsystems for Analysis

14-19

14 Analyzing Large Models and Improving Performance

14-20

Logical Operations
If you have a Simulink model with both logical and arithmetic operations, consider analyzing only the
logical operations.

The Simulink Design Verifier software does not support nonlinear arithmetic of floating-point
numbers, as occurs with multiplication or division, unless one of the multiply operands or the divisor
is a constant.

To simplify models that contain integers or floating-point numbers, the software maps the model
computations into expressions of Boolean variables. For example, the software might represent an
eight-bit number as a set of eight Boolean values, with one for each digit. It might represent a bit-
wise OR operation of two eight-bit integers as eight separate logical OR operations.

Mapping problems of one data type into Boolean variables is complex, and this complexity increases
when the software performs such mapping. The software handles models with predominantly logical
signals more efficiently than it does those with large integer or floating-point signals.

Note Simulink Design Verifier software can handle floating-point inputs when their values impact the
design through linear inequalities such as x < y or a > 0.

In addition, input complexity can result from certain cast operations. For example, casting a double
to an int8 can introduce a non-linearity in certain situations.

 Logical Operations

14-21

Analyzing Models with Large Verification State Space
Persistent design variables (variables that are assigned in one time step and used in a later time step
during simulation) affect the complexity of analysis in much the same way as input complexity. You
can use one or more of the following techniques to simplify the complexity of the state space you
want to search:

• Apply constraints to input signals that are delayed.
• Constrain the inputs to states that are contained within conditionally executed subsystems.
• Limit the number of test case steps by setting the Maximum test case step parameter to 20.
• Increase the sample time for part or all of the model. (This procedure is similar to reducing timer

thresholds, as described in “Counters and Timers” on page 14-23.) A test case that you generate
at a lower sample rate often has similarities to the test case with a high sample rate that you need
to achieve an objective.

• Use tight variable types where ever possible. For example, if a flag with values of 0 or 1 only is
defined as a double, restrict the type to Boolean.

States that are computed from previous state values present a special challenge. For example, if you
want to restrict the integrator value in a PID controller, you can only use a set of values that includes
all reachable values from the initial value. Otherwise, the input must be forced to 0. Neither of these
limitations is practical and would probably make the analysis less complete.

Alternatively, you can use existing simulation data to help satisfy your testing needs. If you have
existing test data, run it on your model and collect model coverage. For an example of extending an
existing test suite to achieve missing model coverage, see “Extend an Existing Test Suite” on page 7-
86.

14 Analyzing Large Models and Improving Performance

14-22

Counters and Timers

Simulink Design Verifier analysis searches through sequences of states to find input values that drive
the analysis to reach a state that satisfies an objective. Each counter value or timer step corresponds
to a different state, so the presence of long timers or counters can dramatically increase the size of
the state representation. Since analysis complexity depends on the size of the state representation,
you must give special consideration to counters and timers in your model to avoid over complicating
Simulink Design Verifier analysis.

Note For the purposes of Simulink Design Verifier analysis, the term configuration refers to a set of
values for all the persistent information in your model.

The search process investigates all configurations that can be reached in a single timer step before
considering any of the configurations that can be reached in two timer steps. Likewise, the search
investigates all configurations that can be reached in two timer steps before it considers any
configuration that requires three or more timer steps, and so on. The number of timer steps required
to exhaust the counter directly affects the number of states that the analysis needs to search. Models
that contain time delays, such as countdown timers, complicate the analysis by forcing the search to
span a large number of states.

You may see similar effects when systems use extensive averaging and filtering to delay the response
to a change in inputs. Any aspect of the design that delays the response causes the test sequences to
contain more timer steps, resulting in longer test cases that are more difficult to identify.

Some basic techniques you can use to improve analysis performance in models with counters or
timers include the following:

• Choose very small values for time delays. A system with a logical error when a time delay is set to
2000 steps usually demonstrates that error if the time delay is changed to 2 steps. If your system
has several delays, choose small but unique values for each of them so that your delays are
progressively satisfied.

• Make the initial values of counters and timers parameter values that Simulink Design Verifier can
modify. The software finds initial values that allow shorter test cases to exceed thresholds. For
more information, see “Parameter Configuration for Analysis” on page 5-2.

• Choose higher frequency cutoffs for filters and fewer samples to average to minimize filtering
delays.

Some more advanced techniques you can use to improve analysis performance in models with
counters or timers include the following:

• Use sldvtimer to identify timer patterns that can be optimized for Simulink Design Verifier test
generation.

• Use an existing test case or set of test cases that exhausts the counter or timer, and extend those
test cases to create a full test suite. For more information, see “Defining and Extending Existing
Tests Cases” on page 7-91.

 Counters and Timers

14-23

Prove Properties in Large Models
Property proving uses the same underlying techniques as design error detection and test generation
and suffers from the same performance limitations. However, unlike design error detection or test
generation, you often cannot simplify the problem without compromising the validity of the results.

You can quickly prove simple proof objectives that are not affected by model dynamics. However, a
thorough proof requires that Simulink Design Verifier search through all reachable configurations of
your model—even the ones that are reached only after long time delays. The computation time and
memory required to search a model completely often make an exhaustive proof impractical.

There are two techniques you can use to improve the performance of property proving in a large
model:

In this section...
“Find Property Violations While Designing Your Model” on page 14-24
“Combine Proving Properties and Finding Proof Violations” on page 14-24

Find Property Violations While Designing Your Model
Simulink Design Verifier software offers a strategy that quickly identifies property violations in larger,
more complicated models. While designing your model, analyze your model using this strategy so that
you can fix any property violations before finalizing your design.

To identify property violations of a model, on the Design Verifier > Property Proving pane of the
Configuration Parameters dialog box, specify the value of the Strategy parameter as
FindViolation. When you use this strategy, the Maximum violation steps parameter becomes
active so that you can specify an upper bound for the number of time steps in the search.

During analysis, the software searches only for property violations within the specified number of
time steps. By identifying and fixing the property violations first, you improve the performance of a
property-proving analysis that uses the Prove strategy.

If a violation is not detected, it is impossible to violate the property with any input sequence having
fewer time steps than the specified limit. However, you cannot prove that the property is true because
there might be a counterexample within more time steps than the specified limit.

Combine Proving Properties and Finding Proof Violations
Use the following technique for proving properties in large model. This technique combines proving
and searching for violations:

1 On the Design Verifier > Property Proving pane, set the Strategy parameter to Prove.
2 On the Design Verifier pane, use a relatively short value for the Maximum analysis time

parameter, such as 5–10 minutes. If trivial counterexamples exist — or if your properties do not
depend on model dynamics—the analysis should complete in that amount of time.

3 Change the Strategy parameter to FindViolation, and choose a small bound for the
Maximum violation steps parameter, such as 4, 5, or 6. If your properties have simple
counterexamples, the software should discover them.

4 If you do not find any violations with a small bound, increase the bound and look for longer
counterexamples.

14 Analyzing Large Models and Improving Performance

14-24

a Increase the bound in several increments, and observe the processing time and memory
consumption. System resources might limit the length of violation that can be searched.

b In addition, consider the dynamics of your model and the number of time steps required to
transition between an arbitrary pair of configurations. If you choose too large a bound, the
violation search can be more complex than the unbounded proof.

5 If you can run violation searches with relatively large bounds, e.g., 30–50 time steps, switch back
to the Prove strategy, and use a longer time limit, such as several hours.

 Prove Properties in Large Models

14-25

Simulink Design Verifier Configuration
Parameters

• “Simulink Design Verifier Options” on page 15-2
• “Design Verifier Pane” on page 15-9
• “Design Verifier Pane: Block Replacements” on page 15-19
• “Design Verifier Pane: Parameters and Variants” on page 15-22
• “Design Verifier Pane: Test Generation” on page 15-30
• “Design Verifier Pane: Design Error Detection” on page 15-42
• “Design Verifier Pane: Property Proving” on page 15-52
• “Design Verifier Pane: Results” on page 15-56
• “Design Verifier Pane: Report” on page 15-63

15

Simulink Design Verifier Options

In this section...
“Options in Configuration Parameters Dialog Box” on page 15-2
“Design Verification Options Objects” on page 15-2
“Command-Line Parameters for Design Verification Options” on page 15-2

Options in Configuration Parameters Dialog Box
You can set options for Simulink Design Verifier analysis in the Configuration Parameters dialog box.
To view the options, open Design Verifier tab. In the Prepare section, from the drop-down menu for
the mode settings, and click Settings. The Design Verifier pane of the model configuration
parameters opens.

By default, options for Simulink Design Verifier do not appear in the Configuration Parameters dialog
box. When you open the Design Verifier tab, Simulink Design Verifier associates its default options
with the model. After you save the model, you can access options for Simulink Design Verifier directly
from the Configuration Parameters dialog box.

See “Set Model Configuration Parameters for a Model” for more information about working with this
interface.

Design Verification Options Objects
You can use the sldvoptions function to specify Simulink Design Verifier options at the command
line.

To view in the MATLAB Command Window the design verification options associated with a Simulink
model, use the following syntax:

opts = sldvoptions('model_name');
get(opts)

Command-Line Parameters for Design Verification Options
Use the following parameters to configure the behavior of Simulink Design Verifier. Use the
get_param and set_param functions to retrieve and specify values for these parameters
programmatically.

For each parameter, the Location column indicates where you can set its value in the Configuration
Parameters dialog box. The Values column shows the type of value required, the possible values
(separated with a vertical line), and the default value (enclosed in braces).

Parameter Location Values
DVAbsoluteTolerance Set by the Floating point

absolute tolerance parameter on
the Design Verifier > Test
Generation pane.

double {'1.0e-05'}

15 Simulink Design Verifier Configuration Parameters

15-2

Parameter Location Values
DVAssertions Set by the Assertion blocks

parameter on the Design Verifier
> Property Proving pane.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVAutomaticStubbing Set by the Automatic stubbing
of unsupported blocks and
functions parameter on the
Design Verifier pane.

{'on'} | 'off'

DVBlockReplacement Set by the Apply block
replacements parameter on the
Design Verifier > Block
Replacements pane.

'on' | {'off'}

DVBlockReplacement‐
ModelFileName

Set by the File path of the
output model parameter on the
Design Verifier > Block
Replacements pane.

character array {'$ModelName
$_replacement'}

DVBlockReplacement‐
RulesList

Set by the List of block
replacement rules parameter on
the Design Verifier > Block
Replacements pane.

character array
{'<FactoryDefaultRules>'}

DVCodeAnalysisExtraOptions Set by the Additional options for
code analysis parameter on the
Design Verifier pane.

character array {''}

DVCoverageDataFile Set by the Coverage data file
parameter on the Design Verifier
> Test Generation pane.

character array {''}

DVCovFilter Set by the Ignore objectives
based on filter parameter on the
Design Verifier pane.

'on' | {'off'}

DVCovFilterFileName Set by the Filter file(s) parameter
on the Design Verifier pane.

character array {''}

DVDataFileName Set by the Data file name
parameter on the Design Verifier
> Results pane.

character array {'$ModelName
$_sldvdata'}

DVDeadLogicObjectives Set by the Coverage objectives
to be analyzed parameter on the
Design Verifier > Design Error
Detection pane.

'Decision' |
{'ConditionDecision'} | 'MCDC'

DVDesignMinMaxCheck Set by the Specified minimum
and maximum value violations
parameter on the Design Verifier
> Design Error Detection pane.

'on' | {'off'}

DVDesignMinMaxConstraints Set by the Use specified input
minimum and maximum values
parameter on the Design Verifier
pane.

{'on'} | 'off'

 Simulink Design Verifier Options

15-3

Parameter Location Values
DVDetectActiveLogic Set by Run exhaustive analysis

on the Design Verifier > Design
Error Detection pane.

'on' | {'off'}

DVDetectBlockInputRange‐
Violations

Set by Specified block input
range violations on the Design
Verifier > Design Error
Detection pane.

'on' | {'off'}

DVDetectDeadLogic Set by Dead logic (partial) on
the Design Verifier > Design
Error Detection pane.

'on' | {'off'}

DVDetectDivisionByZero Set by the Division by zero
parameter on the Design Verifier
> Design Error Detection pane.

{'on'} | 'off'

DVDetectDSM‐
AccessViolations

Set by the Data store access
violations parameter on the
Design Verifier > Design Error
Detection pane.

'on' | {'off'}

DVDetectInfNaN Set by the Non-finite and NaN
floating-point values parameter
on the Design Verifier > Design
Error Detection pane.

'on' | {'off'}

DVDetectIntegerOverflow Set by the Integer overflow
parameter on the Design Verifier
> Design Error Detection pane.

{'on'} | 'off'

DVDetectOutOfBounds Set by the Out of bound array
access parameter on the Design
Verifier > Design Error
Detection pane.

{'on'} | 'off'

DVDetectSubnormal Set by the Subnormal floating-
point values parameter on the
Design Verifier > Design Error
Detection pane.

'on' | {'off'}

DVDisplayReport Set by the Display report
parameter on the Design Verifier
> Report pane.

{'on'} | 'off'

DVExtendExistingTests Set by the Extend existing test
cases parameter on the Design
Verifier > Test Generation pane.

'on' | {'off'}

DVExistingTestFile Set by the Data file parameter on
the Design Verifier > Test
Generation pane.

character array {''}

DVHarnessModelFileName Set by the Harness model file
name parameter on the Design
Verifier > Results pane.

character array {'$ModelName
$_harness'}

15 Simulink Design Verifier Configuration Parameters

15-4

Parameter Location Values
DVHarnessSource Set by the Harness source

parameter on the Design Verifier
> Results pane.

{'Signal Builder'} | 'Signal
Editor'

DVIgnoreCovSatisfied Set by the Ignore objectives
satisfied in existing coverage
data parameter on the Design
Verifier > Test Generation pane.

'on' | {'off'}

DVIgnoreExistTestSatisfied Set by the Ignore objectives
satisfied by existing test cases
parameter on the Design Verifier
> Test Generation pane.

{on'}| 'off'

DVIncludeRelational‐
Boundary

Set by the Include relational
boundary objectives parameter
on the Design Verifier > Test
Generation pane.

{'on'} | 'off'

DVMakeOutputFilesUnique Set by the Make output file
names unique by adding a
suffix check box on the Design
Verifier pane.

{'on'} | 'off'

DVMaxProcessTime Set by the Maximum analysis
time parameter on the Design
Verifier pane.

double {300}

DVMaxTestCaseSteps Set by the Maximum test case
steps parameter on the Design
Verifier > Test Generation pane.

int32 {10000}

DVMaxViolationSteps Set by the Maximum violation
steps parameter on the Design
Verifier > Property Proving
pane.

int32 {'20'}

DVMode Set by the Mode parameter on the
Design Verifier pane.

{'TestGeneration'} |
'DesignErrorDetection' |
'PropertyProving'

DVModelCoverageObjectives Set by the Model coverage
objectives parameter on the
Design Verifier > Test
Generation pane.

'None' | 'Decision' |
{'ConditionDecision'} | 'MCDC'
| 'EnhancedMCDC'

DVModelReferenceHarness Set by the Reference input
model in generated harness
parameter on the Design Verifier
> Results pane of the
Configuration Parameters dialog
box.

'on' | {'off'}

DVOutputDir Set by Output folder on the
Design Verifier pane.

character array {'sldv_output/
$ModelName$'}

 Simulink Design Verifier Options

15-5

Parameter Location Values
DVParameterConstraints Set by Constraint column in

Parameter Table on the Design
Verifier > Parameters pane.

double array {[]}

DVParameterNames Set by Name column in Parameter
Table on the Design Verifier >
Parameters pane.

double array {[]}

DVParameterUseInAnalysis Set by Use column in Parameter
Table on the Design Verifier >
Parameters pane.

cell array {[]}

DVParameters Set by Enable parameter
configuration on the Design
Verifier > Parameters pane.

'on' | {'off'}

DVParametersConfigFileName Set by Parameter configuration
file on the Design Verifier >
Parameters pane.

This parameter is disabled when
DVParametersUseConfig is set
to 'on'.

character array
{'sldv_params_template.m'}

DVParametersUseConfig Set by Use parameter table on
the Design Verifier >
Parameters pane.

When set to 'on', this parameter
disables DVParametersConfig‐
FileName.

'on' | {'off'}

DVProofAssumptions Set by the Proof assumptions
parameter on the Design Verifier
> Property Proving pane.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVProvingStrategy Set by the Strategy parameter on
the Design Verifier > Property
Proving pane.

'FindViolation' | {'Prove'} |
'ProveWithViolationDetection'

DVRandomizeNoEffectData Set by the Randomize data that
do not affect the outcome
parameter on the Design Verifier
> Results pane.

'on' | {'off'}

DVRebuildModel‐
Representation

Set by the Rebuild model
representation parameter on the
Design Verifier pane.

'Always' | {'If change is
detected'}

DVReduceRationalApprox Set by the Run additional
analysis to reduce instances of
rational approximation
parameter on the Design Verifier
pane.

{'on'} | 'off'

15 Simulink Design Verifier Configuration Parameters

15-6

Parameter Location Values
DVRelativeTolerance Set by the Floating point

relative tolerance parameter on
the Design Verifier > Test
Generation pane.

double {'0.01'}

DVReportFileName Set by the Report file name
parameter on the Design Verifier
> Report pane.

character array {'$ModelName
$_report'}

DVReportIncludeGraphics Set by the Include screen shots
of properties parameter on the
Design Verifier > Report pane.

'on' | {'off'}

DVReportPDFFormat Set by the Generate additional
report in PDF format parameter
on the Design Verifier > Report
pane.

'on' | {off'}

DVSaveExpectedOutput Set by the Include expected
output values parameter on the
Design Verifier > Results pane.

'on' | {'off'}

DVSaveHarnessModel Set by the Generate separate
harness model after analysis
parameter on the Design Verifier
> Results pane.

'on' | {off'}

DVSaveReport Set by the Generate report of
the results parameter on the
Design Verifier > Report pane.

'on' | {off'}

DVSFcnSupport Set by the Support S-Functions
in the analysis parameter on the
Design Verifier pane.

{'on'} | off'

DVSlTestHarnessName Set by the Test Harness Name
parameter on the Design Verifier
> Results pane.

character array {'$ModelName
$_sldvharness'}

DVSlTestFileName Set by the Test File Name
parameter on the Design Verifier
> Results pane.

character array {'$ModelName
$_test'}

DVStrictEnhancedMCDC Set by the Use strict
propagation conditions
parameter on the Design Verifier
> Test Generation pane.

'on' | {'off'}

DVTestConditions Set by the Test conditions
parameter on the Design Verifier
> Test Generation pane.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVTestgenTarget Set by the Test generation
target parameter on the Design
Verifier > Test Generation pane.

{'Model'} | 'GenCodeTopModel' |
'GenCodeModelRef'

 Simulink Design Verifier Options

15-7

Parameter Location Values
DVTestObjectives Set by the Test objectives

parameter on the Design Verifier
> Test Generation pane.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVTestSuiteOptimization Set by the Test suite
optimization parameter on the
Design Verifier > Test
Generation pane.

If you analyze your model by using
the Legacy LargeModel
(Nonlinear Extended), the
software displays a warning
message that this option has been
removed and suggests that you
use Auto instead.

{'Auto'} |
'IndividualObjectives' |
'LongTestcases' | 'LargeModel
(Nonlinear Extended)'

DVUseParallel Set by the Validate test cases or
counterexamples with parallel
computing parameter on the
Design Verifier pane.

'on' | {'off'}

See Also

More About
• “Design Verifier Pane” on page 15-9
• sldvoptions

15 Simulink Design Verifier Configuration Parameters

15-8

Design Verifier Pane

In this section...
“Design Verifier Pane Overview” on page 15-10
“Mode” on page 15-10
“Maximum analysis time” on page 15-11
“Output folder” on page 15-11
“Make output file names unique by adding a suffix” on page 15-12
“Check Model Compatibility” on page 15-13
“Generate Tests/Detect Errors/Prove Properties” on page 15-13

 Design Verifier Pane

15-9

In this section...
“Rebuild model representation” on page 15-13
“Automatic stubbing of unsupported blocks and functions” on page 15-13
“Support S-Functions in the analysis” on page 15-14
“Use specified input minimum and maximum values” on page 15-15
“Run additional analysis to reduce instances of rational approximation” on page 15-15
“Validate test cases or counterexamples with parallel computing” on page 15-16
“Additional options for code analysis” on page 15-17
“Ignore objectives based on filter” on page 15-17
“Filter file(s)” on page 15-18
“Browse...” on page 15-18

Design Verifier Pane Overview

Specify analysis options and configure Simulink Design Verifier output.

Mode

Specify the analysis mode for Simulink Design Verifier.

Settings

Default: Test generation

Design error detection
Detects integer and fixed-point overflow errors and division-by-zero errors in a model

Test generation
Generates test cases for a model.

Property proving
Proves properties of a model.

Tip

Simulink Design Verifier specifies the value of this option when you select one of these analysis
options from the Design Verifier tab, in the Mode section:

• Select Design Error Detection, then click Detect Design Errors.
• Select Test Generation, then click Generate Tests.
• Select Property Proving, then click Prove Properties.

Dependency

When you set the Mode parameter, the button below Check Model Compatibility changes as
follows:

15 Simulink Design Verifier Configuration Parameters

15-10

• Mode: Test generation, button reads: Generate Tests
• Mode: Design error detection, button reads: Detect Errors
• Mode: Property proving, button reads: Prove Properties

Command-Line Information
Parameter: DVMode
Type: character array
Value: 'TestGeneration' | 'DesignErrorDetection' | 'PropertyProving'
Default: 'TestGeneration'

See Also

• “Overview of the Simulink Design Verifier Workflow” on page 1-19
• “What Is Design Error Detection?” on page 6-2
• “What Is Test Case Generation?” on page 7-3
• “What Is Property Proving?” on page 12-2

Maximum analysis time

Specify the maximum time (in seconds) that Simulink Design Verifier spends analyzing a model. You
can set the value of maximum analysis time to the value that you are willing to provide to the
analysis. You can also stop the analysis at any time.

Settings

Default: 300

The value that you enter represents the maximum number of seconds Simulink Design Verifier
analyzes your model.

Command-Line Information
Parameter: DVMaxProcessTime
Type: double
Value: any valid value
Default: 300

Output folder

Specify a path name to which Simulink Design Verifier writes its output.

Settings

Default: sldv_output/$ModelName$

• Enter a path that is either absolute or relative to the current folder.
• $ModelName$ is a token that represents the model name.

 Design Verifier Pane

15-11

Tip

You can use the following parameters to customize the names and locations of Simulink Design
Verifier output:

• On the Results pane:

• Data file name
• Harness model file name
• Simulink Test options > Test File name

• On the Report pane:

• Report file name
• File path of the output model

• On the Block Replacements pane:

• File path of the output model

Command-Line Information
Parameter: DVOutputDir
Type: character array
Value: any valid path
Default: 'sldv_output/$ModelName$'

See Also

“Review Analysis Results”

Make output file names unique by adding a suffix

Specify whether Simulink Design Verifier makes its output file names unique by appending a numeric
suffix.

Settings

Default: On

 On
Appends an incremental numeric suffix to Simulink Design Verifier output file names. Selecting
this option prevents the software from overwriting existing files that have the same name.

 Off
Does not append a suffix to Simulink Design Verifier output file names. In this case, the software
might overwrite existing files that have the same name.

Command-Line Information
Parameter: DVMakeOutputFilesUnique
Type: character array
Value: 'on' | 'off'
Default: 'on'

15 Simulink Design Verifier Configuration Parameters

15-12

See Also

“Review Analysis Results”

Check Model Compatibility

Run a check to assess your model for compatibility with Simulink Design Verifier. For more
information, see “Simulink Design Verifier Checks”.

Generate Tests/Detect Errors/Prove Properties

When you set the Mode parameter, this button changes as follows:

• Mode: Test generation, button reads: Generate Tests

For more information, see “What Is Test Case Generation?” on page 7-3.
• Mode: Design error detection, button reads: Detect Errors

For more information, see “What Is Design Error Detection?” on page 6-2.
• Mode: Property proving, button reads: Prove Properties

For more information, see “What Is Property Proving?” on page 12-2.

Rebuild model representation

Specify whether to rebuild model representation for Simulink Design Verifier analysis.

Settings

Default: If change is detected

Always
Always rebuild the model representation.

If change is detected
Rebuild the model representation only when the software detects any change in the model.

Command-Line Information
Parameter: DVRebuildModelRepresentation
Type: character array
Value: 'Always' | 'IfChangeIsDetected'
Default: 'If change is detected'

See Also

“Check Model Compatibility” on page 3-2

Automatic stubbing of unsupported blocks and functions

 Design Verifier Pane

15-13

Specify whether to ignore unsupported blocks and functions during analysis.

Settings

Default: On

 On
Ignores unsupported blocks and functions and proceeds with the analysis.

 Off
Displays a warning when Simulink Design Verifier encounters an unsupported block or function
and asks if you want to continue the analysis.

Command-Line Information
Parameter: DVAutomaticStubbing
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Handle Incompatibilities with Automatic Stubbing” on page 2-7

Support S-Functions in the analysis

Specify whether to enable support for S-Functions that have been compiled to be compatible with
Simulink Design Verifier.

Settings

Default: On

 On
Enables support for S-Functions that have been compiled to be compatible with Simulink Design
Verifier.

 Off
Simulink Design Verifier automatically stubs S-Functions during analysis.

Command-Line Information
Parameter: DVSFcnSupport
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Support Limitations and Considerations for S-Functions and C/C++ Code” on page 3-28

“Configuring S-Function for Test Case Generation” on page 7-109

“Handle Incompatibilities with Automatic Stubbing” on page 2-7

15 Simulink Design Verifier Configuration Parameters

15-14

Use specified input minimum and maximum values

Specify whether to generate test cases that consider specified minimum and maximum values as
constraints for all input signals in your model.

Settings

Default: On

 On
Considers specified minimum and maximum values as constraints for all input signals.

 Off
Ignores any specified minimum and maximum values.

Command-Line Information
Parameter: DVDesignMinMaxConstraints
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Minimum and Maximum Input Constraints” on page 11-2

Run additional analysis to reduce instances of rational approximation

Specify whether Simulink Design Verifier attempts to reduce the use of rational approximation during
analysis.

Settings

Default: On

 On
When you use Simulink Design Verifier to analyze models, Simulink Design Verifier attempts to
reduce the use of rational approximation if the model. Enabling this setting may increase analysis
time.

 Off
Simulink Design Verifier does not attempt to reduce the use of rational approximation during
analysis.

Command-Line Information
Parameter: DVReduceRationalApprox
Type: character array
Value: 'on' | 'off'
Default: 'on'

 Design Verifier Pane

15-15

Validate test cases or counterexamples with parallel computing

Specifies whether to validate test cases or counterexamples with parallel computing. This option
requires a Parallel Computing Toolbox™ license.

When to Use Parallel Computing for Validation

In general, parallel execution can help reduce the validation time if:

• You have a complex Simulink model that takes a long time to simulate.
• The Simulink Design Verifier analysis exceeds the maximum analysis time and results in a number

of objectives with the Needs Simulation status. For more information, see “Objectives Satisfied -
Needs Simulation” on page 13-46 and “Objectives Falsified - Needs Simulation” on page 13-49.

• The test generation analysis generates long test cases. This may be because you have set Test
suite optimization to LongTestcases or the Maximum test case steps value is greater than
the default value. For more information, see “Test Generation Pane Overview” on page 15-31.

The following points must be considered when using parallel computing for validation:

• Starting a parallel pool can take time, which impacts the overall analysis time. To reduce the
analysis time:

• Make sure that the parallel pool is already running before you run a test generation analysis.
By default, the parallel pool shuts down after being idle for a specified number of minutes. To
change the setting, see the topic 'Specify Your Parallel Preferences' in Parallel Computing
Toolbox.

• Load Simulink on all the parallel pool workers.
• The simulation occurs sequentially when:

• The cluster is not local. Configure parallel preferences to use the local cluster only. To
change the setting, see the topic 'Specify Your Parallel Preferences' in Parallel Computing
Toolbox.

• The model is in dirty state prior to launching the SLDV analysis.
• The model has ToFile blocks.
• The model is an internal harness.

• Cross-product features such as functional testing and coverage analysis from Simulink Test
Manager do not support parallel computing for validation. For more information, see “Perform
Functional Testing and Analyze Test Coverage” (Simulink Test).

Settings

Default: Off

 On
If you have a Parallel Computing Toolbox license, then Simulink Design Verifier validates test
cases or counterexamples in parallel across multiple workers on the same machine.

 Off
Simulink Design Verifier validates test cases or counterexamples in serial.

15 Simulink Design Verifier Configuration Parameters

15-16

Command-Line Information
Parameter: DVUseParallel
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“How Simulink Design Verifier Reports Approximations Through Validation Results” on page 2-23

Additional options for code analysis

Specify additional options for analyzing S-functions that have been compiled to be compatible with
Simulink Design Verifier. For more information, see “Support Limitations and Considerations for S-
Functions and C/C++ Code” on page 3-28.

Settings

Default: ''

Enter additional options for analyzing S-Functions that have been compiled to be compatible with
Simulink Design Verifier. For example, to specify the maximum size of arrays, enter
defaultArraySize = 512.

Command-Line Information
Parameter: DVCodeAnalysisExtraOptions
Type: character array
Value: any valid option for analyzing S-Functions
Default: ''

Ignore objectives based on filter

Specify to analyze the model, ignoring the objectives in the Filter file(s). The Filter file(s) contains
the model coverage objectives for test generation, dead logic detection, and design error detection
objectives that you want to filter from analysis.

Settings

Default: Off

 On
Ignores objectives in the Filter file(s) during test generation and design error detection analysis.

 Off
Generates results for all the objectives during test generation and design error detection analysis,
including those in the Filter file(s).

Dependency

This parameter enables Filter file(s).

 Design Verifier Pane

15-17

Command-Line Information
Parameter: DVCovFilter
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Coverage Filtering” (Simulink Coverage)

Filter file(s)

Specify folder and file name(s) for the file(s) that contains the model coverage objectives and design
error detection objectives that you want to filter from analysis.

Settings

Default: ''

• Specify the name of the folder and file name(s) that contain the objectives that you want to ignore
from test generation and design error detection analysis.

Click the Browse button to select an existing Filter file(s).

Command-Line Information
Parameter: DVCovFilterFileName
Type: character array
Value: valid file paths separated by comma or semi-colon
Default: ''

See Also

“Coverage Filter Rules and Files” (Simulink Coverage)

Filter Objectives by Using Analysis Filter Viewer on page 6-46

Browse...

Browse to the file that contains the objectives that you want to ignore from design error detection
and test generation analysis.

Dependency

This button is enabled by Ignore objectives based on filter.

15 Simulink Design Verifier Configuration Parameters

15-18

Design Verifier Pane: Block Replacements

In this section...
“Block Replacements Pane Overview” on page 15-19
“Apply block replacements” on page 15-19
“List of block replacement rules” on page 15-20
“File path of the output model” on page 15-20

Block Replacements Pane Overview

Specify options that control how Simulink Design Verifier preprocesses the models it analyzes.

See Also

“Perform Block Replacement”

Apply block replacements

Specify whether Simulink Design Verifier replaces blocks in a model before its analysis.

Settings

Default: Off

 On
Replaces blocks in a model before Simulink Design Verifier analyzes it.

 Off
Does not replace blocks in a model before Simulink Design Verifier analyzes it.

 Design Verifier Pane: Block Replacements

15-19

Dependencies

This parameter enables List of block replacement rules and File path of the output model.

Command-Line Information
Parameter: DVBlockReplacement
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Perform Block Replacement”

List of block replacement rules

Specify a list of block replacement rules that Simulink Design Verifier executes before its analysis.

Settings

Default: <FactoryDefaultRules>

• Specify block replacement rules as a list delimited by spaces, commas, or carriage returns.
• The Simulink Design Verifier software processes block replacement rules in the order that you list

them.
• If you specify the default value, Simulink Design Verifier uses its factory default block replacement

rules.

Dependency

This parameter is enabled when you select Apply block replacements.

Command-Line Information
Parameter: DVBlockReplacementRulesList
Type: character array
Value: any valid rules
Default: '<FactoryDefaultRules>'

See Also

“Perform Block Replacement”

File path of the output model

Specify a folder and file name for the model that results after applying block replacement rules.

Settings

Default: $ModelName$_replacement

• Optionally, enter a path that is either absolute or relative to the path name specified in Output
folder.

15 Simulink Design Verifier Configuration Parameters

15-20

• Enter a file name for the model that results after applying block replacement rules.
• $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled when you select Apply block replacements.

Command-Line Information
Parameter: DVBlockReplacementModelFileName
Type: character array
Value: any valid path and file name
Default: '$ModelName$_replacement'

See Also

“Perform Block Replacement”

 Design Verifier Pane: Block Replacements

15-21

Design Verifier Pane: Parameters and Variants

In this section...
“Parameters Pane Overview” on page 15-23
“Parameter configuration” on page 15-23
“Enable” on page 15-23
“Disable” on page 15-23
“Clear” on page 15-23
“Highlight in Model” on page 15-24
“Use” on page 15-24
“Name” on page 15-24
“Constraint” on page 15-25
“Value” on page 15-25
“Min” on page 15-26
“Max” on page 15-26
“Model Element” on page 15-26
“Find parameters” on page 15-27
“Import” on page 15-27
“Export” on page 15-27
“Parameter configuration file” on page 15-27
“Browse...” on page 15-28
“Edit...” on page 15-28
“Analyze all Startup Variants” on page 15-28
“Launch Variant Manager...” on page 15-29

15 Simulink Design Verifier Configuration Parameters

15-22

Parameters Pane Overview

Specify options that control how Simulink Design Verifier uses parameter configurations when
analyzing models.

Parameter configuration

Specify the parameter configuration from these options available in drop-down:

• Treat all parameters as constants
• Automatically infer parameter specification. See “Automatically Infer Parameter Specification” on

page 5-32
• Determine from generated code. See “Determine from Generated Code” on page 5-36
• Use parameter table. See “Use Parameter Table” on page 5-7
• Use parameter configuration file. See “Use Parameter Configuration File” on page 5-29

Settings

Default: None

Command-Line Information
Parameter: DVParameterConfiguration
Type: enum
Value: 'None' | 'Auto' | 'DetermineFromGeneratedCode' | 'UseParameterTable' |
'UseParameterConfigFile'
Default: 'None'

See Also

“Use Parameter Table” on page 5-7

Enable

Dependency

This button is enabled by setting Parameter configuration to Use parameter table.

Disable

Dependency

This button is enabled by setting Parameter configuration to Use parameter table.

Clear

 Design Verifier Pane: Parameters and Variants

15-23

Dependency

This button is enabled by setting Parameter configuration to Use parameter table.

Highlight in Model

Dependency

This button is enabled by setting Parameter configuration to Use parameter table.

Use

In the Parameter Table, each row represents a parameter that can be constrained to specified values
during Simulink Design Verifier analysis.

The Use column specifies whether to use this row’s named parameter and specified constraint in the
current parameter configuration.

Settings

Default: Off

 On
Use this parameter and its specified constraint in the current parameter configuration.

 Off
Do not use this parameter and its specified constraint in the current parameter configuration.

Dependency

This column is enabled by setting Parameter configuration to Use parameter table.

See Also

“Use Parameter Table” on page 5-7

Name

In the Parameter Table, each row represents a parameter that can be constrained to specified values
during Simulink Design Verifier analysis.

The Name column displays the name of the parameter.

Settings

Default: empty

15 Simulink Design Verifier Configuration Parameters

15-24

Tips

To load the model parameters into the Parameter Table, at the bottom of the table, click Find in
Model. When possible, the software automatically generates constraint values for each parameter.

Dependency

This column is enabled by setting Parameter configuration to Use parameter table.

See Also

“Use Parameter Table” on page 5-7

Constraint

In the Parameter Table, each row represents a parameter that can be constrained to specified values
during Simulink Design Verifier analysis.

The Constraint column contains the specified value range for the parameter.

Settings

Default: empty

Tips

To autogenerate parameter constraints, at the bottom of the Parameter Table, click Find in Model.

Dependency

This column is enabled by setting Parameter configuration to Use parameter table.

See Also

“Use Parameter Table” on page 5-7

Value

In the Parameter Table, each row represents a parameter that can be constrained to specified values
during Simulink Design Verifier analysis.

The Value column contains the value of the parameter in the base workspace. If the parameter is
defined in a Simulink data dictionary that is linked to the model, the Value column contains the value
of the parameter in the data dictionary.

Settings

Default: empty

Dependency

This column is enabled by setting Parameter configuration to Use parameter table.

 Design Verifier Pane: Parameters and Variants

15-25

See Also

“Use Parameter Table” on page 5-7

Min

In the Parameter Table, each row represents a parameter that can be constrained to specified values
during Simulink Design Verifier analysis.

For parameters of type Simulink.Parameter with a specified minimum value, the Min column
contains the specified minimum value for the parameter.

Settings

Default: empty

Dependency

This column is enabled by setting Parameter configuration to Use parameter table.

See Also

• “Use Parameter Table” on page 5-7
• Simulink.Parameter

Max

In the Parameter Table, each row represents a parameter that can be constrained to specified values
during Simulink Design Verifier analysis.

For parameters of type Simulink.Parameter with a specified maximum value, the Max column
contains the specified maximum value for the parameter.

Settings

Default: empty

Dependency

This column is enabled by setting Parameter configuration to Use parameter table.

See Also

• “Use Parameter Table” on page 5-7
• Simulink.Parameter

Model Element

In the Parameter Table, each row represents a parameter that can be constrained to specified values
during Simulink Design Verifier analysis.

15 Simulink Design Verifier Configuration Parameters

15-26

The Model Element column displays the path to the model elements where the parameter is used.

Settings

Default: empty

Dependency

This column is enabled by setting Parameter configuration to Use parameter table.

See Also

“Use Parameter Table” on page 5-7

Find parameters

The software searches your model for parameters that you can configure and loads them in the
Parameter Table. If your model uses a configuration reference, Simulink Design Verifier does not
support the search for parameters when using the Find in Model button. For more information, see
“Share a Configuration with Multiple Models”.

Dependency

This button is enabled by setting Parameter configuration to Use parameter table.

Import

Adds parameters to the Parameter Table from a list stored in a file.

Dependency

This button is enabled by setting Parameter configuration to Use parameter table.

Export

Exports the current parameters in the Parameter Table to a file.

Dependency

This button is enabled by setting Parameter configuration to Use parameter table.

Parameter configuration file

Specify a MATLAB function that defines parameter configurations for a model.

Settings

Default: sldv_params_template.m

 Design Verifier Pane: Parameters and Variants

15-27

• The default file, sldv_params_template.m, is a template that you can edit and save. The
comments in the template explain the syntax you use to specify parameter configurations.

• Click the Browse button to select an existing MATLAB file.
• Click the Edit button to open the specified MATLAB file in an editor.

Dependency

This parameter is enabled by setting Parameter configuration to Use parameter table.

Command-Line Information
Parameter: DVParametersConfigFileName
Type: character array
Value: any valid MATLAB file
Default: 'sldv_params_template.m'

See Also

“Use Parameter Table” on page 5-7

Browse...

Browse to the parameter configuration file.

Dependency

This button is enabled by Enable parameter configuration. This button is disabled by Use
parameter table.

Edit...

Edit the current parameter configuration file.

Dependency

This button is enabled by Enable parameter configuration. This button is disabled by Use
parameter table.

Analyze all Startup Variants

Specify to analyze models that contain variant blocks where the Variant activation time parameter
is startup.

Settings

Default: On

 On
Simulink Design Verifier analyze models that contain variant blocks with the Variant activation
time parameter set to startup.

15 Simulink Design Verifier Configuration Parameters

15-28

 Off
Simulink Design Verifier analyzes only active variant blocks with Variant activation time
parameter set to startup.

Command-Line Information
Parameter: DVAnalyzeAllStartupVariants
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Variant Activation Time for Variant Blocks”

Launch Variant Manager...

Launch the Variant Manager to view or define constraints on variant control parameters. Simulink
Design Verifier applies these constraints during the analysis.

See Also

• “Variant Manager for Simulink”
• “Parameter Configuration for Analysis” on page 5-2
• “Verify and Validate Variant Models with Startup Activation Time”

 Design Verifier Pane: Parameters and Variants

15-29

Design Verifier Pane: Test Generation

In this section...
“Test Generation Pane Overview” on page 15-31
“Test generation target” on page 15-31
“Model coverage objectives” on page 15-31
“Test conditions” on page 15-32
“Test objectives” on page 15-33
“Maximum test case steps” on page 15-33
“Test suite optimization” on page 15-34

15 Simulink Design Verifier Configuration Parameters

15-30

In this section...
“Include relational boundary objectives” on page 15-35
“Floating point absolute tolerance” on page 15-36
“Floating point relative tolerance” on page 15-36
“Use strict propagation conditions” on page 15-37
“Extend using existing coverage data” on page 15-38
“Coverage data” on page 15-38
“Browse” on page 15-39
“Extend using existing test data” on page 15-39
“Test data” on page 15-39
“Browse” on page 15-40
“Separate objectives satisfied with the existing tests/coverage data in the report” on page 15-40

Test Generation Pane Overview

Specify options that control how Simulink Design Verifier generates tests for the models it analyzes.

See Also

• “Workflow for Test Case Generation” on page 7-5

Test generation target

Specify the target for test generation.

• Default: Model generates test cases for the model.
• Code Generated as Top Model generates the code for the target as top model followed by

test cases generation using the generated code.
• Code Generated as Model Reference generates the code for target as model reference

followed by test cases generation using the generated code.

Command-Line Information
Parameter: DVTestgenTarget
Type: character array
Value: 'Model' | 'GenCodeTopModel' | 'GenCodeModelRef' |

See Also

• “Code Coverage Test Generation” on page 7-111
• “Generate Test Cases for Embedded Coder Generated Code” on page 7-28

Model coverage objectives

Specify the type of model coverage that Simulink Design Verifier attempts to achieve.

 Design Verifier Pane: Test Generation

15-31

Settings

Default: Condition Decision

None
Generates test cases that achieve only the custom objectives that you specified in your model
using, for example, Test Objective blocks.

Decision
Generates test cases that achieve decision coverage. For more information, see “Decision” on
page 7-30.

Condition Decision
Generates test cases that achieve condition and decision coverage. For more information, see
“Condition” on page 7-30.

MCDC
Generates test cases that achieve modified condition decision coverage (MCDC). When you select
MCDC, Simulink Design Verifier automatically enables every coverage objective for decision and
condition coverage. For more information, see “MCDC” on page 7-31.

Enhanced MCDC
Generates test cases that achieve enhanced MCDC coverage. When you select Enhanced MCDC,
Simulink Design Verifier automatically enables MCDC coverage. For more information, see
“Enhanced MCDC” on page 7-31.

Command-Line Information
Parameter: DVModelCoverageObjectives
Type: character array
Value: 'None' | 'Decision' | 'ConditionDecision' | 'MCDC'| 'EnhancedMCDC'
Default: 'ConditionDecision'

See Also

• “What Is Test Case Generation?” on page 7-3
• “Workflow for Test Case Generation” on page 7-5

Test conditions

Specify whether Test Condition blocks in your model are enabled or disabled.

Settings

Default: Use local settings

Use local settings
Enables or disables Test Condition blocks based on the value of the Enable parameter of each
block. If a block's Enable parameter is selected, the block is enabled; otherwise, the block is
disabled.

Enable all
Enables all Test Condition blocks in the model regardless of the settings of their Enable
parameters.

15 Simulink Design Verifier Configuration Parameters

15-32

Disable all
Disables all Test Condition blocks in the model regardless of the settings of their Enable
parameters.

Command-Line Information
Parameter: DVTestConditions
Type: character array
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Test Condition
• “Workflow for Test Case Generation” on page 7-5

Test objectives

Specify whether Test Objective blocks in your model are enabled or disabled.

Settings

Default: Use local settings

Use local settings
Enables or disables Test Objective blocks based on the value of the Enable parameter of each
block. If a block's Enable parameter is selected, the block is enabled; otherwise, the block is
disabled.

Enable all
Enables all Test Objective blocks in the model regardless of the settings of their Enable
parameters.

Disable all
Disables all Test Objective blocks in the model regardless of the settings of their Enable
parameters.

Command-Line Information
Parameter: DVTestObjectives
Type: character array
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Test Objective
• “Workflow for Test Case Generation” on page 7-5

Maximum test case steps

Specify the maximum number of simulation steps Simulink Design Verifier takes when attempting to
satisfy a test objective.

 Design Verifier Pane: Test Generation

15-33

The analysis uses the Maximum test case steps parameter during certain parts of the test-
generation analysis to bound the number of steps that test generation uses. When you set a small
value for this parameter, the parts of the analysis that are bounded complete in less time. When you
set a larger value, the bounded parts of the analysis take longer, but it is possible for these parts of
the analysis to generate longer test cases.

To achieve the best performance, set the Maximum test case steps parameter to a value just large
enough to bound the longest required test case, even if the test cases that are ultimately generated
are longer than this value.

When you also specify LongTestcases for the Test suite optimization parameter, the analysis uses
successive passes of test generation to extend a potential test case so that it satisfies more objectives.
When this happens, the analysis applies the Maximum test case steps parameter to each individual
iteration of test generation.

Settings

Default: 10000

You can specify a value that represents the maximum number of simulation steps Simulink Design
Verifier takes when attempting to satisfy a test objective.

Command-Line Information
Parameter: DVMaxTestCaseSteps
Type: int32
Value: any valid value
Default: 10000

See Also

• “Workflow for Test Case Generation” on page 7-5

Test suite optimization

Specify the optimization strategy to use when generating test cases.

Settings

Default: Auto

Auto
Analyzes the model by using a strategy that automatically adapts to the model for better analysis
performance and precision.

IndividualObjectives
Maximizes the number of test cases in a suite by generating cases that each address only one test
objective. Each test case tends to be short, that is, it includes only a few time steps.

LongTestcases
Combines test cases to create a smaller number of test cases. This strategy generates fewer, but
longer, test cases that each satisfy multiple test objectives.

Legacy LargeModel (Nonlinear Extended)
Analyzes the model by using a static strategy that does not adapt to the model. When you analyze
a model by using Legacy LargeModel (Nonlinear Extended), Simulink Design Verifier

15 Simulink Design Verifier Configuration Parameters

15-34

displays a warning message that this option is deprecated and suggests that you use Auto. Auto
is most likely to produce better analysis results than Legacy LargeModel (Nonlinear
Extended).

Command-Line Information
Parameter: DVTestSuiteOptimization
Type: character array
Value: 'Auto' | 'IndividualObjectives' | 'LongTestcases' | Legacy LargeModel
(Nonlinear Extended)
Default: 'Auto'

See Also

• “Workflow for Test Case Generation” on page 7-5
• Simulink Design Verifier Options on page 15-2

Include relational boundary objectives

Specify generation of test cases that satisfy relational boundary objectives. The objective applies to
blocks such as Relational Operator that have an explicit or implicit relational operation. The tests
check the relational operations in these blocks with:

• Equal operand values for integer and fixed-point operands.
• Operand values within a certain tolerance for all operands. For integer and fixed-point operands,

the tolerance is fixed. For floating-point operands, the tolerance is computed using the inputs and
a tolerance value that you specify. If you do not specify a tolerance value, the default values are
used.

Settings

Default: Off

 On
For supported blocks, generates the test cases to satisfy relational boundary objectives.

 Off
Ignores the relational boundary objectives for generating the test cases.

Dependencies

If you select this option, you can use default values or specify values for:

• “Floating point absolute tolerance” on page 15-36
• “Floating point relative tolerance” on page 15-36

Command-Line Information
Parameter: DVIncludeRelationalBoundary
Type: character array
Value: 'on'|'off'
Default: 'off'

 Design Verifier Pane: Test Generation

15-35

See Also

• “Relational Boundary” on page 7-31
• “Model Objects That Receive Coverage” (Simulink Coverage)
• “Supported and Unsupported Simulink Blocks in Simulink Design Verifier” on page 3-7

Floating point absolute tolerance

Specify a value for absolute tolerance used in relational boundary tests. The relational boundary
objectives apply to blocks such as Relational Operator that have an explicit or implicit relational
operation. The tolerance value applies only if the relational operations in those blocks use floating
point operands.

• For integer operands, the tolerance value is fixed at 1.
• For fixed-point operands, the tolerance value is the least significant bit.

Settings

Default: 1.0000e-05

For supported blocks, the relational boundary tests check the relational operations in the block with
operand values that differ by a certain tolerance. The software calculates the tolerance value using
the following formula

max(absTol, relTol* max(|lhs|,|rhs|)), where:

• absTol is the absolute tolerance value that you specify.
• relTol is a relative tolerance value that you can specify.
• lhs is the left operand and rhs the right operand.
• max(x,y) returns x or y, whichever is greater.

Dependencies

To enter a value for this option, select “Include relational boundary objectives” on page 15-35.

Command-Line Information
Parameter: DVAbsoluteTolerance
Type: double
Value: Any valid value
Default: 1.0000e-05

See Also

• “Relational Boundary” on page 7-31
• “Model Objects That Receive Coverage” (Simulink Coverage)

Floating point relative tolerance

Specify a value for relative tolerance used in relational boundary tests. The relational boundary
objectives apply to blocks such as Relational Operator that have an explicit or implicit relational

15 Simulink Design Verifier Configuration Parameters

15-36

operation. The tolerance value applies only if the relational operations in those blocks use floating
point operands.

• For integer operands, the tolerance value is fixed at 1.
• For fixed-point operands, the tolerance value is the least significant bit.

Settings

Default: 0.01

For supported blocks, the relational boundary tests check the relational operations in the block with
operand values that differ by a certain tolerance. The software calculates the tolerance value using
the following formula

max(absTol, relTol* max(|lhs|,|rhs|)), where:

• absTol is an absolute tolerance value that you can specify.
• relTol is the relative tolerance value that you specify.
• lhs is the left operand and rhs the right operand.
• max(x,y) returns x or y, whichever is greater.

Dependencies

To enter a value for this option, select “Include relational boundary objectives” on page 15-35.

Command-Line Information
Parameter: DVRelativeTolerance
Type: double
Value: Any valid value
Default: 0.01

See Also

• “Relational Boundary” on page 7-31
• “Model Objects That Receive Coverage” (Simulink Coverage)

Use strict propagation conditions

Specify whether to use strict propagation conditions for enhanced MCDC analysis.

Settings

Default: Off

 On
Use strict propagation condition for enhanced MCDC analysis.

 Off
Does not use strict propagation conditions for enhanced MCDC analysis.

 Design Verifier Pane: Test Generation

15-37

Dependency

This parameter is enabled when you select Enhanced MCDC as Model coverage objectives.

Command-Line Information
Parameter: DVStrictEnhancedMCDC
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Enhanced MCDC” on page 7-31

Extend using existing coverage data

Specify whether to use your existing coverage data for test generation. Simulink Design Verifier
generates test cases for the objectives not covered in your existing coverage data.

Settings

Default: Off

 On
Extend the coverage in Coverage data by generating additional test cases.

 Off
Analysis ignores existing Coverage data.

Command-Line Information
Parameter: DVIgnoreCovSatisfied
Type: character array
Value: 'on' | 'off'
Default: 'off'

Coverage data

Specify the folder and file name for a file that contains data about satisfied coverage objectives.

Settings

Default: ''

• Specify the folder and file name for a file that contains the satisfied coverage objectives data.
• Click Browse to navigate to and select an existing file.

Command-Line Information
Parameter: DVCoverageDataFile
Type: character array
Value: any valid path and file name

15 Simulink Design Verifier Configuration Parameters

15-38

Default: ''

Browse

Browse to the coverage file that contains the data about satisfied coverage objectives.

Dependencies

To enable this parameter, select Extend using existing coverage data.

See Also

• “Achieve Missing Coverage in Closed-Loop Simulation Model” on page 9-11
• “Generate Tests”

Extend using existing test data

Specify whether to extend the set of generated test cases in Simulink Design Verifier by importing
previously generated test cases, test cases logged from a harness model, or a closed-loop simulation
model.

Settings

Default: Off

 On
Use test cases specified in Test data to extend the set of generated test cases.

 Off
Analysis ignores the existing Test data.

Command-Line Information
Parameter: DVExtendExistingTests
Type: character array
Value: 'on' | 'off'
Default: 'off'

Test data

Specify a folder and file name for the MAT-file that contains the generated or logged test case data.

Settings

Default: ''

• Specify a folder and file name for the MAT-file that contains the logged test case data in an
sldvData object.

• Click Browse to navigate to and select an existing file.

 Design Verifier Pane: Test Generation

15-39

Command-Line Information
Parameter: DVExistingTestFile
Type: character array
Value: any valid path and file name
Default: ''

Browse

Browse to the MAT-file that contains the generated or logged test case data and data about satisfied
coverage objectives.

Dependencies

To enable this parameter, select Extend using existing test data.

See Also

• “When to Extend Existing Test Cases” on page 8-2
• “Common Workflow for Extending Existing Test Cases” on page 8-2

Separate objectives satisfied with the existing tests/coverage data in
the report

Specify whether to separate the test objective statuses that are satisfied by the existing tests or
coverage data from the extended coverage and test data in the analysis report.

Settings

Default: On

 On
Generates an analysis report where the existing tests and coverage data are separate from the
extended test and coverage data.

 Off
Generates a report that combines existing and extended coverage and test data.

Command-Line Information
Parameter: DVIgnoreExistTestSatisfied
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

• “Extend Test Cases for Closed-Loop System” on page 8-10
• “Manage Simulink Design Verifier Data Files” on page 13-7

15 Simulink Design Verifier Configuration Parameters

15-40

See Also

More About
• “Design Verifier Pane” on page 15-9
• “Generate Test Cases for Model Decision Coverage” on page 7-6
• “Workflow for Test Case Generation” on page 7-5

 Design Verifier Pane: Test Generation

15-41

Design Verifier Pane: Design Error Detection

In this section...
“Design Error Detection Pane Overview” on page 15-43
“Dead logic (partial)” on page 15-43
“Run exhaustive analysis” on page 15-43
“Coverage objectives to be analyzed” on page 15-44
“Out of bound array access” on page 15-45
“Data store access violations” on page 15-45
“Division by zero” on page 15-46
“Integer overflow” on page 15-46
“Non-finite and NaN floating-point values” on page 15-47
“Subnormal floating-point values” on page 15-47

15 Simulink Design Verifier Configuration Parameters

15-42

In this section...
“Specified minimum and maximum value violations” on page 15-48
“Specified block input range violations” on page 15-48
“Usage of rem and reciprocal operations - hisl_0002” on page 15-49
“Usage of Square Root operations - hisl_0003” on page 15-50
“Usage of log and log10 operations - hisl_0004” on page 15-50
“Usage of Reciprocal Square Roots blocks - hisl_0028” on page 15-51

Design Error Detection Pane Overview

Specify options that control how Simulink Design Verifier detects runtime errors in the models it
analyzes.

Dead logic (partial)

Specify whether to analyze your model for dead logic. This may result in a partial analysis. Select
Run exhaustive analysis to always run an exhaustive analysis.

Settings

Default: Off

 On
Reports dead logic identified in your model.

 Off
Does not analyze for dead logic.

Command-Line Information
Parameter: DVDetectDeadLogic
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Dead Logic Detection” on page 6-7

Run exhaustive analysis

Specify whether to run an exhaustive analysis for dead logic in the model.

Settings

Default: Off

 Design Verifier Pane: Design Error Detection

15-43

 On
Perform an exhaustive analysis for dead logic in your model.

 Off
Does not perform exhaustive analysis for dead logic in your model.

Command-Line Information
Parameter: DVDetectActiveLogic
Type: character array
Value: 'on' | 'off'
Default: 'off'

Dependency

To enable this parameter, select Dead logic (partial).

See Also

“Dead Logic Detection” on page 6-7

Coverage objectives to be analyzed

Specify the coverage objectives to analyze for dead logic in the model.

Settings

Default: 'ConditionDecision'

Decision
Analyze decision coverage objectives for dead logic.

Condition Decision
Analyze condition and decision coverage objectives for dead logic.

MCDC
Analyze modified condition decision coverage (MCDC) objectives for dead logic.

Command-Line Information
Parameter: DVDeadLogicObjectives
Type: character array
Value: 'Decision' | 'ConditionDecision' | 'MCDC'
Default: 'ConditionDecision'

Dependency

This parameter is dependent upon Dead logic (partial) and works only when Dead logic (partial)
is also enabled.

See Also

“Dead Logic Detection” on page 6-7

15 Simulink Design Verifier Configuration Parameters

15-44

Out of bound array access

Specify whether to analyze your model for out of bound array access errors.

Settings

Default: On

 On
Reports out of bound array access errors in your model.

 Off
Does not report out of bound array access errors in your model.

Command-Line Information
Parameter: DVDetectOutOfBounds
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Detect Out of Bound Array Access Errors” on page 6-28

Data store access violations

Specify whether to analyze your model for data store access violations. Design error detection checks
for these violations related to Data Store Memory blocks:

• Read-before-write
• Write-after-read
• Write-after-write

Settings

Default: Off

 On
Reports data store access violations in your model.

 Off
Does not report data store access violations in your model.

Command-Line Information
Parameter: DVDetectDSMAccessViolations
Type: character array
Value: 'on' | 'off'
Default: 'off'

 Design Verifier Pane: Design Error Detection

15-45

See Also

“Detecting Access Order Errors”

Division by zero

Specify whether to analyze your model for division-by-zero errors.

Settings

Default: On

 On
Reports division-by-zero errors in your model.

 Off
Does not report division-by-zero errors in your model.

Command-Line Information
Parameter: DVDetectDivisionByZero
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

“Detect Integer Overflow and Division-by-Zero Errors” on page 6-19

Integer overflow

Specify whether to analyze your model for integer and fixed-point data overflow errors.

Settings

Default: On

 On
Reports integer or fixed-point data overflow errors in your model.

 Off
Does not report integer or fixed-point data overflow errors in your model.

Command-Line Information
Parameter: DVDetectIntegerOverflow
Type: character array
Value: 'on' | 'off'
Default: 'on'

15 Simulink Design Verifier Configuration Parameters

15-46

See Also

“Detect Integer Overflow and Division-by-Zero Errors” on page 6-19

Non-finite and NaN floating-point values

Specify whether to analyze your model for non-finite and NaN floating-point values.

Settings

Default: Off

 On
Reports non-finite and NaN floating-point values in your model.

 Off
Does not report non-finite and NaN floating-point values in your model.

Command-Line Information
Parameter: DVDetectInfNaN
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Detect Non-Finite, NaN, and Subnormal Floating-Point Values” on page 6-33

Subnormal floating-point values

Specify whether to analyze your model for subnormal floating-point values.

Settings

Default: Off

 On
Reports subnormal floating-point values in your model.

 Off
Does not report subnormal floating-point values in your model.

Command-Line Information
Parameter: DVDetectSubnormal
Type: character array
Value: 'on' | 'off'
Default: 'off'

 Design Verifier Pane: Design Error Detection

15-47

See Also

“Detect Non-Finite, NaN, and Subnormal Floating-Point Values” on page 6-33

Specified minimum and maximum value violations

Specify whether to check that the intermediate and output signals in your model are within the range
of user-specified minimum and maximum constraints.

Settings

Default: Off

 On
Checks that intermediate and output signals are within the range of user-specified minimum and
maximum constraints.

 Off
Does not check that intermediate and output signals are within the range of user-specified
minimum and maximum constraints.

Command-Line Information
Parameter: DVDesignMinMaxCheck
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Check for Specified Minimum and Maximum Value Violations” on page 6-23

Specified block input range violations

Specify whether to analyze your model for block input range violations. The check detects input
range violations for blocks with these settings:

• For these blocks, when the Diagnostic for out-of-range input parameter is set to Warning or
Error:

• n-D Lookup Table
• Interpolation Using Prelookup
• Prelookup
• Direct Lookup Table (n-D)

• Multiport Switch blocks, when the Diagnostic for default case parameter is set to Warning or
Error.

• Trigonometric Function blocks, when the Approximation method parameter is set to CORDIC

15 Simulink Design Verifier Configuration Parameters

15-48

Note The check does not flag block input range violations for n-D Lookup Table blocks, when the
Interpolation method is set to Akima spline or Cubic spline.

Note The check does not flag block input range violations for Trigonometric Function blocks with
CORDIC Approximation method, for which the Function parameter is atan2 and the data types of
the input signals are double.

Settings

Default: Off

 On
Reports block input range violations in your model.

 Off
Does not report block input range violations in your model.

Command-Line Information
Parameter: DVDetectBlockInputRangeViolations
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Detect Block Input Range Violations”

Usage of rem and reciprocal operations - hisl_0002

Specify whether to check the usage of rem and reciprocal operations that cause non-finite results.

This corresponds to the hisl_0002 check for High-Integrity Systems Modeling. For more information,
see hisl_0002: Usage of Math Function blocks (rem and reciprocal).

Settings

Default: Off

 On
Reports violations of the hisl_0002 check in your model.

 Off
Does not report violations of the hisl_0002 check in your model.

Command-Line Information
Parameter: DVDetectHISMViolationsHisl_0002
Type: character array
Value: 'on' | 'off'
Default: 'off'

 Design Verifier Pane: Design Error Detection

15-49

See Also

“Model Advisor Checks for High-Integrity Systems Modeling Guidelines”

Math Function

Usage of Square Root operations - hisl_0003

Specify whether to check the usage of Square Root operations with inputs that can be negative.

This corresponds to the hisl_0003 check for High-Integrity Systems Modeling. For more information,
see hisl_0003: Usage of Square Root blocks.

Settings

Default: Off

 On
Report violations of the hisl_0003 check in your model.

 Off
Does not report violations of the hisl_0003 check in your model.

Command-Line Information
Parameter: DVDetectHISMViolationsHisl_0003
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Model Advisor Checks for High-Integrity Systems Modeling Guidelines”

Sqrt

Usage of log and log10 operations - hisl_0004

Specify whether to check the usage of log and log10 operations that cause non-finite results.

This corresponds to the hisl_0004 check for High-Integrity Systems Modeling. For more information,
see hisl_0004: Usage of Math Function blocks (natural logarithm and base 10 logarithm).

Settings

Default: Off

 On
Report violations of the hisl_0004 check in your model.

 Off
Does not report violations of the hisl_0004 check in your model.

15 Simulink Design Verifier Configuration Parameters

15-50

Command-Line Information
Parameter: DVDetectHISMViolationsHisl_0004
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Model Advisor Checks for High-Integrity Systems Modeling Guidelines”

Usage of Reciprocal Square Roots blocks - hisl_0028

Specify whether to check the usage of Reciprocal Square Root blocks with inputs that can go zero or
negative.

This corresponds to the hisl_0028 check for High Integrity Systems Modeling. For more information,
see hisl_0028: Usage of Reciprocal Square Root blocks.

Settings

Default: Off

 On
Report violations of the hisl_0028 check in your model.

 Off
Does not report violations of the hisl_0028 check in your model.

Command-Line Information
Parameter: DVDetectHISMViolationsHisl_0028
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

“Model Advisor Checks for High-Integrity Systems Modeling Guidelines”

 Design Verifier Pane: Design Error Detection

15-51

Design Verifier Pane: Property Proving

In this section...
“Property Proving Pane Overview” on page 15-52
“Assertion blocks” on page 15-52
“Proof assumptions” on page 15-53
“Strategy” on page 15-53
“Maximum violation steps” on page 15-54

Property Proving Pane Overview

Specify options that control how Simulink Design Verifier proves properties for the models it
analyzes.

See Also

• “What Is Property Proving?” on page 12-2
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5

Assertion blocks

Specify whether Assertion blocks in your model are enabled or disabled.

Settings

Default: Use local settings

Use local settings
Enables or disables Assertion blocks based on the value of the Enable parameter of each block. If
a block's Enable parameter is selected, the block is enabled; otherwise, the block is disabled.

Enable all
Enables all Assertion blocks in the model regardless of the settings of their Enable parameters.

Disable all
Disables all Assertion blocks in the model regardless of the settings of their Enable parameters.

15 Simulink Design Verifier Configuration Parameters

15-52

Command-Line Information
Parameter: DVAssertions
Type: character array
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Assertion
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5

Proof assumptions

Specify whether Proof Assumption blocks in your model are enabled or disabled.

Settings

Default: Use local settings

Use local settings
Enables or disables Proof Assumption blocks based on the value of the Enable parameter of each
block. If a block's Enable parameter is selected, the block is enabled; otherwise, the block is
disabled.

Enable all
Enables all Proof Assumption blocks in the model regardless of the settings of their Enable
parameters.

Disable all
Disables all Proof Assumption blocks in the model regardless of the settings of their Enable
parameters.

Command-Line Information
Parameter: DVProofAssumptions
Type: character array
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Proof Assumption
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5

Strategy

Specify the strategy that Simulink Design Verifier uses when proving properties.

 Design Verifier Pane: Property Proving

15-53

Settings

Default: Prove

Prove
Performs property proofs.

FindViolation
Searches only for property violations within the number of simulation steps specified by the
Maximum violation steps option.

ProveWithViolationDetection
Searches both for property violations, as well as tries to prove properties for which it failed to
detect a violation. This strategy is a relatively optimal balance between the
ProveWithViolationDetection and FindViolation strategies.

Dependency

Selecting FindViolation or ProveWithViolationDetection enables the Maximum violation
steps parameter.

Command-Line Information
Parameter: DVProvingStrategy
Type: character array
Value: 'Prove' | 'FindViolation' | 'ProveWithViolationDetection'
Default: 'Prove'

See Also

• “What Is Property Proving?” on page 12-2
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5

Maximum violation steps

Specify the maximum number of simulation steps over which Simulink Design Verifier searches for
property violations.

Settings

Default: 20

The Simulink Design Verifier software does not search beyond the maximum number of simulation
steps that you specify. Therefore, it cannot identify violations that might occur later in a simulation.

Dependency

This parameter is enabled when you set Strategy to FindViolation or
ProveWithViolationDetection.

Command-Line Information
Parameter: DVMaxViolationSteps

15 Simulink Design Verifier Configuration Parameters

15-54

Type: int32
Value: any valid value
Default: 20

See Also

• “What Is Property Proving?” on page 12-2
• “Workflow for Proving Model Properties” on page 12-4
• “Prove Properties in a Model” on page 12-5

 Design Verifier Pane: Property Proving

15-55

Design Verifier Pane: Results

In this section...
“Results Pane Overview” on page 15-56
“Data file name” on page 15-57
“Include expected output values” on page 15-57
“Randomize data that do not affect the outcome” on page 15-58
“Generate separate harness model after analysis” on page 15-59
“Harness model file name” on page 15-59
“Reference input model in generated harness” on page 15-60
“Harness source” on page 15-61
“Test File Name” on page 15-61
“Test Harness Name” on page 15-62

Results Pane Overview

Specify options that control how Simulink Design Verifier handles the results that it generates.

See Also

“Review Analysis Results”

15 Simulink Design Verifier Configuration Parameters

15-56

Data file name

Specify a folder and file name for the MAT-file that contains the data generated during the analysis,
stored in an sldvData structure.

Settings

Default: $ModelName$_sldvdata

• Optionally, enter a path that is either absolute or relative to the path name specified in Output
folder.

• Enter a file name for the MAT-file.
• $ModelName$ is a token that represents the model name.

Command-Line Information
Parameter: DVDataFileName
Type: character array
Value: any valid path and file name
Default: '$ModelName$_sldvdata'

See Also

• “Manage Simulink Design Verifier Data Files” on page 13-7
• “Review Analysis Results”

Include expected output values

Simulate the model using test case signals and include the output values in the Simulink Design
Verifier data file.

Settings

Default: Off

 On
Simulates the model using the test case signals that the analysis produces. For each test case, the
software collects the simulation output values associated with Outport blocks in the top-level
system and includes those values in the MAT-file that it generates.

 Off
Does not simulate the model and collect output values for inclusion in the MAT-file that the
analysis generates.

Tips

• The TestCases.expectedOutput subfield of the MAT-file contains the output values. For more
information, see “Generate sldvData Structure” on page 13-7.

• When Include expected output values is enabled, Simulink Design Verifier successively
simulates the model using each test case that it generates. Enabling this option requires more
time for Simulink Design Verifier to complete its analysis.

 Design Verifier Pane: Results

15-57

Command-Line Information
Parameter: DVSaveExpectedOutput
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Manage Simulink Design Verifier Data Files” on page 13-7
• “Review Analysis Results”

Randomize data that do not affect the outcome

Specify whether to use random values instead of zeros for input signals that have no impact on test or
proof objectives.

Settings

Default: Off

 On
Assigns random values to test case or counterexample signals that do not affect the outcome of
test or proof objectives in a model. This option can enhance traceability and improve your
regression tests.

 Off
Assigns zeros to test case or counterexample signals that do not affect the outcome of test or
proof objectives in a model.

Tips

• This option replaces default data values with random values when the Simulink Design Verifier
internal analysis engine does not specify a value. When a value does not influence the satisfaction
of a test or proof objective, the generated analysis report indicates that value with a dash (–).

• Simulink Design Verifier generated analysis reports show the setting of this option.
• Enable this option to enhance traceability when simulating test cases or counterexamples. For

instance, consider the following model:

Only the signal entering the Switch block control port impacts its decision coverage. If the
Randomize data that does not affect outcome parameter is off, Simulink Design Verifier uses

15 Simulink Design Verifier Configuration Parameters

15-58

zeros to represent the signals from In1 and In3. When inspecting the results from test case or
counterexample simulations, it is unclear which of these signals passes through the Switch block
because they have the same value. But if the Randomize data that does not affect outcome
parameter is on, the software uses unique values to represent each of those signals. In this case, it
is easier to determine which signal passes through the Switch block.

Command-Line Information
Parameter: DVRandomizeNoEffectData
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Manage Simulink Design Verifier Data Files” on page 13-7
• “Review Analysis Results”

Generate separate harness model after analysis

Create a harness model generated by the Simulink Design Verifier analysis.

Settings

Default: Off

 On
Saves the harness model that Simulink Design Verifier generates as a model file.

 Off
Does not save the harness model that Simulink Design Verifier generates.

Dependency

This parameter enables Harness model file name.

Command-Line Information
Parameter: DVSaveHarnessModel
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Manage Simulink Design Verifier Harness Models” on page 13-13
• “Review Analysis Results”

Harness model file name

Specify a folder and file name for the harness model.

 Design Verifier Pane: Results

15-59

Settings

Default: $ModelName$_harness

• Optionally, enter a path that is either absolute or relative to the path name specified in Output
folder.

• Enter a file name for the harness model.
• $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled by Generate separate harness model after analysis.

Command-Line Information
Parameter: DVHarnessModelFileName
Type: character array
Value: any valid path and file name
Default: '$ModelName$_harness'

See Also

• “Manage Simulink Design Verifier Harness Models” on page 13-13
• “Review Analysis Results”

Reference input model in generated harness

Use a Model block to reference the model to run in the harness model.

Settings

Default: On

 On
Uses a Model block to reference the model to run in the harness model.

 Off
Uses a copy of the model in the harness model.

Tips

• If the Test Unit in the harness model is a subsystem, the values of the Simulink simulation
optimization parameters on the Configuration Parameters dialog box can affect the coverage
results.

Note The simulation optimization parameters are on the following Configuration Parameters
dialog box panes:

• Optimization pane
• Optimization > Signals and Parameters pane
• Optimization > Stateflow pane

15 Simulink Design Verifier Configuration Parameters

15-60

• On the Design Verifier > Parameters pane, if you select the Apply parameters parameter,
Simulink Design Verifier uses a subsystem that contains a copy of the original model in the
harness model, even if you select Reference input model in generated harness.

Command-Line Information
Parameter: DVModelReferenceHarness
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Manage Simulink Design Verifier Harness Models” on page 13-13
• “Review Analysis Results”

Harness source

Specify the type of Inputs block for the harness model.

Settings

Default: Signal Editor

Signal Editor
Generates a separate harness model with the Signal Editor block as the Inputs block.

Signal Builder
Generates a separate harness model with the Signal Builder block as the Inputs block.

Dependency

This parameter is enabled by Generate separate harness model after analysis.

Command-Line Information
Parameter: DVHarnessSource
Type: character array
Value: 'Signal Editor' | 'Signal Builder'
Default: 'Signal Editor'

See Also

• “Manage Simulink Design Verifier Harness Models” on page 13-13

Test File Name

Name and path for test file name in Simulink Test

Settings

Default: $ModelName$_test

 Design Verifier Pane: Results

15-61

• Enter a file name for the test file containing Simulink Design Verifier results.
• $ModelName$ is a token that represents the model name.
• You can enter an absolute path, or a path relative to that specified by Output folder in the Design
Verifier pane.

Dependency

This parameter is visible and enabled if you have a Simulink Test license.

Command-Line Information
Parameter: DVSlTestFileName
Type: character array
Value: any valid path and file name
Default: '$ModelName$_test'

See Also

• “Increase Coverage by Generating Test Inputs” (Simulink Test)

Test Harness Name

Name of the test harness in Simulink Test

Settings

Default: $ModelName$_sldvharness

• Enter a valid name for the test harness built to simulate Simulink Design Verifier test cases. The
test harness corresponds to the test file specified by the parameter Test File name.

• The $ModelName$ token represents the model name.
• Enter a valid MATLAB identifier for the test harness name.

Dependency

This parameter is visible and enabled with a Simulink Test license.

Command-Line Information
Parameter: DVSlTestHarnessName
Type: character array
Value: any valid file name
Default: '$ModelName$_sldvharness'

See Also

• “Increase Coverage by Generating Test Inputs” (Simulink Test)

15 Simulink Design Verifier Configuration Parameters

15-62

Design Verifier Pane: Report

In this section...
“Report Pane Overview” on page 15-63
“Generate report of the results” on page 15-63
“Generate additional report in PDF format” on page 15-64
“Report file name” on page 15-64
“Include screen shots of properties” on page 15-65
“Display report” on page 15-66

Report Pane Overview

Specify options that control how Simulink Design Verifier reports its results.

See Also

• “Review Results” on page 13-35
• “Review Analysis Results”

Generate report of the results

Generate and save a Simulink Design Verifier report.

Settings

Default: Off

 On
Saves the HTML report that Simulink Design Verifier generates.

 Off
Does not generate a Simulink Design Verifier report.

 Design Verifier Pane: Report

15-63

Dependencies

This parameter enables the following parameters:

• Generate additional report in PDF format
• Report file name
• Include screen shots of properties
• Display report

Command-Line Information
Parameter: DVSaveReport
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Review Results” on page 13-35
• “Review Analysis Results”

Generate additional report in PDF format

Save an additional PDF version of the Simulink Design Verifier report.

Settings

Default: Off

 On
Saves an additional PDF version of the Simulink Design Verifier report.

 Off
Does not save an additional PDF version of the Simulink Design Verifier report.

Dependency

This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVReportPDFFormat
Type: character array
Value: 'on' | 'off'
Default: 'off'

See Also

• “Review Results” on page 13-35
• “Review Analysis Results”

Report file name

15 Simulink Design Verifier Configuration Parameters

15-64

Specify a folder and file name for the report that Simulink Design Verifier analysis generates.

Settings

Default: $ModelName$_report

• Optionally, enter a path that is either absolute or relative to the path name specified in Output
folder.

• Enter a file name for the report that the analysis generates.
• $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVReportFileName
Type: character array
Value: any valid path and file name
Default: '$ModelName$_report'

See Also

• “Review Results” on page 13-35
• “Review Analysis Results”

Include screen shots of properties

Includes screen shots of properties in the Simulink Design Verifier report. Only valid in property-
proving mode.

Settings

Default: Off

 On
Includes screen shots of properties in the Simulink Design Verifier report. Only valid in property-
proving mode.

 Off
Does not include screen shots of properties in the Simulink Design Verifier report.

Dependency

This parameter is enabled by Generate report of the results in the Reports pane and Generate
separate harness model after analysis in the Results pane.

Command-Line Information
Parameter: DVReportIncludeGraphics
Type: character array
Value: 'on' | 'off'

 Design Verifier Pane: Report

15-65

Default: 'off'

See Also

• “Review Results” on page 13-35
• “Review Analysis Results”

Display report

Display the report that the Simulink Design Verifier analysis generates after completing its analysis.

Settings

Default: On

 On
Displays the report that the analysis generates after completing its analysis.

 Off
Does not display the report that the analysis generates after completing its analysis.

Dependency

This parameter is enabled by Generate report of the results.

Command-Line Information
Parameter: DVDisplayReport
Type: character array
Value: 'on' | 'off'
Default: 'on'

See Also

• “Review Results” on page 13-35
• “Review Analysis Results”

15 Simulink Design Verifier Configuration Parameters

15-66

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 16-2
• “Analyze Models for Standards Compliance and Design Errors” on page 16-7
• “Perform Functional Testing and Analyze Test Coverage” on page 16-9
• “Analyze Code and Test Software-in-the-Loop” on page 16-12
• “Create Back-to-Back Tests Using Enhanced MCDC” on page 16-20

16

Test Model Against Requirements and Report Results

Requirements – Test Traceability Overview
Traceability between requirements and test cases helps you interpret test results and see the extent
to which your requirements are verified. You can link a requirement to elements that help verify it,
such as test cases in the Test Manager, verify statements in a Test Sequence block, or Model
Verification blocks in a model. When you run tests, a pass/fail summary appears in your requirements
set.

This example demonstrates a common requirements-based testing workflow for a cruise control
model. You start with a requirements set, a model, and a test case. You add traceability between the
tests and the safety requirements. You run the test, summarize the verification status, and report the
results.

In this example, you conduct a simple test of two requirements in the set:

• That the cruise control system transitions to disengaged from engaged when a braking event has
occurred

• That the cruise control system transitions to disengaged from engaged when the current vehicle
speed is outside the range of 20 mph to 90 mph.

Display the Requirements
1 Open the example project.

openExample("shared_vnv/CruiseControlVerificationProjectExample");
pr = openProject("SimulinkVerificationCruise");

2 In the models folder, open the simulinkCruiseAddReqExample model.
3 Display the requirements. Click the icon in the lower-right corner of the model canvas, and

select Requirements. The requirements appear below the model canvas.
4 Display the verification and implementation status. Right-click a requirement and select

Verification Status and Implementation Status.

16 Verification and Validation

16-2

5 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager.

Link Requirements to Tests
Link the requirements to the test case.

1 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager. Explore the test suite and select Safety Tests.

Return to the model. Right-click on requirement S 3.1 and select Link from Selected Test
Case.

A link to the Safety Tests test case is added to Verified by. The yellow bars in the Verified
column indicate that the requirements are not verified.

 Test Model Against Requirements and Report Results

16-3

2 Also add a link for item S 3.4.

Run the Test
The test case uses a test harness SafetyTest_Harness1. In the test harness, a test sequence sets
the input conditions and checks the model behavior:

• The BrakeTest sequence engages the cruise control, then applies the brake. It includes the
verify statement

verify(engaged == false,...
 'verify:brake',...
 'system must disengage when brake applied')

• The LimitTest sequence engages the cruise control, then ramps up the vehicle speed until it
exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
 'verify:limit',...
 'system must disengage when limit exceeded')

1 Return to the Test Manager. To run the test case, click Run.
2 When the test finishes, review the results. The Test Manager shows that both assessments pass

and the plot provides the detailed results of each verify statement.

16 Verification and Validation

16-4

3 Return to the model and refresh the Requirements. The green bar in the Verified column
indicates that the requirement has been successfully verified.

Report the Results
1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create Report.
b In the Create Test Result Report dialog box, set the options:

• Title — SafetyTest
• Results for — All Tests
• File Format — DOCX
• For the other options, keep the default selections.

c Enter a file name and select a location for the report.
d For the Template File, select the ReportTemplate.dotx file in the documents project

folder.
e Click Create.

 Test Model Against Requirements and Report Results

16-5

2 Review the report.

a The Test Case Requirements section specifies the associated requirements
b The Verify Result section contains details of the two assessments in the test, and links to

the simulation output.

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Validate Requirements Links in a Model” (Requirements Toolbox)
• “Customize Requirements Traceability Report for Model” (Requirements Toolbox)

External Websites
• Requirements-Based Testing Workflow

16 Verification and Validation

16-6

https://youtu.be/0STxZbqOUXg

Analyze Models for Standards Compliance and Design Errors

Standards and Analysis Overview
During model development, check and analyze your model to increase confidence in its quality. Check
your model against standards such as MAB style guidelines and high-integrity system design
guidelines such as DO-178 and ISO 26262. Analyze your model for errors, dead logic, and conditions
that violate required properties. Using the analysis results, update your model and document
exceptions. Report the results using customizable templates.

Check Model for Style Guideline Violations and Design Errors
This example shows how to use the Model Advisor to check a cruise control model for MathWorks®

Advisory Board (MAB) style guideline violations and design errors. Select checks and run the analysis
on the model. Iteratively debug issues using the Model Advisor and rerun checks to verify that it is in
compliance. After passing your selected checks, report results.

Check Model for MAB Style Guideline Violations

Check that your model complies with MAB guidelines by using the Model Advisor.

1 Open the example project. On the command line, enter

openExample("shared_vnv/CruiseControlVerificationProjectExample");
pr = openProject("SimulinkVerificationCruise");

2 Open the simulinkCruiseErrorAndStandardsExample model.

open_system simulinkCruiseErrorAndStandardsExample
3 In the Modeling tab, select Model Advisor.
4 Click OK to select simulinkCruiseErrorAndStandardsExample from the System Hierarchy.
5 Check your model for MAB style guideline violations using Simulink Check.

a In the left pane, in the By Product > Simulink Check > Modeling Standards > MAB
Checks folder, select:

 Analyze Models for Standards Compliance and Design Errors

16-7

• Check Indexing Mode
• Check model diagnostic parameters

b Right-click on the MAB Checks node and select Run Checks.
c To review the configuration parameter settings that violate MAB style guidelines, run the

Check model diagnostic parameters check.
d The analysis results appear in the right pane on the Report tab. Report displays the violation

details and the recommended action.
e Click the parameter hyperlinks, which opens the Configuration Parameters dialog box, and

update the model diagnostic parameters. Save the model.
f To verify that your model passes, rerun the check. Repeat steps from c to e, if necessary, to

reach compliance.
g To generate a results report of the Simulink Check checks, select the MAB Checks node,

and then, from the toolstrip, click Report.

Check Model for Design Errors

While in the Model Advisor, you can also check your model for hidden design errors using Simulink
Design Verifier.

1 In the left pane, in the By Products > Simulink Design Verifier folder, select Design Error
Detection.

2 If not already checked, click the box beside Design Error Detection. All checks in the folder are
selected.

3 From the tool strip, click Run Checks.
4 After the Model Advisor analysis, from the tool strip, click Report. This generates a HTML report

of the check analysis.
5 In the generated report, click a Simulink Design Verifier Results Summary hyperlink. The

dialog box provides tools to help you diagnose errors and warnings in your model.

a Review the analysis results on the model. Click the Compute target speed subsystem.
The Simulink Design Verifier Results Inspector window provides derived ranges that can
help you understand the source of an error by identifying the possible signal values.

b Review the harness model or create one if it does not already exist.
c View tests and export test cases.
d Review the analysis report. To see a detailed analysis report, click HTML or PDF.

See Also

Related Examples
• “Check Model Compliance by Using the Model Advisor”
• “Collect Model Metrics Using the Model Advisor”
• “Analyze Models for Design Errors” on page 6-4
• “Prove Properties in a Model” on page 12-5

16 Verification and Validation

16-8

Perform Functional Testing and Analyze Test Coverage
Functional testing begins with building test cases based on requirements. These tests can cover key
aspects of your design and verify that individual model components meet requirements. Test cases
include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests systematically. To
check for regression, add baseline criteria to the test cases and test the model iteratively. Coverage
measurement reflects the extent to which these tests have fully exercised the model. Coverage
measurement also helps you to add tests and requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case Generation
This example shows how to perform requirements-based tests for a cruise control model. The tests
link to a requirements document. You:

1 Run the tests.
2 Determine test coverage by using Simulink Coverage.
3 Increase coverage with additional tests generated by Simulink Design Verifier.
4 Report the results.

Open the Test Harness and Model

1 Open the project:

openExample("shared_vnv/CruiseControlVerificationProjectExample");
pr = openProject("SimulinkVerificationCruise");

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open("simulinkCruiseAddReqExample","SafetyTest_Harness1")

 Perform Functional Testing and Analyze Test Coverage

16-9

3 Load the test suite from “Test Model Against Requirements and Report Results” (Simulink Test)
and open the Simulink Test Manager.

pf = fullfile(pr.RootFolder,"tests","slReqTests.mldatx");
tf = sltest.testmanager.TestFile(pf);
sltest.testmanager.view

4 Open the Test Sequence block. The sequence verifies system disengagement when either:

• The brake pedal is pressed.
• Speed exceeds a limit.

Measure Model Coverage

1 In the Simulink Test Manager, select the slReqTests test file.
2 To enable coverage collection, in the right page under Coverage Settings:

• Select Record coverage for referenced models.
• Specify a coverage filter by using Coverage filter filename.
• Select Decision, Condition, and MCDC.

3 Click Run on the Test Manager toolstrip.
4 After the test completes, select Results. The test achieves 50% decision coverage, 41% condition

coverage, and 25% MCDC coverage.

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage. In Results
and Artifacts, select the slReqTests test file and open the Aggregated Coverage Results
section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier. The model being tested

must either be on the MATLAB path or in the working folder.
5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test results

include coverage for the combined test case inputs, achieving increased model coverage.

Alternatively, you can create and use tests to increase coverage programmatically by using
sltest.testmanager.addTestsForMissingCoverage and
sltest.testmanager.TestOptions.

16 Verification and Validation

16-10

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Assess Model Simulation Using verify Statements” (Simulink Test)
• “Compare Model Output to Baseline Data” (Simulink Test)
• “Generate Test Cases for Model Decision Coverage” on page 7-6
• “Increase Test Coverage for a Model” (Simulink Test)

 Perform Functional Testing and Analyze Test Coverage

16-11

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview
You can analyze code to detect errors, check standards compliance, and evaluate key metrics such as
length and cyclomatic complexity. For handwritten code, you typically check for run-time errors with
static code analysis and run test cases that evaluate the code against requirements and evaluate code
coverage. Based on the results, you refine the code and add tests.

In this example, you generate code and demonstrate that the code execution produces equivalent
results to the model by using the same test cases and baseline results. Then you compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to regenerate
code.

Analyze Code for Defects, Metrics, and MISRA C:2012
This workflow describes how to check if your model produces MISRA™ C:2012 compliant code and
how to check your generated code for code metrics and defects. To produce more MISRA compliant
code from your model, you use the code generation and Model Advisor. To check whether the code is
MISRA compliant, you use the Polyspace MISRA C:2012 checker and report generation capabilities.
For this example, you use the model simulinkCruiseErrorAndStandardsExample. To open the
model:

1 Open the project.

openExample("shared_vnv/CruiseControlVerificationProjectExample");
pr = openProject("SimulinkVerificationCruise");

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

16 Verification and Validation

16-12

Run Code Generator Checks

Check your model by using the Code Generation Advisor. Configure code generation parameters to
generate code more compliant with MISRA C and more compatible with Polyspace.

1 Right-click Compute target speed and select C/C++ Code > Code Generation Advisor.
2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to Selected

objectives - prioritized. The MISRA C:2012 guidelines objective is already selected.

3 Click Run Selected Checks.

The Code Generation Advisor checks whether the model includes blocks or configuration settings
that are not recommended for MISRA C:2012 compliance and Polyspace code analysis. For this

 Analyze Code and Test Software-in-the-Loop

16-13

model, the check for incompatible blocks passes, but some configuration settings are
incompatible with MISRA compliance and Polyspace checking.

4 Click the check that did not pass. Accept the parameter changes by selecting Modify
Parameters.

5 Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, use the Model Advisor to check your model for MISRA C
and Polyspace compliance. This example shows you how to use the Model Advisor to check your
model before generating code.

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Standards for MISRA C:2012 advisor checks.
3 Click Run Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until the MISRA

modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With Polyspace, you
can check your code for compliance with MISRA C:2012 and generate reports to demonstrate
compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ Code > Build This
Subsystem.

2 Use the default settings for the tunable parameters and select Build.
3 After the code is generated, in the Simulink Editor, right-click Compute target speed and select

Polyspace > Options.
4 Click Configure to choose more advanced Polyspace analysis options in the Polyspace

configuration window.

16 Verification and Validation

16-14

5 On the left pane, click Coding Standards & Code Metrics, then select Calculate Code
Metrics to enable code metric calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify > Code

Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks. You can see the
progress of the analysis in the MATLAB Command Window. After the analysis finishes, the
Polyspace environment opens.

Review Results

The Polyspace environment shows you the results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or object is local. As
you click through the 8.7 violations, you can see that these results refer to variables that other
components also use, such as CruiseOnOff. You can annotate your code or your model to justify
every result. Because this model is a unit in a larger program, you can also change the
configuration of the analysis to check only a subset of MISRA rules.

 Analyze Code and Test Software-in-the-Loop

16-15

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from option to Project configuration to choose a subset of MISRA rules

in the Polyspace configuration.
4 Click Configure.
5 In the Polyspace window, on the left pane, click Coding Standards & Code Metrics. Then

select Check MISRA C:2012 and, from the drop-down list, select single-unit-rules. Now
Polyspace checks only the MISRA C:2012 rules that are applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

The rules Polyspace showed previously were found because the model was analyzed by itself.
When you limited the rules Polyspace checked to the single-unit subset, Polyspace found only two
violations.

16 Verification and Validation

16-16

When you integrate this model with its parent model, you can add the rest of the MISRA C:2012
rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code metrics, you must
export your results. If you want to generate a report every time you run an analysis, see Generate
report (Polyspace Bug Finder).

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

Test Code Against Model Using Software-in-the-Loop Testing
You previously showed that the model functionality meets its requirements by running test cases
based on those requirements. Now run the same test cases on the generated code to show that the
code produces equivalent results and fulfills the requirements. Then compare the code coverage to
the model coverage to see the extent to which the tests exercised the generated code.

1 In MATLAB, in the project window, open the tests folder, then open SILTests.mldatx. The
file opens in the Test Manager.

 Analyze Code and Test Software-in-the-Loop

16-17

2 Review the test case. On the Test Browser pane, navigate to SIL Equivalence Test Case.
This equivalence test case runs two simulations for the
simulinkCruiseErrorAndStandardsExample model using a test harness.

• Simulation 1 is a model simulation in normal mode.
• Simulation 2 is a software-in-the-loop (SIL) simulation. For the SIL simulation, the test case

runs the code generated from the model instead of running the model.

The equivalence test logs one output signal and compares the results from the simulations. The
test case also collects coverage measurements for both simulations.

3 Run the equivalence test. Select the test case and click Run.
4 Review the results in the Test Manager. In the Results and Artifacts pane, select SIL

Equivalence Test Case to see the test results. The test case passed and the results show that
the code produced the same results as the model for this test case.

5 Expand the Coverage Results section of the results. The coverage measurements show the
extent to which the test case exercised the model and the code. When you run multiple test
cases, you can view aggregated coverage measurements in the results for the whole run. Use the
coverage results to add tests and meet coverage requirements, as shown in “Perform Functional
Testing and Analyze Test Coverage”.

You can also test the generated code on your target hardware by running a processor-in-the-loop
(PIL) simulation. By adding a PIL simulation to your test cases, you can compare the test results and
coverage results from your model to the results from the generated code as it runs on the target
hardware. For more information, see “Code Verification Through Software-in-the-Loop and Processor-
in-the-Loop Execution” (Embedded Coder).

16 Verification and Validation

16-18

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug Finder)
• “Test Two Simulations for Equivalence” (Simulink Test)
• “Export Test Results” (Simulink Test)

 Analyze Code and Test Software-in-the-Loop

16-19

Create Back-to-Back Tests Using Enhanced MCDC
Back-to-back tests, or equivalence tests, compare the results of normal simulations with the
generated code results from software-in-the-loop (SIL), processor-in-the-loop (PIL), or hardware-in-
the-loop (HIL) simulations. You can generate back-to-back tests in Simulink Test that use Enhanced
MCDC.

Set Up Test Inputs and Verification Strategy
If you want to test a component under test or subsystems in Simulink Test, you can use the Create
Test for Component wizard by selecting New > Create Test for Model Component Simulink Test
Test Manager, Use Design Verifier to generate test input scenarios. For detailed information, see
“Generate Tests and Test Harnesses for a Model or Components” (Simulink Test).

To compare the results of running the component in two different simulation modes, select Perform
back-to-back testing on the Verification Strategy tab of the wizard. For SIL testing an atomic
subsystem or a reusable library subsystem, the subsystem or library that contains the subsystem
must already have generated code. See “Enhanced MCDC Coverage in Simulink Design Verifier” on
page 7-42 for more information.

16 Verification and Validation

16-20

If, under Perform back-to-back testingyou select Software-in-the-Loop or Processor-in-
the-Loop for Simulation2, the Set Model Coverage Objective as Enhanced MCDC option
appears. Enhanced MCDC extends decision coverage by generating test cases that avoid masking
effects from downstream blocks.

See Also

Related Examples
• “Create and Run Back-to-Back Tests Using Enhanced MCDC” on page 8-18
• “Enhanced MCDC Coverage in Simulink Design Verifier” on page 7-42
• “Generate Tests and Test Harnesses for a Model or Components” (Simulink Test)

 Create Back-to-Back Tests Using Enhanced MCDC

16-21

Glossary

abstraction The process of ignoring certain aspects of model behavior that do not
affect the test objective or property under investigation.

analysis model The target model for a Simulink Design Verifier analysis. If you select
an atomic subsystem for analysis, the analysis model is generated by
extracting the subsystem to a new model.

assumption A property that is assumed to be true during a property proof. The
proof result holds only when the assumption is true.

block replacement rule A rule that is registered with Simulink Design Verifier and defines how
instances of specific blocks are replaced by an alternate
implementation. The software uses MATLAB commands to define
when and how to apply a block replacement rule (see “Block
Replacements for Unsupported Blocks” on page 4-7).

component verification The process of verifying an individual components in a model. You can
verify a component within the execution context of the model, or
independently of its parent model.

condition coverage Measures the percentage of the total number of logic conditions
associated with logical model objects that the simulation actually
exercised. Enabling condition coverage causes every decision and
condition coverage outcome to be enabled. See “Types of Model
Coverage” (Simulink Coverage).

constraint A property that is forced to be true during test case generation.

counterexample A test case that demonstrates a property violation.

coverage objective A test objective that defines when a coverage point results in a
particular outcome.

coverage point A decision, condition, or MCDC expression associated with a model
object. Each coverage point has a fixed number of mutually exclusive
outcomes.

decision coverage Measures the percentage of the total number of simulation paths
through model objects that the simulation actually traversed. Decision
coverage is a subset of modified decision/condition coverage. See
“Types of Model Coverage” (Simulink Coverage).

floating-point
approximation

The process of approximating floating-point numbers using rational
numbers (i.e., fractions whose numerator and denominator are small
integers). The Simulink Design Verifier software performs floating-
point approximations during its analysis. It can generate invalid test
cases that result from numerical differences. For example, given a
large enough floating-point number x, the expression x==(x+1) can
be true; however, this expression never holds if x is a rational number.

invalid test case A test case that does not satisfy its objectives.

Glossary-1

modified condition/
decision coverage
(MCDC)

Measures the independence of logical block inputs and transition
conditions associated with logical model objects during the
simulation. When you set the coverage objective to MCDC, Simulink
Design Verifier automatically enables every coverage objective for
decision coverage and condition coverage as well.

Note that MCDC test cases are not generated for XOR configured
logic operators. You can achieve MCDC by using the same tests that
would be generated from AND configured blocks or OR configured
blocks.

See “Types of Model Coverage” (Simulink Coverage).

nonlinear arithmetic A computation in the model that cannot be expressed as a
combination of mutually exclusive linear expressions. Nonlinear
arithmetic can affect a property or test objective, and it can cause the
analysis to return an error. In this case, you should apply simplifying
approximations and abstractions.

property A logical expression of the signals and data values, within a model,
that is intended to be proven true during simulation. Properties
evaluate at specific points in the model.

property violation The condition during a simulation when a property is false.

test case A sequence of numeric values and input data time that you input to a
model during its simulation.

test harness A model that runs test cases on an analysis model.

test objective A logical expression of the signals and data values, within a model,
that is intended to be true at least once in the resulting test case
during simulation. Test objectives evaluate at specific points in the
model.

Test Objective block The block that you add to a model to define test objectives. In the
block mask, define test objectives as values or ranges that an input
signal must satisfy during a test case.

unsatisfiable test
objective

The status of a test objective that indicates a test case cannot be
generated for the specified approximations. This includes floating-
point approximations and maximum-step limitations specified in the
Design Verifier > Test Generation pane of the Configuration
Parameters dialog box.

validated property The status of a property that indicates no counterexample exists,
subject to floating-point approximations and the settings specified in
the Property Proving pane of the Configuration Parameters dialog
box.

Glossary

Glossary-2

	Acknowledgments
	Getting Started
	Simulink Design Verifier Product Description
	Simulink Design Verifier Block Library
	Analyze a Model
	About This Example
	Open the Model
	Generate Test Cases
	Combine Test Cases

	Analyze a Stateflow Atomic Subchart
	Analyze an Atomic Subchart by Using Simulink Design Verifier

	Overview of the Simulink Design Verifier Workflow
	Check Model Compatibility
	Apply Block Replacement Rules
	Set Simulink Design Verifier Options
	Perform Analysis on Model
	Generate Analysis Results
	Interpret Analysis Results

	How the Simulink Design Verifier Software Works
	Analyze a Simple Model
	Model Blocks
	Block Reduction
	Large Models
	Handle Incompatibilities with Automatic Stubbing
	What Is Automatic Stubbing?
	How Automatic Stubbing Works
	Analyze a Model Using Automatic Stubbing

	Analyze Export-Function Models
	Limitations

	Analyze Export-Function Model with Function-Call Subsystems
	Analyze Export-Function Model with Global Simulink Function
	Nonfinite Data
	Role of Approximations During Model Analysis
	Types of Approximations
	Floating-Point to Rational Number Conversion
	Linearization of Two-Dimensional Lookup Tables for Floating-Point Data Types
	Approximation of One- and Two-Dimensional Lookup Tables for Integer and Fixed-Point Data Types
	While Loops

	How Simulink Design Verifier Reports Approximations Through Validation Results
	Impact of Approximations on Objectives Status
	Identify the Effect of Approximations Through Validation Results

	Logic Operations Short-Circuiting
	Model Representation for Analysis
	Reuse Model Representation for Analysis
	Limitations

	Share Simulink Cache File for Faster Analysis
	Store the Simulink Cache File
	Reuse the Simulink Cache File

	Analyze AUTOSAR Component Models
	Limitations

	Extend Existing Test Cases by Reusing Model Representation
	Configure Model Representation Options
	Run Additional Analysis to Reduce Instances of Rational Approximation
	Detect Design Errors in AUTOSAR Software Component Model

	Checking Compatibility with the Simulink Design Verifier Software
	Check Model Compatibility
	Run Compatibility Check
	Compatibility Check Results

	Supported and Unsupported Simulink Blocks in Simulink Design Verifier
	Support Limitations for Simulink Software Features
	Support Limitations for Model Blocks
	Support Limitations for Stateflow Software Features
	ml Namespace Operator, ml Function, ml Expressions
	C or C++ Operators
	C Math Functions
	Atomic Subcharts That Call Exported Graphical Functions Outside a Subchart
	Atomic Subchart Input and Output Mapping
	Recursion and Cyclic Behavior
	Custom C/C++ Code
	Textual Functions with Literal String Arguments

	Support Limitations for MATLAB for Code Generation
	Unsupported MATLAB for Code Generation Features
	Support Limitations for MATLAB for Code Generation Library Functions

	Support Limitations and Considerations for S-Functions and C/C++ Code
	Enabling S-Functions in Simulink Design Verifier
	Support Limitations for S-Functions and C/C++ Code
	Handle Volatile Variables as Normal Variables
	Considerations for Enabling S-Functions and C/C++ Code in Simulink Design Verifier
	Source Code Protection

	Working with Block Replacements
	What Is Block Replacement?
	Block Replacement Effects on Test Generation

	Built-In Block Replacements
	Template for Block Replacement Rules
	Block Replacements for Unsupported Blocks

	Specifying Parameter Configurations
	Parameter Configuration for Analysis
	What is Parameter Configuration for Analysis?
	Specify Parameter Constraints for Models Using Referenced Configuration Set
	Data Types in Parameter Configurations
	Parameters in Variant Blocks

	Use Parameter Table
	Find Parameters
	Edit Parameter Constraints
	Highlight Constrained Parameters in Model

	Specify Parameter Configuration for Structure or Bus Parameters
	About This Example Model
	Preload Workspace Variable for Structure Parameter
	Define Parameter Constraint Values
	Define Parameter Constraint Values using Parameter Table
	Define Constraint Values using Parameter Configuration File
	Analyze Example Model

	Specify Parameter Configuration for Full Coverage
	About This Example
	Construct Example Model
	Parameterize Constant Block
	Preload Workspace Variable
	Autogenerate Parameter Constraint
	Analyze Example Model
	Simulate Test Cases

	Store Parameter Constraints in MATLAB Code Files
	Export Parameter Constraints to File
	Import Parameter Constraints from File

	Use Parameter Configuration File
	Template Parameter Configuration File
	Syntax in Parameter Configuration Files

	Automatically Infer Parameter Specification
	Configuring Parameters by Using Automatically infer parameter specification

	Determine from Generated Code
	Configuring Parameters by Using Determine from generated code

	Using Command Line Functions to Support Changing Parameters
	Generate Parameters Values
	Extend Existing Test Cases After Applying Parameter Configurations

	Detecting Design Errors
	What Is Design Error Detection?
	Derived Ranges in Design Error Detection
	Analyze Models for Design Errors
	Workflow for Detecting Design Errors
	Understand the Analysis Results
	Review the Latest Analysis Results in the Results Summary Window
	Check For Design Errors using the Model Advisor

	Dead Logic Detection
	Run a Partial Check for Dead Logic
	Run an Exhaustive Analysis for Dead Logic
	Run a Dead Logic Analysis and Review Results

	Detect Dead Logic Caused by an Incorrect Value
	Analyze the Fuel System Model
	Review the Results and Trace to the Model
	Investigate the Cause of the Dead Logic
	Update the Input Constraint and Reanalyze the Model

	Common Causes for Dead Logic
	Short-Circuiting of a Logical Operator Block During Analysis
	Conditional Execution of a Block
	Parameter Values Treated as Constants
	Upstream Blocks
	Library-Linked Blocks
	Restrictions on Signal Ranges

	Detect Integer Overflow and Division-by-Zero Errors
	About This Example
	Analyze the Model
	Review the Analysis Results

	Check for Specified Minimum and Maximum Value Violations
	Limitations of Checking Specified Minimum and Maximum Value Violations
	About This Example
	Create the Example Model
	Analyze the Model
	Review the Analysis Results

	Detect Out of Bound Array Access Errors
	Design Error Detection for Out of Bound Array Access
	Detect Out of Bound Array Access Example Model
	Limitations of Support for Out of Bound Array Access Design Error Detection

	Detect Non-Finite, NaN, and Subnormal Floating-Point Values
	Assumptions and Limitations
	Run Design Error Detection Analysis to Detect Floating-Point Errors

	Detect Data Store Access Violations
	Detect Data Store Access Violations in a Model

	Detect Violations of High-Integrity Systems Modeling Guidelines
	Usage of rem and reciprocal operations - hisl_0002
	Usage of square root operations - hisl_0003
	Usage of log and log10 operations - hisl_0004
	Usage of Reciprocal Square Root blocks - hisl_0028
	Detect Violations of High-Integrity Systems Modeling Guidelines

	Filter Objectives by Using Simulink Design Verifier Filter Explorer
	Use the Simulink Design Verifier Filter Explorer to Edit Filter Files
	Limitations

	Detect Integer Overflow Errors
	Detect Out of Bound Array Access Example Model
	Detect Design Errors in C/C++ Custom Code
	Exclude and Justify Objectives for Design Error Detection
	Detect Integer Overflow in a Model with Complex Inputs
	Debug Integer Overflow Design Error Detection Using Model Slicer
	Analyzing the Results for a Dead Logic Analysis

	Generating Test Cases
	What Is Test Case Generation?
	Test Case Blocks
	Test Case Functions

	Workflow for Test Case Generation
	Generate Test Cases for Model Decision Coverage
	Construct the Example Model
	Check Compatibility of the Example Model
	Configure Test Generation Options
	Analyze the Example Model
	Review Analysis Results
	Customize Test Generation
	Reanalyze the Example Model
	Analyze Contradictory Models

	Generate Test Cases for a Subsystem
	Generate Test Cases for Subsystems for Normal Mode
	Generate Test Cases for Subsystems for Software-in-the-Loop Mode

	Generate Test Cases for a Reusable Library Subsystem
	Generate Test Cases for RLS in Software-in-the-Loop Mode

	Use Test Generation Advisor to Identify Analyzable Components
	Test Generation Advisor
	Test Generation Advisor Requirements
	Identify Analyzable Components
	Analyze and Generate Tests for Model Components
	Manually Select Components for Testing

	Generate Test Cases for Embedded Coder Generated Code
	Generate Test Cases for Generated Code from the Simulink Model Toolstrip
	Generate Test Cases for Generated Code by Using the Simulink Design Verifier API
	Generate Test Cases for Generated Code from the Simulink Test Test Manager

	Model Coverage Objectives for Test Generation
	Decision
	Condition
	MCDC
	Enhanced MCDC
	Relational Boundary

	Enhance Model Coverage of Older Release Models
	Enhance Model Coverage by Generating Test Cases for Older Release Model
	Enhance Model Coverage by Using Generated Code from Older Release

	Enhanced MCDC Coverage in Simulink Design Verifier
	Use Model Coverage Objectives for Enhanced MCDC Coverage
	Author Custom Test Objectives for Enhanced MCDC Coverage

	Analyze Model for Enhanced MCDC Analysis
	Basic Workflow for Enhanced MCDC Analysis
	Configure Detection Sites using Test-pointed Logged Signals
	Configure Advanced Options for Enhanced MCDC Analysis
	Inspect Enhanced MCDC Objectives using Model Slicer

	Author Custom Test Objective Workflow
	Steps for Authoring Custom Test Objectives
	Analyze Custom Test Objectives in Model for Enhanced MCDC

	What Is a Specification Model?
	Use Specification Models in Requirements-Based Testing
	Construct a Specification Model
	Iterate Through the Steps

	Test Generation Examples
	Test Generation for Custom Code in MATLAB Function Block
	Generating Tests for Custom code in MATLAB function block

	Use Specification Models for Requirements-Based Testing
	Flip Flop Test Generation
	Model Coverage Test Generation
	Test Objective Block
	Test Condition Block
	Cruise Control Test Generation
	Fuel Rate Controller Logic
	Extend an Existing Test Suite
	Defining and Extending Existing Tests Cases
	Using Existing Coverage Data During Subsystem Analysis
	Creating and Executing Test Cases
	Using Specified Input Minimum and Maximum Values as Constraints
	Configuring S-Function for Test Case Generation
	Code Coverage Test Generation
	Test Generation on Model with C Caller Block
	Debug Enhanced Modified Condition Decision Coverage Using Model Slicer
	Test Generation for Custom Code in a Stateflow Chart
	Generate Test Cases for Model Blocks
	Use Observer Reference Block for Test Case Generation
	Inspect Test Generation Objectives by Using Model Slicer
	Generate Tests for Model Block Component by Using Default Simulation
	Add Test Cases Using Excel File
	Achieve Missing Coverage in Custom Code
	Achieve Missing Coverage in Generated Code of RLS

	Extending Existing Test Cases
	When to Extend Existing Test Cases
	Common Workflow for Extending Existing Test Cases
	Considerations for Starting Test Cases

	Extend Test Cases for Model with Temporal Logic
	Create Starting Test Case
	Log Starting Test Case
	Extend Existing Test Cases
	Verify Analysis Results

	Extend Test Cases for Closed-Loop System
	Log Starting Test Case
	Extend Existing Test Cases

	Extend Test Cases for Modified Model
	Create Starting Test Cases
	Extend Existing Test Cases

	Create and Run Back-to-Back Tests Using Enhanced MCDC

	Achieving Test Cases for Missing Model Coverage
	Generate Test Cases for Missing Coverage Data
	Achieve Missing Coverage in Referenced Model
	Programmatically Achieve Missing Coverage in Referenced Model
	Increase Coverage for Referenced Models in a Test Harness

	Achieve Missing Coverage in Subsystems and Model Blocks
	Achieve Missing Coverage in Closed-Loop Simulation Model
	Record Coverage Data for the Model
	Find Test Cases for Missing Coverage

	Analyze Coverage for Lookup Table Boundary Values
	Generate Tests for Lookup Table Boundary Values

	Modified Condition and Decision Coverage in Simulink Design Verifier
	MCDC Definitions for Simulink Coverage and Simulink Design Verifier

	Achieve Coverage in Models with Variable-Size Inputs

	Verifying Model Components
	What Is Component Verification?
	Component Verification Approaches
	Simulink Design Verifier Tools for Component Verification

	Functions for Component Verification
	Verify a Component for Code Generation
	About the Example Model
	Prepare the Component for Verification
	Record Coverage for the Component
	Use Simulink Design Verifier Software to Record Additional Coverage
	Combine the Harness Models
	Execute the Component in Simulation Mode
	Execute the Component in Software-in-the-Loop (SIL) Mode

	Considering Specified Minimum and Maximum Values for Inputs During Analysis
	Minimum and Maximum Input Constraints
	Simulink Design Verifier Support for Specified Input Minimum and Maximum Values
	Limitations of Simulink Design Verifier Support for Specified Minimum and Maximum Values

	Specify Input Ranges on Simulink and Stateflow Elements
	Specify Input Ranges for Inport Blocks
	Specify Input Ranges for Simulink.Signal Objects
	Specify Input Ranges for Stateflow Data Objects
	Specify Input Ranges for Subsystems
	Specify Input Ranges for Global Data Stores
	Specify Input Ranges for Bus Elements

	Specification of Input Ranges in sldvData Fields

	Proving Properties of a Model
	What Is Property Proving?
	Proof Blocks
	Proof Functions

	Workflow for Proving Model Properties
	Prove Properties in a Model
	About This Example
	Construct Example Model
	Check Compatibility of Example Model
	Instrument Example Model
	Configure Property-Proving Options
	Analyze Example Model
	Review Analysis Results
	Customize Example Proof
	Reanalyze Example Model
	Review Results of Second Analysis
	Analyze Contradictory Models
	Prove Properties in a Large Model

	Prove System-Level Properties Using Verification Model
	When to Use a Verification Model for Property Proving
	About This Example
	Understand the Verification Model
	Prove the Properties of the Design Model
	Fix the Verification Model

	Prove Properties in a Subsystem
	Model Requirements
	Basic Properties
	Temporal Properties

	Isolate Verification Logic with Observers
	Replace a Verification Subsystem with an Observer Reference Block
	Report on Observer Reference Blocks
	Limitations

	Property Proving with an Invalid Property
	Property Proving with Multiple Properties
	Property Proving with an Assumption Block
	Property Proving Workflow for Cruise Control
	Property Proving Workflow for Fixed-Point Cruise Control with Block Replacements
	Property Proving Using MATLAB Function Block
	Property Proving Using MATLAB Truth Table Block
	Property Proving Workflow for Thrust Reverser
	Debounce Temporal Properties
	Power Window Controller Temporal Properties
	Debug Property Proving Violations by Using Model Slicer
	Design and Verify Properties in a Model
	Validate Requirements by Analyzing Model Properties
	Use Observer Reference Blocks for Property Proving Analysis
	Prove Properties with Requirements Table Blocks

	Reviewing the Results
	Highlight Results on the Model
	Results Review with Model Highlighting
	Simulink Design Verifier Results Inspector
	Highlight Results on Model Automatically
	Green Highlighting on Model
	Red Highlighting on Model
	Orange Highlighting on Model
	Gray Highlighting on Model

	Manage Simulink Design Verifier Data Files
	Generate sldvData Structure
	Model Information Fields in sldvData
	Simulate Models Using Data Files
	Load Results from Data Files

	Manage Simulink Design Verifier Harness Models
	Harness Model Generation
	Create a Harness Model
	Contents of a Harness Model
	Configuration of the Harness Model
	Simulate the Harness Model

	Simulate Harness Model with Signal Editor Inputs Block
	Export Test Cases to Simulink Test
	Generate and Export Test Cases to Simulink Test

	Export Tests from Models That Contain Requirements Table Blocks with Simulink Design Verifier
	Construct the Model and Generate Tests
	Export the Tests to the Test Manager
	Run the Tests
	Inspect Test Failures

	Review Results
	Simulink Design Verifier Report Generation
	Create Analysis Reports
	Front Matter
	Summary Chapter
	Analysis Information Chapter
	Derived Ranges Chapter
	Objectives Status Chapters
	Model Items Chapter
	Design Errors Chapter
	Test Cases Chapter
	Properties Chapter

	View Log Files
	Review Analysis Results
	View Active Results
	Load Previous Results
	Explore Results

	Analyzing Large Models and Improving Performance
	Sources of Model Complexity
	Analyze a Large Model
	Types of Large Model Problems
	Summarize Model Hierarchy and Compatibility
	Use the Default Parameter Values
	Modify the Analysis Parameters
	Stop the Analysis Before Completion

	Increase Allocated Memory for Analysis Report Generation
	Manage Model Data to Simplify the Analysis
	Simplify Data Types
	Constrain Data

	Partition Model Inputs for Incremental Test Generation
	Bottom-Up Approach to Model Analysis
	Reuse of Analysis Results from Subsystems at the System level
	Limitations

	Extract Subsystems for Analysis
	Overview of Subsystem Extraction
	sldvextract Function
	Structure of the Extracted Model
	Analyze Subsystems That Read from Global Data Storage
	Analyze Function-Call Subsystems
	Analyze Global Simulink Function

	Logical Operations
	Analyzing Models with Large Verification State Space
	Counters and Timers
	Prove Properties in Large Models
	Find Property Violations While Designing Your Model
	Combine Proving Properties and Finding Proof Violations

	Simulink Design Verifier Configuration Parameters
	Simulink Design Verifier Options
	Options in Configuration Parameters Dialog Box
	Design Verification Options Objects
	Command-Line Parameters for Design Verification Options

	Design Verifier Pane
	Design Verifier Pane Overview
	Mode
	Maximum analysis time
	Output folder
	Make output file names unique by adding a suffix
	Check Model Compatibility
	Generate Tests/Detect Errors/Prove Properties
	Rebuild model representation
	Automatic stubbing of unsupported blocks and functions
	Support S-Functions in the analysis
	Use specified input minimum and maximum values
	Run additional analysis to reduce instances of rational approximation
	Validate test cases or counterexamples with parallel computing
	Additional options for code analysis
	Ignore objectives based on filter
	Filter file(s)
	Browse...

	Design Verifier Pane: Block Replacements
	Block Replacements Pane Overview
	Apply block replacements
	List of block replacement rules
	File path of the output model

	Design Verifier Pane: Parameters and Variants
	Parameters Pane Overview
	Parameter configuration
	Enable
	Disable
	Clear
	Highlight in Model
	Use
	Name
	Constraint
	Value
	Min
	Max
	Model Element
	Find parameters
	Import
	Export
	Parameter configuration file
	Browse...
	Edit...
	Analyze all Startup Variants
	Launch Variant Manager...

	Design Verifier Pane: Test Generation
	Test Generation Pane Overview
	Test generation target
	Model coverage objectives
	Test conditions
	Test objectives
	Maximum test case steps
	Test suite optimization
	Include relational boundary objectives
	Floating point absolute tolerance
	Floating point relative tolerance
	Use strict propagation conditions
	Extend using existing coverage data
	Coverage data
	Browse
	Extend using existing test data
	Test data
	Browse
	Separate objectives satisfied with the existing tests/coverage data in the report

	Design Verifier Pane: Design Error Detection
	Design Error Detection Pane Overview
	Dead logic (partial)
	Run exhaustive analysis
	Coverage objectives to be analyzed
	Out of bound array access
	Data store access violations
	Division by zero
	Integer overflow
	Non-finite and NaN floating-point values
	Subnormal floating-point values
	Specified minimum and maximum value violations
	Specified block input range violations
	Usage of rem and reciprocal operations - hisl_0002
	Usage of Square Root operations - hisl_0003
	Usage of log and log10 operations - hisl_0004
	Usage of Reciprocal Square Roots blocks - hisl_0028

	Design Verifier Pane: Property Proving
	Property Proving Pane Overview
	Assertion blocks
	Proof assumptions
	Strategy
	Maximum violation steps

	Design Verifier Pane: Results
	Results Pane Overview
	Data file name
	Include expected output values
	Randomize data that do not affect the outcome
	Generate separate harness model after analysis
	Harness model file name
	Reference input model in generated harness
	Harness source
	Test File Name
	Test Harness Name

	Design Verifier Pane: Report
	Report Pane Overview
	Generate report of the results
	Generate additional report in PDF format
	Report file name
	Include screen shots of properties
	Display report

	Verification and Validation
	Test Model Against Requirements and Report Results
	Requirements – Test Traceability Overview
	Display the Requirements
	Link Requirements to Tests
	Run the Test
	Report the Results

	Analyze Models for Standards Compliance and Design Errors
	Standards and Analysis Overview
	Check Model for Style Guideline Violations and Design Errors

	Perform Functional Testing and Analyze Test Coverage
	Incrementally Increase Test Coverage Using Test Case Generation

	Analyze Code and Test Software-in-the-Loop
	Code Analysis and Testing Software-in-the-Loop Overview
	Analyze Code for Defects, Metrics, and MISRA C:2012
	Test Code Against Model Using Software-in-the-Loop Testing

	Create Back-to-Back Tests Using Enhanced MCDC
	Set Up Test Inputs and Verification Strategy

	Glossary

